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Foreword to Reports on Computational
Physiology

Dear Reader,

In 2016, Springer and Simula launched an Open Access series called the Simula
SpringerBriefs on Computing. This series aims to provide concise introductions
to the research areas in which Simula specializes: scientific computing, software
engineering, communication systems, machine learning and cybersecurity. These
books are written for graduate students, researchers, professionals and others who
are keenly interested in the science of computing. We know that entering a new field
of research or getting up-to-date on a new topic of interest can be very demanding
and time consuming, for students and experienced researchers alike. Each volume
presents a compact, state-of-the-art disciplinary overview and raises essential critical
questions in the field, all in approximately 100 pages.

Simula’s focus on computational physiology has grown considerably over the last
decade. Our researchers collaborate with partners around the world in interdisci-
plinary teams to develop multi-scale mathematical models of excitable tissues (brain
and heart). These models are becoming increasingly complex and accurate, in par-
ticular as they are compared to experimental and clinical data. Since 2014, the
University of California, San Diego (UCSD) and Simula have organized an annual
summer school in computational physiology, in which graduate students spend the
second two weeks of June in Oslo learning the principles underlying mathematical
models commonly used to study the heart and the brain. The students are then as-
signed a research project to work on over the summer. In August the students travel to
the University of California, San Diego to present their findings. Each year, we have
been impressed by the students’ abilities to learn the huge amount of mathematics
and physiology theory required for their research projects, the results of which often
contain the rudiments of a scientific paper.

As a result of our expanding activities in this field, we have decided to publish a
branch of the SimulaSpringer Briefs that is specifically focused on computational
physiology. Each volume in this series will explore multiple physiological questions
and the models developed to address them. Each of the questions will, in turn, be
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vi Foreword to Reports on Computational Physiology

packaged into a short report format (6-10 pages) that provides a succinct summary
of the findings and, whenever possible, the software used will be made publicly
available. All reports in this series are subjected to peer-review. We would like to
emphasise that we do not require that reports represent new scientific results; rather,
they can reproduce or supplement earlier computational studies or experimental
findings.

The main driver for this series is to enable the publication of project reports from
the annual summer school in Computational Physiology, but we will also publish
related reports that fit the overall purpose of the SimulaSpringer Briefs. Due to the
Covid-19 pandemic, the summer school in 2020 had to be cancelled, and as such
this first issue of the new series is not a collection of project reports. However, the
topic of the first issue fits very well in the framework of computational physiology;
it presents novel methods and software for the simulation of excitable cells.

It is a pleasure to thank our collaborators at SpringerNature for their superbly efficient
handling of this manuscript. In particular, we are grateful for the sound advice and
support from Dr. Martin Peters, the Executive Editor for Mathematics, Computational
Science and Engineering. We would also like to thank Dr. Henrik Nicolay Finsberg
for his excellent technical support in this project.

Fornebu, Norway Dr. Kimberly J McCabe
September 2020 Dr. Rachel Thomas

Dr. Andrew D McCulloch
Dr. Aslak Tveito



Preface

Partial differential equations (PDEs) have proved to be immensely useful in mod-
elling Nature; virtually all fields of science have their own equations, and every
field of engineering is based on mathematical models formulated in terms of PDEs.
This is astonishing given the fact that no model, but the very simplest ones, can
be studied using analytical (paper and pencil) techniques. Numerical computations
have proved tremendously useful in order to understand models formulated in terms
of PDEs, and it can be argued that the computer was invented for the purpose of
solving such equations. The computer is extremely well suited to perform the huge
amounts of tedious and highly repetitive computations that earlier had to be com-
pleted by humans. However, for a very long time, the computers typically available
at research labs could solve only simple models. In the eighties, PDEs was almost
always studied in 1 or 2 spatial dimensions; the 2D geometry was very simple and
the model was most often linear and scalar. That level of computational complexity
allowed analysis of qualitative properties of PDEs, but was insufficient for studying
realistic models in Science and Engineering.

Over the past 30 years, we have witnessed a tremendous development in computing
power both in terms of hardware, solution algorithms and software. This development
has paved the way for realism in modeling; geometrical structures can now be
represented with high degree of accuracy and complex systems of PDEs is applied
to model the complex dynamics under consideration. This has led to greatly improved
understanding throughout many branches of Science and had led to the development
of considerably more accurate tools in Engineering.

Computational electrophysiology is a branch of Science that has benefited greatly
from developments in computational analysis of PDEs. This development started
70 years ago with the celebrated paper by Hodgkin and Huxley (see (6)) and was
followed 10 years later by the first cardiac action potential model developed by
Noble (13). Since these groundbreaking papers, there have been intense efforts
to understand how excitable cells works based on modeling and computations. This
development has moved in tandem with new experimental techniques providing more
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viii Preface

accurate data necessary for parameterizing the increasingly complex models. A large
number of membrane models (many hundreds) have been developed (see e.g. (11)),
and these models have been used together with the monodomain or bidomain models
(see e.g. (5; 21)) to study the electrochemical waves underpinning the contraction of
the cardiac muscle. Similarly, the Cable equation (see e.g. (15)) has been extensively
used to understand propagation of electrochemical signals by neurons.

Both the monodomain and the bidomain models of electrophysiology are derived
based on homogenization of the cardiac tissue. In the resulting models, this means
that the both the extracellular space, the cell membrane and the intracellular space
are assumed to exist everywhere in the computational domain. Specifically, this
means that the cardiac cell is not explicitly present in these models. This approach
to modeling cardiac tissue enable analysis of phenomena on a relatively large length
scale (mm), but is useless when it comes to study processes going on at a small
length scale (μm). In 1993, the bidomain model was solved by Trayanova et al. ((20))
using 257 computational nodes, and at that time this was the best that technology
would allow, and using a homogenized, large scale, model made perfect sense. More
recently, however, models based on about 30 million mesh points are used allowing
a characteristic mesh length of about 50μm which is about half the length of a
human ventricular cell. Further refinement of the mesh used in the monodomain
and bidomain models is not very useful since converged solutions are obtained at
a quite coarse mesh (∼0.3mm, see e.g. (12; 3)). This means that technology now
allows simulation at a shorter length scale than the classical models (monodomain
and bidomain) are meant to represent; it is impossible to gain information at the μm-
level using these models. Specifically, the cell is impossible to represent explicitly
in the classical models and that clearly limits their usefulness.

Interesting phenomena in electrophysiology take place close to the cell membrane.
But since the cell is not explicitly present in the classical models, it is very difficult,
if at all possible, to use such models to get a grip on what is going on in the vicinity
of excitable cells. And since mesh resolution already has reached the μm-scale, it is
clearly about time to introduce the cell as the building block in models of excitable
tissue. In fact, this development started several years ago and has been pursued by
many authors; see e.g. (7; 10; 14; 19; 16; 18; 17; 24; 1). Recently, we have followed
up on these papers aiming at developing models, algorithms and software for cell-
based representation of excitable tissue. We represent the extracellular (E) domain,
the cell membrane (M) and the intracellular domain (I) explicitly, and therefore refer
to it as the EMI-model.

In the first paper (see (23)) using the EMI model, we compared the results of the EMI
model with the results of the classical Cable equations. In particular, we assessed
the magnitude of the error introduced in the Cable equation by ignoring the ephaptic
effects (i.e. assuming that the extracellular potential is constant). Then the same
model was used to assess the effect on the action potential of placing a microelec-
trode array in the extracellular domain (see (2)). Furthermore, we have developed
computational techniques for solving the EMI equations (see (22; 8)) and used it to
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study properties of the conduction velocity of electrochemical wave traversing the
cardiac muscle during a heart-beat (see (9)). Quite recently, the EMI model has been
extended to also account for ion concentrations in the entire computational domain
using the electroneutral Kirchhoff-Nernst-Planck (KNP) model, and the resulting
model is referred to as the KNP-EMI model (see (4)). This opens the possibility for
analysing the effect of depression waves traversing cortical tissue.

The main of advantage of the EMI-models is the possibility for the modeler to
represent local properties of the cell and to study dynamics in the vicinity of the
cells at the μm–scale. This opens vast possibilities for deeper understanding of the
dynamics of collections of excitable cells. However, a main disadvantage is that
the model is more complex and more computationally demanding that the common
monodomain, bidomain, and cable equations. The purpose of this edition of the
Simula SpringerBriefs on Computing is to provide succinct introductions to various
aspects of the EMI-models, the solution algorithms and the software used to study
these models. These models are not straightforward to implement and we therefore
think it is useful to provide software for anyone interested in using the models. Note
that it is specifically not our intention here to provide substantial new contributions
to developments of models, algorithms or software, but rather to aid readers by
providing easy and readable accounts of this material.

In order to avoid misunderstanding, we would like to add that we do not think this
is the end of the monodomain-, bidomain-, or the cable-model. These models have
been extremely useful and in combinations with membrane models they basically
represent our collective knowledge about how excitable cells work. Much work
remains to be done with these equations and the models we suggest are far too
computationally demanding to be a realistic alternative for full scale simulations of
human organs. Also, again in order to avoid misunderstandings, homogenization is
still with us in the EMI models; the EMI models takes the typical length scale form
mm to μm, but the atomic scale is still 10000 smaller, so the models we use in both
E, M and I all represent averages.

Fornebu, Norway Aslak Tveito
September 2020 Kent-Andre Mardal

Marie Rognes
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Chapter 1

Derivation of a Cell-Based Mathematical Model
of Excitable Cells

Karoline Horgmo Jæger1 and Aslak Tveito1,2

Abstract Excitable cells are of vital importance in biology, and mathematical mod-
els have contributed significantly to understand their basic mechanisms. However,
classical models of excitable cells are based on severe assumptions that may limit
the accuracy of the simulation results. Here, we derive a more detailed approach to
modeling that has recently been applied to study the electrical properties of both
neurons and cardiomyocytes. The model is derived from first principles and opens up
possibilities for studying detailed properties of excitable cells. We refer to the model
as the EMI model because both the extracellular space (E), the cell membrane (M)
and the intracellular space (I) are explicitly represented in the model, in contrast to
classical spatial models of excitable cells. Later chapters of the present text will focus
on numerical methods and software for solving the model. Also, in the next chapter,
the model will be extended to account for ionic concentrations in the intracellular
and extracellular spaces.

1.1 Introduction

Mathematical modeling has a great potential for increasing our understanding of the
physiological processes underlying the function of the body. For example, modeling
of the electrical properties of excitable cells may provide insight into the complex
electrical signaling involved in a number of important functions, like transfer of
information through neurons and coordination of the pumping of the heart. A popular
model of the conduction of electrical signals in neurons is the so-called cable equation
(30), whereas the extracellular potential surrounding neurons is often modeled using
the point-source or line-source approximations (6). The three aforementioned models
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have been used extensively to gain insight into the function of neurons and the
interpretation of measurements of the extracellular potential around neurons (6;
5; 12). Correspondingly, the conduction of electrical signals through the heart is
traditionally modeled using the homogenized bidomain and monodomain models
(20). These models are also widely used and have, for instance, provided insight into
mechanisms of cardiac arrhythmias (26; 33).

