Skip to main content

Advertisement

SpringerLink
Book cover

Modeling Excitable Tissue pp 70–86Cite as

  1. Home
  2. Modeling Excitable Tissue
  3. Chapter
Iterative Solvers for EMI Models

Iterative Solvers for EMI Models

  • Miroslav Kuchta13 &
  • Kent-André Mardal13 
  • Chapter
  • Open Access
  • First Online: 31 October 2020
  • 1643 Accesses

  • 2 Citations

Part of the Simula SpringerBriefs on Computing book series (RCP,volume 7)

Abstract

This chapter deals with iterative solution algorithms for the four EMI formulations derived in (17, Chapter 5). Order optimal monolithic solvers robust with respect to material parameters, the number of degrees of freedom of discretization as well as the time-stepping parameter are presented and compared in terms of computational cost. Domain decomposition solver for the single-dimensional primal formulation is discussed.

Download chapter PDF

References

  1. Bærland T, Kuchta M, Mardal KA (2019) Multigrid methods for discrete fractional Sobolev spaces. SIAM Journal on Scientific Computing 41(2):A948–A972

    Google Scholar 

  2. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2019) PETSc Web page. https://www.mcs.anl.gov/petsc, URL https://www.mcs.anl.gov/petsc

  3. Bonito A, Pasciak J (2015) Numerical approximation of fractional powers of elliptic operators. Mathematics of Computation 84(295):2083–2110

    Google Scholar 

  4. Braess D (2007) Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  5. Bramble J, Pasciak J, Vassilevski P (2000) Computational scales of Sobolev norms with application to preconditioning. Mathematics of Computation 69(230):463–480

    Google Scholar 

  6. Brenner S, Scott R (2007) The mathematical theory of finite element methods, vol 15. Springer Science & Business Media

    Google Scholar 

  7. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle Analyse numérique 8(2):129–151

    Google Scholar 

  8. Discacciati M, Quarteroni A, Valli A (2007) Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM Journal on Numerical Analysis 45(3):1246–1268

    Google Scholar 

  9. Girault V, Raviart PA (2012) Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol 5. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  10. Hernandez V, Roman JE, Vidal V (2005) SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans Math Software 31(3):351–362

    Google Scholar 

  11. Jæger KH, Tveito A (2020) Efficient numerical solution of the EMI model representing extracellular space (E), the cell membrane (M) and the intracellular space (I) of a collection of cardiac cells. Preprint

    Google Scholar 

  12. Jæger KH, Hustad KG, Cai X, Tveito A (2020) Operator splitting and finite difference schemes for solving the EMI model. In: Tveito A, Mardal KA, Rognes ME (eds) Modeling excitable tissue - The EMI framework, Simula Springer Notes in Computing, SpringerNature

    Google Scholar 

  13. Klawonn A, Widlund OB, Dryja M (2002) Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM Journal on Numerical Analysis 40(1):159–179

    Google Scholar 

  14. Kolev TV, Vassilevski PS (2012) Parallel auxiliary space AMG solver for H(div) problems. SIAM Journal on Scientific Computing 34(6):A3079–A3098

    Google Scholar 

  15. Kuchta M, Mardal KA (2020) Software for EMI - Iterative solvers for EMI models. URL https://doi.org/10.5281/zenodo.3771212

  16. Kuchta M, Nordaas M, Verschaeve JCG, Mortensen M, Mardal KA (2016) Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM Journal on Scientific Computing 38(6):B962–B987

    Google Scholar 

  17. Kuchta M, Mardal KA, Rognes ME (2020) Solving the EMI equations using finite element methods. In: Tveito A, Mardal KA, Rognes ME (eds) Modeling excitable tissue - The EMI framework, Simula Springer Notes in Computing, SpringerNature

    Google Scholar 

  18. Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Applied Nnumerical Mmathematics 54(2):167–193

    Google Scholar 

  19. Mardal KA,Winther R (2011) Preconditioning discretizations of systems of partial differential equations. Numerical Linear Algebra with Applications 18(1):1–40

    Google Scholar 

  20. Nielsen BF, Mardal KA (2013) Analysis of the minimal residual method applied to ill posed optimality systems. SIAM Journal on Scientific Computing 35(2):A785–A814

    Google Scholar 

  21. Smith B, Bjorstad P, Gropp W (2004) Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge

    Google Scholar 

  22. Tveito A, Jæger KH, Kuchta M, Mardal KA, Rognes ME (2017) A cell-based framework for numerical modeling of electrical conduction in cardiac tissue. Frontiers in Physics 5:48

    Google Scholar 

  23. Yang UM, et al. (2002) Boomeramg: a parallel algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41(1):155–177

    Google Scholar 

  24. Zampini S (2016) PCBDDC: a class of robust dual-primal methods in PETSc. SIAM Journal on Scientific Computing 38(5):S282–S306

    Google Scholar 

  25. Zampini S, Tu X (2017) Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media. SIAM Journal on Scientific Computing 39(4):A1389–A1415

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Simula Research Laboratory, Fornebu, Norway

    Miroslav Kuchta & Kent-André Mardal

Authors
  1. Miroslav Kuchta
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kent-André Mardal
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Miroslav Kuchta .

Editor information

Editors and Affiliations

  1. Simula Research Laboratory, Fornebu, Norway

    Prof. Aslak Tveito

  2. Department of Mathematics, University of Oslo, Oslo, Norway

    Prof. Kent-Andre Mardal

  3. Simula Research Laboratory, Fornebu, Norway

    Prof. Marie E. Rognes

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kuchta, M., Mardal, KA. (2021). Iterative Solvers for EMI Models. In: Tveito, A., Mardal, KA., Rognes, M.E. (eds) Modeling Excitable Tissue. Simula SpringerBriefs on Computing(), vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-61157-6_6

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-61157-6_6

  • Published: 31 October 2020

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61156-9

  • Online ISBN: 978-3-030-61157-6

  • eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.