However, despite the success of the above-mentioned classical models of excitable
cells, the models have certain shortcomings that may make them inaccurate or im-
practical in some situations. For example, in the derivation of the cable equation, the
extracellular potential is often assumed to be constant (30; 15). Therefore, changes in
the extracellular potential generated by the neuron itself or by neighboring neurons
(i.e., ephaptic effects) are ignored in the model. This could potentially lead to in-
accuracies (16; 2; 34). In addition, the point-source and line-source approximations
rely on the assumption that the extracellular space is infinite and homogeneous. Con-
sequently, the models might not be well-suited to interpret extracellular potentials
measured when large measurement electrodes are present in the extracellular space
close to the neurons (3).

Moreover, the bidomain and monodomain models represent cardiac tissue in a ho-
mogenized manner, assuming that the intracellular space, the extracellular space
and the cell membrane exist everywhere in the tissue. Because the geometry of the
individual cells is not represented, it is very hard to use the models to study the effect
of, e.g., the cell geometry or a non-uniform distribution of ion channels on the cell
membrane. These properties are both believed to influence cardiac conduction, but
their exact effects are not fully understood and call for further investigations (28; 21).
In addition, it has been proposed that ephaptic coupling between cardiac cells might
occur at small extracellular clefts located at the intercalated discs between cells (29).
Since the geometry of the extracellular space is not represented in the homogenized
models, it is difficult to use these models to study such ephaptic effects.

In order to account for the difficulties related to the classical models, alternative
electrophysiological models have been developed (e.g., (28; 31; 24)). In this chapter,
we consider one of these alternative models, referred to as the EMI model, because
it explicitly represents the extracellular space (E), the cell membrane (M) and the
intracellular space (I). This model has been used to study both neurons (1; 34; 3)
and cardiac tissue (32; 31; 18). Because the model represents the extracellular space,
the membrane and the intracellular space in a coupled manner, the model allows for
representation of ephaptic effects between neurons (34) or cardiomyocytes (18). In
addition, since the geometry of the extracellular space is explicitly represented, the
model allows for representation of non-homogeneous extracellular surroundings (3).
Furthermore, since the geometry of each cell is represented, the model allows for
study of the effect of cell geometry and non-uniform distributions of ion channels
on cardiac conduction properties (18).

In other words, the EMI model allows for a more detailed representation of excitable
cells and tissues than classical models of computational electrophysiology. In fact,
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Ωe

Ωi

ne

ni

ne

∂Ωe

Γ

Fig. 1.1: Illustration of an EMI model domain consisting of an extracellular domain,
Ωe, a cell membrane, Γ, and an intracellular domain, Ωi .

the classical models mentioned above can be derived from the more detailed EMI
model by introducing certain simplifying assumptions, see e.g., (1; 8; 11). In this
chapter, however, we focus on deriving the EMI model from Maxwell’s equations of
electromagnetism.

1.2 Derivation of the EMI Model

In this section, we present a derivation of the EMI model for excitable cells. This
derivation is to a large extent based on the derivation found in (1; 17). We consider
a domain separated into an extracellular part, Ωe and an intracellular part, Ωi , like
illustrated in Figures 1.1 and 1.3. The cell membrane, denoted by Γ, is defined as the
boundary between Ωi and Ωe. Here, we derive a model for the electrical potentials
in both a domain with a single cell (Figure 1.1) and in a domain with two cells
connected at an intercalated disc denoted by Γ1,2 (Figure 1.3).

1.2.1 Fundamental Equations

We base the derivation of the EMI model on two of the quasi-static approximations
of Maxwell’s equations, i.e.,

∇ × E = 0, (1.1)
∇ × H = J. (1.2)
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Here, E is the electric field (typically in μF/cm), H is the magnetic field (typically in
μA/cm) and J is the density of free currents (typically in μA/cm2). In the quasi-static
approximation of (1.2), it is assumed that free unbalanced charges are instantly bal-
anced. The assumptions hold in the intracellular and extracellular spaces. However,
we assume that charges may accumulate at the cell membrane and at the intercalated
discs between cells. Therefore, we let (1.2) at these locations be replaced by the
corresponding equation without the quasi-static approximation, i.e., by

∇ × H = J + ε ∂E
∂t
, (1.3)

where ε is the permittivity of the medium (typically in μF/cm). In addition, we
assume that Ohm’s law applies in the intracellular and extracellular domains. This
means that

J = σE, (1.4)

where σ is the conductivity of the considered medium (typically in mS/cm). We also
note that (1.1) implies that E is a conservative vector field and that it therefore can
be defined as the gradient of a scalar field (9). More specifically, we can define

E = −∇u, (1.5)

where the scalar u is the electric potential (typically in mV).

1.2.2 Model for the Intracellular and Extracellular Domains

In order to derive equations for the intracellular and extracellular domains, we take
the divergence of both sides of (1.2) and apply the vector identity ∇ · (∇ × H) = 0,
which holds for any vector H (9). This yields

∇ · J = 0.

Inserting (1.4) and (1.5), we obtain the Laplace equation

∇ · σ∇u = 0. (1.6)

More specifically, for the intracellular and extracellular domains, we have

∇ · σi∇ui = 0 in Ωi, (1.7)
∇ · σe∇ue = 0 in Ωe, (1.8)

where σi and σe are the intracellular and extracellular conductivities, respectively,
and ui and ue are the electric potentials in the intracellular and extracellular domains,
respectively.
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1.2.3 Model for the Membrane

In order to derive the EMI model equations for the membrane, we consider a volume
element, B, intersected by the membrane. This volume element may be divided into
an extracellular part, Be, and an intracellular part, Bi , such that Be ∪ Bi = B and
Be ∩ Bi = ∅, as illustrated in Figure 1.2A. In each of these domains, we assume
that (1.3) holds. Taking the divergence of both sides of (1.3) and applying the vector
identity ∇ · (∇ × H) = 0 results in

∇ · J = −∇ · ε
∂E
∂t
. (1.9)

Integrating this equation over each of the volume elements Bi and Be, we get∫
Bi

∇ · J dV = −

∫
Bi

∇ · ε
∂E
∂t

dV,∫
Be

∇ · J dV = −

∫
Be

∇ · ε
∂E
∂t

dV,

and applying the divergence theorem (see e.g., (9)), we obtain∫
∂Bi

J · nBi dS = −

∫
∂Bi

ε
∂E
∂t

· nBi dS, (1.10)∫
∂Be

J · nBe dS = −

∫
∂Be

ε
∂E
∂t

· nBe dS. (1.11)

Here, nBi and nBe are the outward pointing normal vectors of Bi and Be, respectively.
Furthermore, in (1.10) and (1.11), the left-hand side terms represent the free ionic
current and the right-hand side terms represent the capacitive current.

1.2.3.1 Ionic Current

We start by considering the left-hand side of (1.10), representing the ionic current.
Here, we note that the boundary ∂Bi may be split into two parts, ΓB and ∂Bi \ ΓB,
where ΓB is the part of ∂Bi coinciding with the membrane and ∂Bi \ ΓB is the
remaining part (see Figure 1.2A). We can then write∫

∂Bi

J · nBi dS =
∫
∂Bi\ΓB

J · nBi dS +
∫
ΓB

J · ni dS, (1.12)

where ni is the outward pointing normal vector of the membrane and nBi is the out-
ward pointing normal vector of the remaining part of Bi , as illustrated in Figure 1.2A.
At the membrane, the current density, J, consists of currents through different types
of ion channels, pumps and exchangers located at the membrane. This current den-
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∂Be

ne

ΔhB

nBe

ne

ni

Be

Bi

nBe

nBi

ΓB

∂Be \ ΓB

∂Bi \ ΓB

A B

Fig. 1.2: A: Illustration of a volume element, B, intersected by the membrane. The
volume element is separated into an intracellular part, Bi , and an extracellular part,
Be. B: Illustration of a small volume element, B, located on the extracellular part of
the membrane.

sity is typically denoted by Iion and given in units of μA/cm2. By convention, Iion is
defined to be positive for a flux of positive ions out of the cell (i.e., in the direction
of ni). This gives ∫

ΓB

J · ni dS =
∫
ΓB

Iion dS. (1.13)

The boundary ∂Bi \ ΓB is located in the intracellular domain. Here, we assume that
the current density, J, is given by Ohm’s law (1.4), such that∫

∂Bi\ΓB

J · nBi dS =
∫
∂Bi\ΓB

σiE · nBi dS. (1.14)

Inserting (1.13) and (1.14) into (1.12), we get∫
∂Bi

J · nBi dS =
∫
∂Bi\ΓB

σiE · nBi dS +
∫
ΓB

Iion dS, (1.15)

and similar arguments for the extracellular part of the membrane yield∫
∂Be

J · nBe dS =
∫
∂Be\ΓB

σeE · nBe dS −

∫
ΓB

Iion dS. (1.16)

Note that the negative sign in front of the last term is due to the fact that ne = −ni .

1.2.3.2 Capacitive Current

For the right-hand side part of (1.10), representing the capacitive current, we again
split the integral into two parts
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∂Bi

ε
∂E
∂t

· nBi dS =
∫
∂Bi\ΓB

ε
∂E
∂t

· nBi dS +
∫
ΓB

εΓ
∂E
∂t

· ni dS.

Here, εΓ is the permittivity of the membrane. Following the quasi-static assumptions,
we assume that the term ε ∂E

∂t is negligible for the part of ∂Bi that does not coincide
with the membrane. Furthermore, from (1.5), we get E · ni = −∇u · ni ≈ v/d, where

v = ui − ue (1.17)

is the membrane potential and d is the thickness of the membrane. We assume that
the membrane can be treated as a capacitor formed by two parallel plates separated by
an insulator. In that case, the membrane capacitance per area is given by Cm = εΓ/d
(13). Therefore,∫

∂Bi

ε
∂E
∂t

· nBi dS =
∫
ΓB

εΓ
∂E
∂t

· ni dS =
∫
ΓB

εΓ
d
∂v

∂t
dS =

∫
ΓB

Cm
∂v

∂t
dS. (1.18)

Similar arguments for the extracellular side yield∫
∂Be

ε
∂E
∂t

· nBe dS = −

∫
ΓB

Cm
∂v

∂t
dS, (1.19)

where the change of sign again is due to the fact that ne = −ni .

1.2.3.3 Collecting the Ionic and Capacitive Currents

Collecting the ionic and capacitive currents by inserting (1.15)–(1.16) and (1.18)–
(1.19) into (1.10)–(1.11), we obtain∫

∂Bi\ΓB

σiE · nBi dS +
∫
ΓB

Iion dS = −

∫
ΓB

Cm
∂v

∂t
dS,∫

∂Be\ΓB

σeE · nBe dS −

∫
ΓB

Iion dS =
∫
ΓB

Cm
∂v

∂t
dS,

which can be rewritten to∫
∂Bi\ΓB

σiE · nBi dS = −

∫
ΓB

Im dS, (1.20)∫
∂Be\ΓB

σeE · nBe dS =
∫
ΓB

Im dS, (1.21)

where the total membrane current density Im is defined as

Im = Cm
∂v

∂t
+ Iion. (1.22)
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Ω1
i Ω2

i

ΩeΓ1 Γ2

Γ1,2

Fig. 1.3: Illustration of an EMI model domain consisting of two cells, Ω1
i and Ω2

i ,
connected at an intercalated disc, Γ1,2 and surrounded by an extracellular domain,
Ωe

We now wish to rewrite (1.20)–(1.21) to a differential form. We note that we can
divide any volume element, B, intersecting the membrane into a purely intracellular, a
purely extracellular, and a membrane intersecting part. We also know that (1.7)–(1.8)
hold in the purely intracellular and extracellular parts. Therefore, we are interested
in equations (1.20)–(1.21) as the size of B approaches zero. For example, we may
consider a small extracellular volume element shaped as a cylinder, as illustrated in
Figure 1.2B. As the height, ΔhB, of this cylinder approaches zero, the integral over
∂Be \ ΓB approaches the integral over ΓB, and we therefore get∫

∂Be\ΓB

σeE · nBe dS ≈

∫
ΓB

σeE · nBe dS.

Inserting this approximation into (1.21), we obtain∫
ΓB

σeE · nBe dS =
∫
ΓB

Im dS ⇒ σeE · nBe = Im,

and inserting (1.5) and ne = −nBe , we get

σe∇ue · ne = Im. (1.23)

Similar arguments for the intracellular part of the membrane yield

− σi∇ui · ni = Im, (1.24)

where the negative sign is due to the negative sign in (1.20). Finally, combining
(1.23) and (1.24), we obtain

σe∇ue · ne = −σi∇ui · ni = Im, (1.25)

where Im = Cm
∂v
∂t + Iion and v = ui − ue (see (1.22) and (1.17)).
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1.2.4 Model for the Intercalated Disc

In some cases, we wish to model cells that are connected to each other, as illustrated
in Figure 1.3. We then let the intercalated discs connecting the cells be represented
as boundaries between the intracellular domains, like the membrane is a boundary
between the intracellular and extracellular domains. Furthermore, we assume that the
intercalated disc have capacitive properties like the membrane, and that gap junctions
allow for currents between neighboring cells, in the same manner as ion channels
allows for currents between the intracellular and extracellular spaces. Therefore, the
derivation of equations for an intercalated disc follows the exact same lines as the
derivation of the membrane equations. More precisely, for two connected cells, we
define an intercalated disc potential, w, by

w = u1
i − u2

i , (1.26)

where u1
i and u2

i are the electric potentials in Ω1
i and Ω2

i , respectively. In addition,
we define a total intercalated disc current density, I1,2, by

I1,2 = C1,2
∂w

∂t
+ Igap, (1.27)

where Igap is the current density through the gap junctions, with positive direction
in the direction from Ω1

i to Ω2
i , C1,2 is the capacitance of the intercalated disc,

and C1,2
∂w
∂t is the capacitive current density of the intercalated disc. Furthermore,

following the same arguments as for the derivation of the membrane equations, we
end up with an analogue to (1.25) of the form

σ2
i ∇u2

i · n2
i = −σ1

i ∇u1
i · n1

i = I1,2, (1.28)

representing the total current density across the interface.

1.2.5 Models of the Ionic Currents

Mathematical models of the ionic currents governing the membrane potential of
excitable cells come in a large variety of versions; see (4) for several hundred
examples. The simplest possible model is just a passive current of the form Iion =
const · v, followed by a third order polynomial model. More realistic models tend to
be more complex and are usually written on the form

Iion =

N∑
i=1

Ii, (1.29)



10 Jæger et al.

given in μA/cm2. Here, the individual currents can usually be written on the form
Ii = Ii(v, s), where v denotes the membrane potential, given by ui − ue, and s
denotes gating variables and ionic concentrations. The celebrated model of the
action potential of a neuron presented by Hodgkin and Huxley (see (14)) can be
written on this form, and so can the first model of a cardiac cell presented by Nobel
(25). A comprehensive and readable introduction to models of the membrane ionic
currents is given in the survey (27).

Correspondingly, the ionic currents through gap junctions between neighboring
cells are often modeled by a simple passive model of the form Igap = const · w.
More detailed models of voltage-dependent gap junction dynamics have also been
introduced (see e.g., (10; 35)).

1.2.6 Summary of the Model Equations

In summary, the EMI model for a single cell surrounded by an extracellular domain
(as illustrated in Figure 1.1) is given by the equations (1.7), (1.8), (1.17), (1.22) and
(1.25), that is

∇ · σi∇ui = 0 in Ωi, (1.30)
∇ · σe∇ue = 0 in Ωe, (1.31)
σe∇ue · ne = −σi∇ui · ni ≡ Im at Γ, (1.32)

v = ui − ue at Γ, (1.33)
∂v

∂t
=

1
Cm

(Im − Iion) at Γ, (1.34)

where ui , ue and v are the intracellular, extracellular and membrane potentials,
respectively, typically given in mV. Moreover, σi and σe are the intracellular and
extracellular conductivities, respectively (typically in mS/cm), Cm is the membrane
capacitance (typically in μF/cm2), and Γ denotes the cell membrane. The ionic
currents through channels, pumps and exchangers at the membrane are denoted by
Iion and typically given in μA/cm2.

If several cells are connected at intercalated discs, as illustrated for two cells in
Figure 1.3, the system of equations must be extended to include equations for the
currents between cells. For two cells, this extension consists of the equations

σi∇u2
i · n2

i = −σi∇u1
i · n1

i ≡ I1,2 at Γ1,2, (1.35)
u1
i − u2

i = w at Γ1,2, (1.36)

wt =
1

C1,2
(I1,2 − Igap) at Γ1,2, (1.37)
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where, as above, Γ1,2 is the intercalated disc, n1
i is the outward pointing normal

vector of Ω1
i , n2

i is the outward pointing normal vector of Ω2
i , and u1

i and u2
i are the

intracellular potentials (typically in mV) of Ω1
i and Ω2

i , respectively. Furthermore,
C1,2 is the specific capacitance of the intercalated disc (typically in μF/cm2), and
Igap is the current through the gap junctions (typically in μA/cm2).

1.3 Conclusion

In the present chapter, we have derived the EMI model. The EMI model predicts
electrical potentials in cells with an explicit geometrical representation and thus
allows for more detail than homogenized models of excitable tissue. In the next
chapter (7, Chapter 2), the model will be extended by taking ion concentration in the
extracellular and intracellular spaces into account. Numerical solutions of the EMI
models will be presented in (19, Chapter 4), (23, Chapter 5) and (22, Chapter 6). In
these chapters the readers will also be pointed to open software that can be used to
solve the EMI model.

Open Access This chapter is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original aut-
hor(s) and the source, provide a link to the Creative Commons license and indicate 
if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.
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Chapter 2

A Cell-Based Model for Ionic Electrodiffusion in
Excitable Tissue

Ada J. Ellingsrud1, Cécile Daversin-Catty1 and Marie E. Rognes1

Abstract This chapter presents the KNP-EMI model describing ion concentrations
and electrodiffusion in excitable tissue. The KNP-EMI model extends on the EMI
model by removing the assumption that ion concentrations are constant in time
and space, and may as such be more appropriate in connection with modelling
e.g. spreading depression, stroke and epilepsy. The KNP-EMI model defines a system
of time-dependent, nonlinear, mixed dimensional partial differential equations. We
here detail the derivation of the system and present a numerical example illustrating
how ion concentrations evolve during neuronal activity.

2.1 Introduction and Motivation

In this chapter, we present an extension of the EMI model, presented in (11, Chapter
1), describing ion concentrations and electrodiffusion in excitable tissue. The EMI
model is based on the assumption that intra- and extracellular ion concentrations are
constant in time and space. This is often a good approximation, as ion concentrations
in healthy tissue typically quickly return to base levels after neuronal activity due to
cellular mechanisms such as e.g. membrane pumps and glial cell buffering. However,
there are scenarios where this assumption is inadequate.

Several cerebral pathologies are associated with increased neuronal activity (3), such
as e.g. seizures and epilepsy (10; 6; 1), stroke (17), and spreading depression (22).
In particular, periods of neuronal hyperactivity can lead to substantial variations in
extracellular ion concentrations. These variations will in turn (i) influence mem-
brane reversal potentials and (ii) generate diffusive currents. Changes in the reversal
potentials, caused by local ionic shifts, may affect the dynamical properties of the
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neurons (12; 16; 24). On the other hand, diffusive currents, driven by ion concen-
tration gradients, can shift the extracellular potential (8; 3). Mathematical models
addressing the aforementioned phenomena and pathologies should therefore also
account for ion concentrations, their spatial and temporal gradients and associated
dynamics.

In this chapter, we derive a system of time-dependent, nonlinear partial differen-
tial equations describing the distribution and evolution of ion concentrations in a
geometrically-explicit representation of the intra- and extracellular domains using
the electroneutral Kirchhoff-Nernst-Planck (KNP) model (21). We will refer to this
model as the KNP-EMI model, see also e.g. (5).

2.2 Derivation of the Equations

Let the computational domain Ω and subdomains Ωi , Ωe, and Γ be defined as in
the previous chapter 1.1. For simplicity and clarity, we present the mathematical
model for one intracellular region Ωi1 = Ωi with membrane Γ below. We model
a set K of intracellular and extracellular ion concentrations, and note that key ions
in excitable tissue are potassium (K+), sodium (Na+), and chloride (Cl−). For each
ion species k ∈ K and each region r ∈ {i, e}, we model the ion concentrations
ckr : Ωr × (0,T] → R (mol/m3), and electrical potentials ur : Ωr × (0,T] → R

(V), and additionally the total transmembrane current density Im : Γ × (0,T] → R
(A/m2).

2.2.1 Equations in the Intracellular and Extracellular Volumes

In the EMI model, the free current densities Ji,Je (μA/cm2), c.f. (1.4), are assumed
to satisfy Ohm’s law. To include diffusive ion effects, we instead assume that the
free current density is composed of flux density contributions Jkr (mol/(m2s)) from
different ions k as:

Jr =
∑
k∈K

FzkJkr in Ωr , (2.1)

where zk is the valence of ion species k and F (C/mol) is Faraday’s constant.
Furthermore, we assume that ions can move by diffusion and/or in response to the
electrical field as charged particles. Hence, the ion flux densities are modelled as
the sum of two terms: (i) the ion concentrations that are transported via electrical
potential gradients σk

r ∇ur and (ii) the diffusive movement of ions due to ionic
gradients Dk

r ∇ ckr :
Jkr = −σk

r ∇ur − Dk
r∇ckr in Ωr , (2.2)
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where Dk
r (m2/s) and σk

r denote the effective diffusion coefficient and the conduc-
tivity for ion species k in region r , respectively. The conductivity σk

r depends on
the concentration of ion species k and the diffusion coefficient Dk

r in the following
manner:

σk
r = σ

k
r (c

k
r ) =

Dk
r zk

ψ
ckr in Ωr . (2.3)

Here, the constant ψ = RTF−1 combines Faraday’s constant F, the absolute temper-
ature T (K), and the gas constant R (J/(K mol)). Moreover, the bulk conductivity σr
can be expressed as:

σr = σr (ckr ) =
F
ψ

∑
k∈K

Dk
r ckr (z

k)2 in Ωr . (2.4)

See e.g. (21) for a derivation of the conductivity (2.3) and the bulk conductivity (2.4).
Comparing with (1.4) and (1.5), we note the dependency on the ion concentrations
in the conductivity σr in (2.3), and the second term accounting for ion diffusion
in (2.2).

As in Chapter 1, we stipulate that:

∇· Ji = 0 in Ωi, (2.5)
∇· Je = 0 in Ωe . (2.6)

Finally, conservation of ions for the bulk of each region Ωr gives that:

∂[k]i
∂t
+ ∇· Jki = 0 in Ωi, (2.7)

∂[k]e
∂t
+ ∇· Jke = 0 in Ωe, (2.8)

for t ∈ (0,T].

2.2.2 Membrane Currents

We next turn to modelling the cell membrane currents and membrane potential
across the interface Γ. As in Chapter 1, we introduce the membrane potential v as
the jump in the electrical potential over the membrane:

v = ui − ue on Γ. (2.9)

We also introduce the total membrane current as the combination of a capacitive
current and ion specific currents:
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Im = Icap + Iion = Cm
∂v

∂t
+ Iion, (2.10)

where the total channel current Iion is the sum of the ion specific channel currents
Ikion:

Iion =
∑
k∈K

Ikion, Ikion = Ikion(v, c
k
· , ...). (2.11)

The channel currents Ikion are subject to modelling, and will be discussed briefly in
Section 2.2.2.1.

Using our concepts, we have that the total ionic current density Im : Γ × (0,T) → R
(A/m2) across the interface Γ (from the intracellular to the extracellular domain) is
given by:

− F
∑
k∈K

zkJke · ne = F
∑
k∈K

zkJki · ni ≡ Im. (2.12)

It now remains to specify a set of interface conditions for the specific ion fluxes
Jkr · nr for r ∈ {i, e}.

Here, we propose a heuristic approach via ion specific capacitive current modelling,
and note that an alternative approach is presented in (15). As for the total current,
we assume that the capacitive current can be represented as a sum of ion specific
contributions:

Icap =
∑
k∈K

Ikcap. (2.13)

Without loss of generality, we let the ion specific capacitive current Ikcap,r in region
Ωr at the interface Γ be some fraction αkr of the total capacitive current Icap:

Ikcap,r = α
k
r Icap. (2.14)

Specifically, we assume that:

αkr =
Dk
r (z

k)2[k]r∑
l∈K Dl

r (zl)2[l]r
, (2.15)

and note that
∑

k∈K α
k
r = 1 for r ∈ {i, e}. By the above definitions, (2.10) and (2.12),

we let the intracellular and extracellular ion fluxes across the membrane be given by:

Jki · ni =
Ikion + α

k
i (Im − Iion)

Fzk
, −Jke · ne =

Ikion + α
k
e (Im − Iion)

Fzk
, (2.16)

for k ∈ K .
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2.2.2.1 Modelling Specific Ion Channels

The membrane channel currents Ikion(v) for each ion species k are subject to mod-
elling. These currents are typically expressed on the form:

Ikion(v) = gkL(v − Ek), (2.17)

where gkL is the conductivity, and Ek is the ion specific reversal potential (or Nernst
potential), given by:

Ek =
RT
zkF

ln
cke
cki
. (2.18)

This Nernst potential depends on the concentration ratio, whereas the Nernst potential
in models without explicit modelling of ion concentrations is constant. Typical
models include synaptic input currents, passive neuronal leak channels, or e.g. the
Hodgkin-Huxley model (9). For more details on membrane current models and
modelling, see e.g. (18).

2.2.3 Summary of KNP-EMI Equations

The KNP-EMI model equations follow from inserting (2.1) into (2.5)–(2.6), com-
bined with (2.7), (2.8), (2.9), (2.10), and (2.16), and read as follows.

For each ion species k ∈ K and each region r ∈ {i, e}, find the ion concentrations
ckr : Ωr × (0,T] → R (mol/m3), the electrical potentials ur : Ωr × (0,T] → R (V),
and the total transmembrane current density Im : Γ × (0,T] → R (A/m2) such that1:

∇·(F
∑
k

zkJkr ) = 0 in Ωr , (2.19)

∂ckr
∂t
+ ∇· Jkr = 0 in Ωr , (2.20)

−F
∑
k

zkJke · ne = F
∑
k

zkJki · ni ≡ Im at Γ, (2.21)

v = ui − ue at Γ, (2.22)
∂v

∂t
=

1
Cm

(Im − Iion) at Γ, (2.23)

where the ion flux density Jkr is given by (2.2), and Iion is subject to modelling. A
set of initial and boundary or compatibility conditions will close the system.

1 Note that the additional negative signs in (2.19) and (2.21), compared with the corresponding
equations in Chapter 1, result from our physically consistent definition of the ion flux density Jk

r as
the negative gradient, cf. (2.2).
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2.3 Numerical Solution of the KNP-EMI Equations

The KNP-EMI model defines a complicated system of time-dependent, nonlinear,
mixed dimensional partial differential equations. The number of unknowns depends
on the number of ion species modelled. Some of the variables exist in the intracellular
and extracellular domains, while others live on the lower-dimensional membrane.
This setting is numerically challenging and calls for advanced techniques.

To solve the KNP-EMI model numerically, one may consider a finite difference
scheme to approximate the time derivatives, a linearization of ion flux densities Jkr
and fractions αkr , a splitting scheme to handle active ion channel current models, and
a finite element discretization in space. Such a solution algorithm is detailed in (5),
and we refer the reader to this description for further details.

2.4 Comparing KNP-EMI and EMI during Neuronal
Hyperactivity

Neurons are negatively charged relative to their environment, with a resting mem-
brane potential of about −70 mV. This resting potential is maintained by low con-
centrations of sodium ions (Na+) and high levels of potassium ions (K+) inside
the cell (23). Action potentials (neuronal activity) are generated by the opening of
sodium and potassium channels in the cell membranes. The ionic gradient will drive
sodium into the cell and depolarize the cell membrane. Next, the potassium channels
open causing an outflux of potassium which in turn repolarizes the cell.

As a result, there is a continuous need to pump potassium into the intracellular
space and sodium out to the extracellular space to restore the electrochemical gra-
dient across the cell membrane. One of the key mechanisms for this process is the
Na/K/ATPase pump. The Na/K/ATPase pump actively transports 3 Na+ ions out of
the cell and 2 K+ ions into the cell (7; 14; 20). Several pathologies are associated
with increased neuronal activity, e.g. seizures and epilepsy (10; 6; 1), and spreading
depression (22). In periods of neuronal hyperactivity, the Na/K/ATPase pumps may
not be able to restore the concentrations to baseline levels. Consequently, the elec-
trochemical gradients may be reduced, and silenced neuronal activity and cellular
swelling may occur (13).

The ion concentration gradients observed during neuronal hyperactivity thus yields
a suitable setting for illustrating differences between the KNP-EMI and the EMI
frameworks. In particular, we compare the two frameworks both during normal
neuronal activity (firing rate of 1 Hz) and during hyperactivity (firing rate of 50 Hz).
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2.4.1 Model Parameters and Membrane Mechanisms

We consider two idealized axons, represented by two parallel, rectangular domains,
surrounded by extracellular space in three dimensions. The diameter of each axon is
2.0 · 10−7 m, and they are separated by 1.0 · 10−7 m of extracellular space. Parameter
values are as listed in Table 2.1. We refer to the supplementary code for a complete
description of the model set-up (4).

KNP-EMI membrane mechanisms The membrane mechanisms in the KNP-EMI
model, cf. (2.11), are modelled using the standard Hodgkin-Huxley model (9) com-
bined with a model for the Na/K/ATPase pump (12), the KCC2 cotransporter (24)
and the NKCC1 cotransporter (24). The Na/K/ATPase pump current IATP (A/m2) is
modelled as:

IATP = IATP(cNa
i , c

K
e ) =

Î
(1 + mK

cK
e
)2(1 + mNa

cNa
i

)3
, (2.24)

where Î is the maximum pump strength and mK and mNa denote the pump thresh-
old for extracellular potassium and intracellular sodium, respectively. Further, the
transmembrane currents generated by the KCC2 cotransporter IKCC2 (A/m2) and the
NKCC1 cotransporter INKCC1 (A/m2) are modelled as:

IKCC2 = SKCC2 ln(
cK
i cCl

i

cK
e cCl

e

), (2.25)

INKCC1 = SNKCC1
1

1 + e16−cK
e

(ln(
cK
i cCl

i

cK
e cCl

e

) + ln(
cNa
i cCl

i

cNa
e cCl

e

)), (2.26)

where SKCC2 and SNKCC1 are the maximal cotransporter strengths. Moreover, the cell
is stimulated by prescribing a synaptic input Isyn of the form:

Iksyn = gsynHe
t−t0
α (v − Ek), (2.27)

where α (s) is the synaptic time constant, H is the Heaviside function for a small
region on the left side of the axons, and gsyn = 1.25 · 10−3 S/m2. In summary, the
membrane channel currents for sodium, potassium and chloride are modelled as:

INa
ion(v, c

k
r ) = gNa

leak(v − ENa) + ḡNam3h(v − ENa) + 3IATP + INKCC1 + INa
syn

IK
ion(v, c

k
r ) = gK

leak(v − EK) + ḡKn4(v − EK) − 2IATP + INKCC1 + IKCC2

ICl
ion(v, c

k
r ) = gCl

leak(v − ECl) − 2INKCC1 − IKCC2,

where, gkleak and ḡk is the leak conductivity and the maximal conductivity for ion
species k, respectively, the Nernst potential Ek for ion species k is as described in
Section 2.2.2.1, and the gating variables m, h and n are described by the standard
Hodgkin-Huxley ODEs, see e.g. (23) for details.
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EMI membrane mechanisms For the EMI model, we apply the standard Hodgkin-
Huxley model and stimulate the cell by prescribing an input current of the form (2.27);
thus, the membrane channels currents are modelled as:

Iion(v) = gNa
leak(v − ENa) + gK

leak(v − EK) + gCl
leak(v − ECl)

+ ḡNam3h(v − ENa) + ḡKn4(v − EK) + IATP + Isyn,

where EK, ENa and ECl are calculated by (2.18) with the initial values from the KNP-
EMI model for the sodium and potassium concentrations. Similarly, the bulk conduc-
tivities σi and σe are calculated by (2.4), and the net current from the Na/K/ATPase
pump IATP is given by (2.24). Finally, there is no contribution from KCC2 and
NKCC1, as both cotransporters mediate ion transport without any net charge move-
ment across the membrane.

Parameter Symbol Value Unit Reference

gas constant R 8.314 J/(K mol) (23)
temperature T 300 K (23)
Faraday’s constant F 9.648 · 104 C/mol (23)
membrane capacitance Cm 0.02 F/m (24)
Na+ diffusion coefficient DNa

r 1.33 · 10−9 m2/s (23)
K+ diffusion coefficient DK

r 1.96 · 10−9 m2/s (23)
Cl− diffusion coefficient DCl

r 2.03 · 10−9 m2/s (23)
intracellular immobile anions cA

i 110 mM
extracellular immobile anions cA

e 10 mM
valence of immobile anions zA -1
Na+ leak conductivity gNa

L 0.281 S/m2 *
K+ leak conductivity gK

L 0.43 S/m2 *
Cl− leak conductivity gCl

L 0.2 S/m2 *
K+ HH max conductivity ḡK 360 S/m2 (9)
Na+ HH max conductivity ḡNa 1200 S/m2 (9)
maximum pump strength Î 0.18 A/m2 (24)
maximum KCC2 strength SKCC2 0.0034 A/m2 *
maximum NKCC1 strength SNKCC1 0.023 A/m2 *
ECS K+ pump threshold mK+ 3 mM *
ICS Na+ pump threshold mNa+ 12 mM *
synaptic time constant α 1.0 · 10−3 s
global time step Δt 1.0 · 10−5 s
local time step Δt∗ Δt/25 s
spatial resolution Δx = Δy 2.5 · 10−7 m

Table 2.1: The physical and model parameters used in the simulations. The values
are collected from Sterratt et al. (23), Hodgkin et al. (9), Wei et al. (24), whereas the
values marked with * are computed by a steady state estimation.
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The initial conditions for the intra- and extracellular ion concentrations, the mem-
brane potential and the gating variables are listed in Table 2.2. At the exterior
boundary, we apply no flux boundary conditions for each ion species.

Parameter Symbol Value Unit Reference

initial intracellular Na+ concentration cNa,0
i 18 mM

initial extracellular Na+ concentration cNa,0
e 120 mM

initial intracellular K+ concentration cK,0
i 80 mM

initial extracellular K+ concentration cK,0
e 4 mM

initial intracellular Cl+ concentration cCl,0
i 7 mM

initial extracellular Cl+ concentration cCl,0
e 112 mM

initial membrane potential v0 −67.74 · 10−3 V *
initial HH gating value (Na+ activation) m0 αm (v0)

αm (v0)+βm (v0)
– (9)

initial HH gating value (Na+ inactivation h0 αh (v
0)

αh (v0)+βh (v0)
– (9)

initial HH gating value (K+ activation) n0 αn (v
0)

αn (v0)+βn (v0)
– (9)

Table 2.2: Initial conditions. The initial ion concentrations are chosen such that the
Nernst potentials are equal to those in the Hodgkin-Huxley model (9). The membrane
potential is computed by a steady state estimation.

2.4.2 Results and Discussion

During normal activity, the KNP-EMI and the EMI models behave similarly, both
for the membrane potential and the extracellular potential (Figure 2.1 A, B). The
stimuli current depolarizes the membrane potential above the threshold for firing,
and an action potential is initiated (Figure 2.1 A). Simultaneously, the extracellular
potential decreases by ∼ 0.13 mV, before quickly returning to baseline (Figure 2.1
B).

During hyperactivity, the KNP-EMI and EMI models differ (Figure 2.1 C, D, E,
F). In both models, repeated action potentials are triggered. But, for the KNP-EMI
model, we observe changes in the membrane potential between hyperpolarization
phases. In particular, we conclude that the KNP-EMI membrane resting potential
increases with repeated firing: after 5 action potentials (at t = 90 ms) the membrane
potential has a minimum value of −75 mV, which is an 9% increase from the first
action potential. Eventually, the membrane is depolarized to the point where action
potentials can long longer be fired (Figure 2.1 E).

The observed changes are caused by alterations in the ion concentration gradients.
For each action potential, the extracellular Na+ concentration decreases by 0.15 mM
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and the extracellular K+ concentration increases by 0.16 mM (Figure 2.2 A, B). Dur-
ing normal activity (Figure 2.2 A, B), the ion concentrations will slowly be pumped
back toward baseline levels, and the membrane potentials are not substantially af-
fected by the small ion concentration changes. However, in the case of hyperactivity,
the membrane mechanisms (i.e. pumps and cotransporters) are not able to keep up.
Consequently, the extracellular Na+ concentration will keep decreasing and the ex-
tracellular potassium will keep increasing, causing the cell to depolarize (Figure 2.2
C, D).

In the KNP-EMI model (Figure 2.2 A, B), we note that 7.92 % of the extracellular
K+ concentration is restored, and 7.3 % of the extracellular Na+ concentration is
restored after 100 ms. That is, the extracellular concentrations do not reach baseline
levels within the simulation period. Other studies have reported that it takes on the
order of minutes (0.5 minutes (19), 6 minutes (2)) before the concentrations return
to baseline after neuronal activity.

2.5 Conclusions and Outlook

In this chapter, we have presented a mathematical model, the KNP-EMI model,
for ionic electrodiffusion in excitable tissue with an explicit representation of the
intracellular, extracellular and membrane domains. For further reading on method-
ological aspects, we refer to (5; 15) and references therein. This model extends on the
EMI model presented in Chapter 1 and may be more accurate in situations with rapid
and persistent changes in ion concentrations. Moreover, the KNP-EMI framework
allows for modelling ligand-gated ion channels (e.g. NMDA receptors).

The complexity of the KNP-EMI system yields a number of numerical challenges.
The mere number of unknowns result in large systems of equations calling for
efficient solution techniques. The nonlinearities in the system can easily lead to
non-convergence and thus call for robust algorithms. Moreover, the coupling of full
and lower dimensional domains and fields calls for well-posed numerical methods
together with suitable simulation software. Further, the system couples different time
scales: from neuronal action potentials taking place at the microscale to the slower
diffusion process. In short, modelling ionic electrodiffusion in the EMI setting is an
area with vast opportunities for further research.
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Fig. 2.1: Comparison of potentials over time at fixed points in space predicted by
the KNP-EMI and the EMI frameworks during normal activity (upper panels) and
during hyperactivity (mid and lower panels). The membrane potentials for KNP-EMI
and EMI during normal activity (A) and hyperactivity (C, E, F), and the extracellular
potentials for KNP-EMI and EMI during normal activity (B) and hyperactivity (D).



2 A Cell-Based Model for Ionic Electrodiffusion in Excitable Tissue 25

Fig. 2.2: Time development of extracellular ion concentrations at a fixed point
in space for the KNP-EMI framework during normal activity (upper panels) and
hyperactivity (lower panels). The extracellular sodium (A) and potassium (B) con-
centrations during normal activity, and the extracellular sodium (C) and potassium
(D) concentrations during hyperactivity.
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material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.



References

1. Bragin A, Engel Jr J, Wilson CL, Fried I, Mathern GW (1999) Hippocampal and entorhinal
cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-
treated rats with chronic seizures. Epilepsia 40(2):127–137

2. Chander BS, Chakravarthy VS (2012) A computational model of neuro-glio-vascular loop
interactions. PloS one 7(11)

3. Dietzel I, Heinemann U, Lux H (1989) Relations between slow extracellular potential changes,
glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyper-
activity in cat brain. Glia 2(1):25–44

4. Ellingsrud AJ (2020) Supplementary material (code) for Chapter 2 in ’EMI: Cell based
mathematical model of excitable cells’ (version 2.0). DOI 10.5281/zenodo.3767058, URL
http://doi.org/10.5281/zenodo.3767058

5. Ellingsrud AJ, Solbrå A, Einevoll GT, Halnes G, Rognes ME (2020) Finite element simulation
of ionic electrodiffusion in cellular geometries. Frontiers in Neuroinformatics 14:11

6. Fisher RS, Webber W, Lesser RP, Arroyo S, Uematsu S (1992) High-frequency EEG activity at
the start of seizures. Journal of clinical neurophysiology: official publication of the American
Electroencephalographic Society 9(3):441–448

7. Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nature
reviews Molecular cell biology 10(5):344–352

8. Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT (2016)
Effect of ionic diffusion on extracellular potentials in neural tissue. PLoS computational biology
12(11):e1005193

9. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology 117(4):500–544

10. Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J (2008) Interictal high-frequency
oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the
human epileptic brain. Epilepsia 49(11):1893–1907

11. Jæger KH, Tveito A (2020) Derivation of a cell-based mathematical model of excitable cells.
In: Tveito A, Mardal KA, Rognes ME (eds) Modeling excitable tissue - The EMI framework,
Simula Springer Notes in Computing, SpringerNature

12. Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a
neuron model incorporating interstitial space and ion concentrations. Journal of neurophysiol-
ogy 84(1):495–512

13. Kempski O (2001) Cerebral edema. In: Seminars in nephrology, Elsevier, vol 21, pp 303–307
14. de Lores Arnaiz GR, Ordieres MGL (2014) Brain Na+, K+-ATPase activity in aging and

disease. International journal of biomedical science: IJBS 10(2):85

26

http://doi.org/10.5281/zenodo.3767058


2 A Cell-Based Model for Ionic Electrodiffusion in Excitable Tissue 27

15. Mori Y, Peskin C (2009) A numerical method for cellular electrophysiology based on the
electrodiffusion equations with internal boundary conditions at membranes. Communications
in Applied Mathematics and Computational Science 4(1):85–134

16. Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous
neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal
of computational neuroscience 32(1):147–165

17. Rabiller G, He JW, Nishijima Y, Wong A, Liu J (2015) Perturbation of brain oscillations
after ischemic stroke: a potential biomarker for post-stroke function and therapy. International
journal of molecular sciences 16(10):25605–25640

18. Rudy Y (2012) From genes and molecules to organs and organisms: heart. Comprehensive
Biophysics pp 268–327

19. Sætra MJ, Einevoll GT, Halnes G (2020) An electrodiffusive, ion conserving Pinsky-Rinzel
model with homeostatic mechanisms. bioRxiv

20. Scheiner-Bobis G (2002) The sodium pump. European Journal of Biochemistry 269(10):2424–
2433

21. Solbrå A, Wigdahl BA, van den Brink Jonas, Anders MS, T EG, Geir H (2018) A Kirchhoff-
Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding
morphologically detailed neurons. PLOS Computational Biology 14(10):1–26, DOI 10.1371/
journal.pcbi.1006510, URL https://doi.org/10.1371/journal.pcbi.1006510

22. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-
like depolarization. Physiological reviews 81(3):1065–1096

23. Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in
neuroscience. Cambridge University Press

24. Wei Y, Ullah G, Schiff SJ (2014) Unification of neuronal spikes, seizures, and spreading
depression. Journal of Neuroscience 34(35):11733–11743

https://doi.org/10.1371/journal.pcbi.1006510


Chapter 3

Modeling Cardiac Mechanics on a Sub-Cellular
Scale

Åshild Telle1, Samuel T. Wall1 and Joakim Sundnes1

Abstract We aim to extend existing models of single-cell mechanics to the EMI
framework, to define spatially resolved mechanical models of cardiac myocytes
embedded in a passive extracellular space. The models introduced here will be
pure mechanics models employing fairly simple constitutive laws for active and
passive mechanics. Future extensions of the models may include a coupling to the
electrophysiology and electro-diffusion models described in the other chapters, to
study the impact of spatially heterogeneous ion concentrations on the cell and tissue
mechanics.

3.1 Introduction

A vast range of models have been developed for the force development of cardiac
and skeletal muscle, on the scale of a single cross bridge (10), myofilament (3), sar-
comere (2), and the complete cell (13). The scales involved and the main functional
units considered on each scale are schematically illustrated in Figure 3.1. Common
to most existing models is the fact that they focus on a single spatial scale, and any
coupling between scales is fairly crudely represented. As an example, the model by
Rice et al. (13) is essentially a model of a single sarcomere (Fig. 3.1 D), which is
normalized and then scaled to yield a realistic force output for cell- and tissue-level
mechanics applications. Other models provide detailed descriptions of mechanisms
and interactions on a molecular level (Fig. 3.1 F)(4; 3), and are able to capture many
of the characteristic non-linearities of muscle cell mechanics. However, key aspects
of mechanical activation and force-length relationships are still not fully understood,
and they may be the result of interactions between individual sarcomeres and myofib-
ril bundles. A few attempts have been made at modeling interactions at this scale, and
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Fig. 3.1: The heart (A) is mainly composed of cardiac muscle cells, also called
cardiomyocytes (B). Each cell (C) is composed of long tubes of sarcomeres (D), in
which the thin and thick myofilaments overlap in layers (E). The interaction between
these (F) causes the cardiac muscle to contract in a process called the cross-bridge
cycle.

have shown potentially interesting emergent behaviours (2; 11). Furthermore, heart
failure and other pathologies are linked with heterogeneous intracellular calcium
concentration resulting from disruptions of the calcium regulation system. Describ-
ing the effect of such heterogeneities on the cell contraction and force development
requires spatially resolved mechanics models on the sub-cellular scale.

Finite element models of contracting myocytes have been proposed (8; 14), and have
been used to explore the impact of model assumptions, calcium heterogeneity, and
boundary conditions. The model presented by Ruiz-Baier et al. (14) describes the
individual myocyte as a hyperelastic material, and uses an active strain approach
to describe the contraction. Both the passive and active mechanical properties are
assumed to be homogeneous, but sub-cellular heterogeneities can easily be intro-
duced. We here propose to extend the single myocyte model in (14) to include the
extracellular domain, and to model collections of cells, based on similar ideas used
for the electrophysiology model presented in (17; 18) and (7, Chapter 1).
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3.2 Models and Methods

The motion and deformation of the heart can be described by the classical theory of
non-linear solid mechanics. The primary unknown in our computational model will
be the displacement vector u, which for each material point describes the difference
between its current and original position. We have u = x−X , where X is the original
(reference) position of a point, and x is its position after the deformation. From
the displacement vector we can define the deformation gradient F = ∂x/∂X =
I + ∂u/∂X , which is an essential quantity describing the deformation of a solid. See
for instance (6) for a detailed introduction to non-linear solid mechanics.

A characteristic feature of the heart and other muscles is that they contract and deform
even in the absence of external loads. The overall deformation and mechanical state
of the heart depends both on this active contraction and on the passive mechanical
properties of the tissue. There are two main approaches for modeling the coupling
of active and passive mechanics in cardiac tissue, often referred to as active strain
and active stress. Both approaches are based on modeling the active and passive
contributions separately, then combining them into a complete coupled model.

In the active strain approach, the active-passive coupling is incorporated through a
multiplicative decomposition of the deformation gradient F into active and passive
components, F = FpFa. Here, Fa represents an active deformation governed by the
cell state, and Fp is a passive elastic deformation which ensures compatibility with
loads and kinematic boundary conditions. The active stress approach is based on an
additive split of the stress tensor into its active and passive components. In terms of
the first Piola-Kirchhoff stress tensor P, the stress is written as P = Pp + Pa, where
Pa is a function of the cellular activation state and Pp is a standard elastic stress
derived from a strain energy function.

Both of these approaches have their strengths and weaknesses. In general, the active
strain approach is considered to be more suitable for deriving mathematically well-
behaved constitutive laws, while the active stress concept is more easily coupled to
biophysically detailed models of cell contraction.

3.2.1 Fundamental Equations

In this study we will primarily use the active stress approach, but for completeness
we also present the equations arising from the active strain approach. This model
can be derived as a direct extension of the single myocyte model in (14), using a
similar approach as in (17; 18) to consider both the intra- and extracellular domains:
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Fig. 3.2: Illustration of the intra- and extracellular domains for a single cell and its
surroundings.

a : ∇ · Pi = 0, b : Pi =
∂Ψi

∂Fi
, c : Fi = Fp

i Fa
i , in Ωi,

d : ∇ · Pe = 0, e : Pe =
∂Ψe

∂Fe
, in Ωe,

f : ui = ue, g : ni · Pi = ne · Pe, on Γ,
h : ne · Pe = 0, on ∂Ωe,T,
i : u = 0, on ∂Ωe,D.

(3.1)

Here, Ωi and Ωe are the intra- and extracellular domains, respectively, Γ is the inter-
face between the domains, with the normal vector ni pointing out of the intracellular
domain and ne out of the extracellular domain. Finally, ∂Ωe,T and ∂Ωe,D are the
parts of the outer boundary ∂Ωe subject to traction- and displacement boundary con-
ditions, respectively. See Figure 3.2 for a sketch of a typical computational domain,
including a single cell and its immediate surroundings. Following (14), we here
apply the active strain approach to incorporate active contraction of the myocyte,
where the intracellular deformation gradient Fi is decomposed as described above.
The passive part is assumed to be hyper-elastic and derived from a strain energy
function, see for instance (6) for details. A common choice for the active part is
Fa
i = diag((1 − γ), (1 − γ)−1/2, (1 − γ)−1/2), where γ describes the fiber contraction

and is a function of the cell activation state. For a more detailed introduction and
discussion of active strain models, we refer to (1).

The active stress model is the most widely used approach for modeling coupled
active and passive mechanics on tissue level, and this is the approach we will employ
in the subsequent numerical experiments. In the present context the active stress
model involves a decomposition of the intracellular first Piola-Kirchhoff stress Pi

into a passive elastic part Pp
i and an active part Pa

i . The passive stress is derived
from a strain energy function in the usual way, while the active stress is a function of
the cell activation state. For the simplified model considered here we write the active
stress as a function of time and the local fiber stretch λ, but the approach can easily
be extended to include detailed biophysical models of the contractile mechanisms.
The full active stress model may be written as
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a : ∇ · Pi = 0, b : Pi =
∂Ψi

∂F + Pa
i (t, λ), in Ωi,

c : ∇ · Pe = 0, d : Pe =
∂Ψe

∂Fe
, in Ωe,

e : ui = ue, f : ni · Pi = ne · Pe, on Γ,
g : ne · Pe = 0 on ∂Ωe,T,
h : u = 0 on ∂Ωe,D.

(3.2)

Both approaches treat the extracellular domain in the same way, as a passive hyper-
elastic material governed by a strain energy function Ψe. As given by (3.1) f-g and
(3.2) g-h we assume continuity of stresses Pi,Pe and displacements ui,ue across
the cell membrane Γ, implying that the membrane itself has no stiffness. The outer
boundary Ωe is assumed to be stress free, with Dirichlet conditions applied to parts
of the boundary to avoid rigid body motion. Models for the active stress Pa

i come
in many forms, including simple phenomenological models as well as detailed bio-
physical models of cell electro-mechanics (12; 13). For the present study we apply
a simple model where the active stress is derived from a (pseudo-) strain energy in
the same way as the passive stress:

Pa
i =
∂Ψa

i

∂F
. (3.3)

Here, Ψa
i is given by

Ψa
i =

Tactive(t)
2

λ2,

where λ = | |Fe1 | | is the stretch in the so-called fiber direction (i.e. the main orienta-
tion of the muscle cells), defined by the unit vector e1, and Tactive(t) is a prescribed
function defining the active contractile force as a function of time.

3.2.2 Specific Model Choices

In this section we describe specific choices of the constitutive laws describing active
and passive material properties in the models above, to arrive at a complete model
that can be solved for the deformations and stresses. As noted above, we will in the
following only consider the active stress model, given by (3.2). For the strain energy
defining the passive stress-strain relationships we have applied a model from (19),
which belongs to the family of models first presented by Guccione et al. (5). The
same form of strain energy is used in the intra- and extracellular domains, but we
allow the material parameters to be different. Both domains are modeled as nearly
incompressible, with volume changes during deformations controlled by a penalty
term. We have

Ψi = Ci(eQi − 1) + κ(J ln J − J + 1) x ∈ Ωi, (3.4)
Ψe = Ce(eQe − 1) + κ(J ln J − J + 1) x ∈ Ωe, (3.5)
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where Qi,Qe are functions depending on components of the Green-Lagrange strain
tensor E = 1

2 (F
T F − I):

Q j =b f , jE2
11 + bt , j(E2

22 + E2
33 + E2

23 + E2
32)

+b f s, j(E2
12 + E2

21 + E2
13 + E2

31). (3.6)

Furthermore Cj, b f , j, bt , j , and b f s, j , for j = i, e are material parameters characteriz-
ing the material’s stiffness to the various strain modes, κ is a penalty parameter that
controls the volume changes, and J = det F. For a fully incompressible deformation
we have J = 1, and in our nearly incompressible model we tune the parameter κ to
keep J ≈ 1.

In its most general form, the materials described by (3.4)-(3.6) are are transversely
isotropic, which is a special case of orhtotropic materials. While an orthotropic
material has different mechanical properties in three different directions, a trans-
versely isotropic material is isotropic in planes normal to a characteristic direction.
Passive cardiac tissue is known to behave as an orthortopic material (9), with the
three directions dictated by the orientation and organization of the myocytes. How-
ever, a transversely isotropic material is shown to be a good approximation, with
material isotropy in planes normal to the fiber direction, the main orientation of
the muscle cells. The details of the intra- and extracellular material behavior in our
micro-structural model are less well-studied, and the degree of anisotropy has not
been characterized. From the microstructure of the contractile apparatus occupying
most of the intracellular space (see Figure 3.1) it is natural to assume anisotropic
behavior, but the exact degree of aniostropy is not known. As a starting point, we set
the intracellular material parameters to

b f ,i = 8, bt ,e = 2, b f s,e = 4. (3.7)

For the extracellular space we assume isotropic material behaviour, setting

b f ,e = bt ,e = b f s,e = 1. (3.8)

The bulk compressibility was set to κ = 1000 kPa in both domains, while we explored
different values of the scaling parameters Ci and Ce, to be specified below.

For the active stress model defined in (3.3) we have used a pre-computed transient
tension Tactive(t) as shown in Figure 3.3. The curve was computed using the model
of Rice et al. (13) with default parameters, which outputs a normalized force. This
value was then scaled such that the peak value reaches 2 kPa, giving a reasonable
contractile stress for our application.
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Fig. 3.3: Transient tension Tactive(t) over time (left), first computed in (13), then
scaled to give values on a reasonable scale. In the intracellular domain the active
tension is homogeneously set to this value; in the extracellular domain there is no
such tension, implemented as being set to zero for all time steps.

3.2.3 Numerical Methods

The problem defined by (3.2) is solved with the displacement u as the primary
unknown. To solve the system with the finite element method, it is convenient to
formulate it as a single PDE defined over the entire domain Ω = Ωi ∪ Ωe. Such a
formulation is not possible for the strong form of the PDEs, so we first need to derive
the weak form of the equations. Starting with (3.2)a, we define a suitable vector
function space V(Ωi) defined over the intracellular domain, multiply the equation
with a test function v ∈ V(Ωi) and integrate by parts, to arrive at a weak formulation∫

Ωi

Pi · ∇vdx −

∫
Γ

(ni · Pi)v = 0.

This equation is to be satisfied for all v ∈ V(Ωi). Performing the same steps for the
extracellular domain, and using the boundary condition (3.2)g on the outer boundary,
we get ∫

Ωe

Pe · ∇vdx −

∫
Γ

(ne · Pe)v = 0.

This equation should hold for all test functions v ∈ V(Ωe), where V(Ωe) is a suitable
space of functions defined over the domain Ωe. Using similar arguments as in (15),
we can define a function space V(Ω) as the set of functions defined over Ω that
belong to both V(Ωi) and V(Ωe) and are continuous over Γ. With this definition, we
may add the two weak forms above to obtain∫

Ωi

Pi · ∇vdx −

∫
Γ

(ni · Pi)v +

∫
Ωe

Pe · ∇vdx −

∫
Γ

(ne · Pe)v = 0.

Which is to be satisfied for all v ∈ V(Ω). Since ne = −ni , the surface integrals over
Γ cancel because of (3.2)f. We can also use (3.2)e to define a single displacement
field over Ω, and we are left with the following weak form: Find u ∈ V(Ω) such that
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Fig. 3.4: A: Volume element of one single cell; lines indicate cross section area. B:
Cross section along longitudial direction of the cell. C: Volume element, 5 x 5 cells;
lines indicate cross section area. D: Cross section along longitudial direction of the
cells.

∫
Ω

P · ∇vdx = 0, (3.9)

is satisfied for all v ∈ V(Ω). with P defined by (3.2)b and (3.2)d in the respective
domains.

3.3 Results

We here present a number of numerical experiments to illustrate the general behav-
ior of the models defined above. The code is implemented using FEniCS, and an
archieved version of the code is available, see (16).

For the simulations we used two different meshes; one representing a single cell
and one representing a sheet of five by five cells, see Figure 3.4. Both meshes
include subdomains defining the intra- and extracellular domains, separated by the
cell membrane. To avoid rigid body motion, we keep a few points in the middle fixed.
The rest of the boundary is kept unloaded to allow free contraction of the cells.

A B

DC
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For each experiment we calculated the Green-Lagrange strain tensor E and the
Cauchy stress tensor σ, given by

σ =

{
|F |−1PiFT x ∈ Ωi

|F |−1PeFT otherwise.

On matrix form we can can write these out as

E =
⎡⎢⎢⎢⎢⎣
E11 E12 E13
E21 E22 E23
E31 E32 E33

⎤⎥⎥⎥⎥⎦ σ =

⎡⎢⎢⎢⎢⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤⎥⎥⎥⎥⎦
and for each of these we present plots for the first and the middle components,
(E11, E22, σ11, σ22), which characterize strain and stress in the fiber and cross-fiber
directions.

Fig. 3.5: Tracking points, for which we evaluate functions of interest across various
experiments. The points are uniformly distributed on a line from one corner to the
middle, in the xy-direction, corresponding to the cross-section shown in Figure 3.4.
Two of them are both located in the extracellular subdomain, and one should expect
them to show different patterns than the three located in the intracellular subdomain.

We first considered a single cell, and simulated contraction over a single cardiac
cycle with homogeneous active force applied throughout the cell. For this simulation
we chose parameter values Ce = Ci = 0.5. The results are presented in Figure 3.6,
where we observe that the deformation follows the expected pattern of a contraction
in the longitudinal direction of the cell. Furthermore, in spite of the homogeneous
applied active stress we see slight spatial variations in the deformation state, resulting
from the discontinuity of active force across the cell membrane.

Similar patterns are observed in the simulation of the sheet of 25 cells, shown in
Figure 3.7. In this experiment the same active stress transient through the intracel-
lular domain of all the cells, with the same material parameters. We still observe
spatial variations in the deformation pattern – each cells is affected by mechanical
deformation around them.

We then considered two cases where we kept all parameters but one fixed, exploring
the choices of material stiffness parameters Ce and Ci . The results are presnted in

a

c

e

d

b
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Fig. 3.6: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell. The plots to the left shows values plotted over
time, for the first 500 ms (out of 1000), following tracking points as shown in Figure
3.5. The plots to the right shows values over a cross-section as shown in Figure
3.4, as the active tension reaches it’s peak value. The grey rectangle indicates initial
configuration.

Figures 3.8 and 3.9. These simulations were again performed on a mesh representing
a single cell, with active force applied as described above. For the first experiment
we kept Ce fixed at 0.5, changing Ci; that is, we let the material stiffness in the extra-
cellular domain remain the same while increasing the stress/strain scaling parameter
in the intracellular domain. As Ci increases the material becomes stiffer, and for the
same active stress applied, one should expect less contraction. This can indeed be
observed; both components of the Cauchy stress tensor (in magnitude) and the strain
tensor decreases everywhere, and for the last three parameter choices there is almost
no difference in deformation. On the other hand, we still apply an active stress in the
intracellular domain, and we observe that the strain close to the membrane doesn’t
change much even if it changes everywhere else.

For the next experiment we changed to keeping Ci = 0.5 constant, while increasing
Ce. We can observe higher Cauchy stress for the first component, and lower Cauchy
stress for the second component, with increasing values of Ce. The strain decreases
for both components. This is exactly as expected – in one end of the spectrum, having
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Fig. 3.7: First and middle components of the Cauchy stress tensor σ, and and Green-
Lagrange strain E , for 5 x 5 cells. Values are plotted over the cross-section as shown
in 3.4, as the active tension reaches it’s peak value. The grey rectangle indicates
initial configuration.

Ce = 0.5, one would expect the extracellular subdomain to not affect the intracellular
domain as it’s rather flexible. For a given tension in the intracellular domain, it will
just move along quite easily, while the overall behaviour in the whole domain is
governed by the contraction inside the cell. As Ce increases, the material is modeled
as stiffer and hence constrain the movement more. For very high values the material
is so stiff that it hardly moves, efficiently keeping the membrane close to fixed.

3.4 Discussion

We have presented a general framework for modeling cardiac mechanics on a sub-
cellular scale, by extending a model of the type defined in (14) to the extracellular
domain. A series of preliminary numerical experiments demonstrate that the model
behaves as expected, with the discontinuity across the cell membrane giving rise
to spatially varying deformation fields even though both the active stress and other
model parameters are spatially homogeneous over the intracellular domain.

The main purpose of this work was to present the model framework and to illustrate
the general behaviour of the model, while more detailed investigations and model
extensions are left for future studies. A complete list of model limitations and poten-
tial extensions would be too extensive to present here, but it is worth commenting on
a few of the most obvious ones. First, the model derivation above included a number
of simplifying assumptions on the mechanical properties of the cell membrane and
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Fig. 3.8: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell, as we vary the parameter Ci , which defines the
stiffness of the material in the intracellular domain. Panel A shows spatial variation
over a cross-section of the cell (see Figure 3.4), at peak. Panel B shows how the
value, at peak, changes in given tracking points (see Figure 3.5).
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Fig. 3.9: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell, as we vary the parameter Ce, which defines the
stiffness of the material in the extracellular domain. Panel A shows spatial variation
over a cross-section of the cell (see Figure 3.4), at peak. Panel B shows how the
value, at peak, changes in given tracking points (see Figure 3.5).
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the two domains. The continuity of stress across the cell membrane implies that
the membrane itself has no stiffness, which is obviously incorrect, but it may be
a reasonable assumption for many applications. The impact of different membrane
mechanical properties should be explored further in a future study. Similarly, both
the intra- and extracellular domains are assumed to be hyperelastic materials, which
is probably a fairly crude approximation of the actual behaviour. In reality both of
these domains are complex compositions of fluids and various embedded proteins
structures, and the material behavior is most likely quite complex. Visco-elastic ma-
terial models could potentially be a more accurate description than the hyper-elastic
models applied here, but the required level of detail and material model complexity
remains to be determined. Finally, we have here assumed that both domains are
initially in a stress-free resting state, while experiments have shown that the extra-
cellular matrix shrinks considerably when the myocytes are removed. Thus indicates
that the resting state is actually an equilibrium state with non-zero stress in both
domains, and accurately capturing the overall mechanical behaviour may require
including this pre-stress in the model.

In general, the level of detail and complexity of the model formulation will be dictated
by the application. Some applications may require further development of the model
along the lines suggested above, while for studies of a more qualitative nature the
simplest version would be sufficient. One obvious application of the developed model
framework, where a fairly simple model would probably give interesting results, is
to study the impact of heterogeneities in calcium concentration and mechanical
properties on the contractile properties of cells and tissue.
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Chapter 4

Operator Splitting and Finite Difference
Schemes for Solving the EMI Model

Karoline Horgmo Jæger1, Kristian Gregorius Hustad1,2, Xing Cai1,2 and Aslak
Tveito1,2

Abstract We want to be able to perform accurate simulations of a large number of
cardiac cells based on mathematical models where each individual cell is represented
in the model. This implies that the computational mesh has to have a typical resolution
of a few μm leading to huge computational challenges. In this paper we use a certain
operator splitting of the coupled equations and show that this leads to systems that can
be solved in parallel. This opens up for the possibility of simulating large numbers
of coupled cardiac cells.

4.1 Introduction

In recent publications (31; 30; 13) we have shown that a cell-based model is useful
for accurately representing the electrophysiology of excitable cells. Traditionally,
excitable tissue is simulated based on homogenized models where the cells are not
explicitly resolved, see e.g., (26; 7). In the cell-based model, we explicitly represent
both the extracellular space (E), the cell membrane (M) and the intracellular space
(I), and it is therefore referred to as the EMI model. Similar approaches to modeling
excitable tissue have been used by several authors; see e.g., (2; 18; 25; 22; 24; 23;
11; 16; 34).

The EMI model is solved, numerically, using an operator splitting scheme which
results in two steps; a non-linear system of ordinary differential equations (ODEs)
to be solved in each computational node (i.e, degree of freedom) placed on the cell
membrane, and a linear system of algebraic equations coupling the discrete Laplace
equations of E and I with continuity requirements of the current over M. The spatial
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2Department of Informatics, University of Oslo, Norway
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resolution used in the discretization of the model is usually between 1 μm and 4 μm,
thus only 1 mm3 of tissue leads to more than 107 computational nodes. For an adult
human cardiac cell, with a resolution of 2 μm, the number of computational nodes
per cell (including the associated extracellular space) is about 6000 (see (30), Table
7). Thus, for a limited number of cells, the linear system coupling all the discrete
Laplace equations is manageable. In fact, the system was solved using Matlab for up
to 16,384 cells, with about 9.8×107 computational nodes, see (30).

However, not only the sheer size of the linear system is a challenge, also the properties
of the linear system are unusual. In scientific computing, one of the most well-studied
problems is solution of linear systems arising from the discretization of elliptic
boundary value problems; see e.g., (5; 21; 8). Unfortunately, the EMI system does
not naturally fall into the category of elliptic boundary value problems that can be
solved using well-developed numerical machinery. It is therefore of importance to
develop a splitting strategy for the EMI model that leads to sub-problems of the
elliptic type. In (14), we showed that such a splitting can indeed be achieved. Here,
we will review this convenient way of splitting the EMI model and show how to solve
the system numerically using a finite difference method. Moreover, we will use the
numerical scheme to assess the conduction properties in a small collection of cells
where a sub-group of the cells are ischemic. Furthermore, we will present a parallel
implementation of the splitting strategy, based on using open-source numerical
libraries. This code is considerably faster than the existing Matlab code, and well
suited for shared-memory parallel computers.

4.2 The EMI Model

We model the electrical properties of collections of cardiac cells using the EMI
model introduced in (24; 1; 2; 31; 30). In Figure 4.1 we show the computational
domains in the case of two coupled cells. Here, Ω1

i and Ω2
i denote the intracellular

domains, and Ωe denotes the extracellular space. The cell membranes are denoted
by Γ1 and Γ2, respectively. The intercalated disc at the intersection between Ω1

i and
Ω2

i , allowing for currents between the cells, is denoted by Γ1,2. With this notation at
hand, the EMI model takes the following form:

∇ · σi∇uk
i = 0 in Ωk

i , ne · σe∇ue = −nki · σi∇uk
i ≡ Ikm at Γk,

∇ · σe∇ue = 0 in Ωe, vkt =
1

Cm
(Ikm − Ikion) at Γk,

ue = 0 at ∂ΩD
e , uk

i − uk̃
i = wk at Γk ,k̃,

ne · σe∇ue = 0 at ∂ΩN
e , nk̃i · σi∇uk̃

i = −nki · σi∇uk
i ≡ Ik ,k̃ at Γk ,k̃,

uk
i − ue = vk at Γk, wk

t =
1
Cg

(Ik ,k̃ − Ikgap) at Γk ,k̃,

skt = Fk at Γk .
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Ω1
i Ω2

i

ΩeΓ1 Γ2

Γ1,2

ΩOΩW ΩE

ΩN

ΩS

Ωe

A B

Fig. 4.1: A: Two-dimensional version of the EMI model domain in the case of two
connected cells. Here, the cellsΩ1

i andΩ2
i , with cell membranes denoted by Γ1 and Γ2,

respectively, are connected to each other by the intercalated disc, Γ1,2, and surrounded
by an extracellular space, denoted by Ωe. B: Two-dimensional illustration of the
geometry used for a single cell. The intracellular domain of each cell is composed of
five subdomainsΩO,ΩW,ΩE,ΩS, andΩN. The sizes of the subdomains are specified
in Table 4.1.

The model is stated for cell number k, and k̃ denotes one of the six neighboring cells
(in 3D: north, west, south, east, above, below). In the model, ue, uk

i , and vk = uk
i −ue

denote the extracellular, intracellular, and transmembrane potentials, respectively.
Also, wk is the potential difference across the intercalated disc1, Γk ,k̃ , and σi and σe
denote intracellular and extracellular conductivities, whereas Cm and Cg represent
the specific capacitance of the membrane and the intercalated disc, respectively.
Furthermore, ne, nki , and nk̃i represent the outward pointing unit normal vectors of
Ωe,Ωk

i andΩk̃
i , respectively. A homogeneous Dirichlet boundary condition is applied

at the outer extracellular boundary in the x-direction (∂ΩD
e ), and a homogeneous

Neumann boundary condition is applied at the boundary in the y- and z-directions
(∂ΩN

e ). The parameters used in the computations below are summarized in Table
4.1. The properties of the cell membrane and the gap junctions are represented by F,
Iion and Igap. In the computations reported below, we use the Grandi et al. model(9),
to model the dynamics of the membrane (F and Iion), and for the gap junctions we
use the simple passive model Ikgap = wk/Rg.

4.2.1 Operator Splitting Applied to the EMI Model

As mentioned above, a key step in solving the EMI model is to split the equations into
parts that can be solved using standard tools. In (14), we derived a splitting scheme
that leads to two key numerical challenges: Non-linear systems of ODEs to be solved

1 Note that wk is defined specifically for each cell.



4 Operator Splitting and FD Schemes 47

Parameter Value Parameter Value
Size ΩO 100 μm × 18 μm × 18 μm Cm 1 μF/cm2

Size ΩW, ΩE 4 μm × 10 μm × 10 μm Cg 0.5 μF/cm2

Size ΩN, ΩS 10 μm × 4 μm × 10 μm σi 4 mS/cm
Δx, Δy, Δz 2 μm σe 20 mS/cm
Δt 0.02 ms Rg 0.0045 kΩcm2

ΔtODE 0.001 ms Mit, Nit 2

Table 4.1: Parameter values used in the simulations, based on (13). For parameters
of the Grandi model, see (9).

Algorithm 1: Summary of the splitting algorithm for the EMI model for
connected cells.
Initial conditions: vk ,0, sk ,0, wk ,0, u0

e for all k.
for n = 1, . . . , Nt :

Step 1: For all k, find sk ,n and v̄k at the nodes of the membrane Γk of cell k by solving a
time step Δt from (sk ,n−1, vk ,n−1) of

vkt = − 1
Cm

Iion(v
k , sk ),

skt = F(vk , sk ).

Define ūe = un−1
e , w̄k = wk ,n−1.

for j = 1, . . . , Nit :
Step 2:
for m = 1, . . . , Mit :

For every k, find ūk
i by solving

∇ · σi∇ū
k
i = 0 in Ωk

i ,

ūk
i +

Δt
Cm

nk
i · σi∇ū

k
i = v̄k + ūe at Γk ,

−nk
i · σi∇ū

k
i =

1
Rg

w̄k +Cg
w̄k−wk ,n−1

Δt at Γk , k̃ ,

where k̃ denotes each of the neighboring cells of cell k.

Update w̄k = ūk
i − ū k̃

i at Γk , k̃ for all k and k̃.
end
Step 3: Find ūe by solving

∇ · σe∇ūe = 0 in Ωe ,

ūe = 0 at ∂ΩD
e ,

ne · σe∇ūe = 0 at ∂ΩN
e ,

ne · σe∇ūe = −nk
i · σi∇ū

k
i at Γk for all k.

end

Define un
e = ūe , u

k ,n
i = ūk

i , wk = w̄k for all k.

Step 4: Define vk ,n = uk ,n
i − un

e at Γk for all k.
end
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at each computational node located at the cell membranes, and a series of elliptic
equations; see Algorithm 1. All the differential equations involved in Algorithm 1
are of classical type and can be solved using well-established numerical methods. In
our present implementation, we apply a straightforward finite difference scheme (see
e.g., (29) for an elementary introduction to finite differences) for the elliptic equations
and the Forward Euler method with a substepping time step ΔtODE for solving the
non-linear ODEs modeling the membrane dynamics (see (30)). However, it is worth
observing that elliptic equations can as well be solved using the finite element
method, or a finite volume method, thus allowing for more flexible and adaptive
meshes.

4.3 Simulating the Effect of a Region of Ischemic Cells

In order to demonstrate an application of Algorithm 1 above, we consider a collection
of cells where a fraction of the cells are ischemic. This is known to perturb the electri-
cal conduction and may lead to arrhythmias; see e.g., (33; 28; 19; 27). This problem
has been carefully studied using homogenized models (mostly the monodomain
model), but here we will show that the ischemic regions also have local effects when
only very few cells are considered. In Figure 4.2, we consider a collection of cells
organized in a two-dimensional mesh of 22×12 cells. The cells are modeled using
the Grandi model with parameters as stated in (9). Within the domain, 8×6 of the
center cells are ischemic in the sense that the extracellular potassium concentration
surrounding these cells is increased from 5.4 mM to 10 mM. For the ischemic cells,
we use the steady-state values of the state variables for the increased extracellular
potassium concentration as initial conditions, and for the remaining cells, we use the
steady-state values of the default Grandi model. In addition, we run the simulation
for 5 ms before stimulation.

In the simulation results we observe that the ischemic region slows down conductions
and thus perturbs the wave in the intracellular potential moving from left to right. This
is consistent with the result obtained in (6) (cf. Figure 5), where the monodomain
model was used. Such perturbations are known to be arrhythmogenic and have been
observed several times in numerical experiments; see e.g., (33; 19; 15; 3; 6). Here,
we observe that such perturbations can be initiated locally when only a few cells are
subject to surroundings with elevated potassium concentration.
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Fig. 4.2: Extracellular potential (left) and intracellular potential (right) at four differ-
ent points in time in an EMI model simulation with an ischemic region in the center
of the domain, marked by the purple rectangle. The parameter values used in the
simulation are given in Table 4.1.

4.4 A Scalable Implementation of the Splitting Scheme

In expectation of future simulations of excitable issues that may involve a huge
number of cells, we see the need of a scalable implementation of the new splitting
scheme, so that it can run efficiently on parallel computers. One specific criterion is
that the computation time should grow linearly with the number of cells involved.
Additionally, the design goals of this new code should also include independence of
proprietary software (such as Matlab) and plug-and-play of the different numerical
components. This section will present a preliminary version of such a scalable
implementation.
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4.4.1 The Linear System for the Intracellular Potential

The main benefit of the new the splitting scheme is that the intracellular Laplace
equations (one per cell) are decoupled from the extracellular Laplace equation, as
stated in Algorithm 1. If we assume a constant intracellular conductivity σi and
that each cell is of the same shape and size, as shown in Figure 4.1, the matrices
arising from a standard finite difference discretization of the intracellular Laplace
equations for the individual cells will be mostly identical. There are only a small
number of unique intracellular matrices, depending on whether there is a neighbor-
ing cell connected to each of the intercalated discs. It is thus unnecessary to compute
an intracellular matrix for each cell. Instead, the cells that have the same neighbor
connectivity situation can share the same intracellular matrix. This not only reduces
the memory usage of an implementation, but also improves data reuse in the caches
of a computer. Moreover, since the number of computational nodes per intracellular
domain is relatively small (each intracellular domain has about 5300 degrees of free-
dom for the simulations used in this chapter), it is very efficient to use a direct solver
each time an intracellular Laplace problem needs to be solved. Specifically, the LU
factorization of each unique intracellular matrix AI can be pre-calculated, which ren-
ders the solution of AI ūk

i = bki per cell to be merely invoking the forward-backward
substitution procedure. Parallelism of the computation mainly arises from the fact
that the intracellular Laplace equations can be solved independently of each other,
while limited parallelism also exists within each forward-backward substitution.

4.4.2 The Linear System for the Extracellular Potential

For the overall extracellular Laplace problem, which can be huge depending on the
spatial resolution and the total number of cells, an iterative solver is more appropriate.
Take for instance the case of 128×128 cells. The corresponding discrete extracellular
Laplace equation has 107,202,214 degrees of freedom. Independent of the spatial
resolution and the number of cells involved, the extracellular matrix AE arising from a
standard finite difference discretization is symmetric and positive-definite (some care
is needed to discretize the boundary conditions on the membranes). The resulting
linear system AE ūe = be is thus a perfect candidate for the conjugate gradients
(CG) method with an algebraic multigrid (AMG) preconditioner. Under optimal
conditions, an AMG preconditioner requires a constant number of iterations to reach
convergence independent of the linear system size, although the number of grid
levels inside the AMG preconditioner may increase with the system size. Parallelism
readily exists in iterative solvers, with several software libraries providing parallel
implementations of CG and AMG.
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4.4.3 The Non-Linear ODE System for the Membrane Potential

For solving the non-linear ODE system per computational node on the membranes,
a straightforward and often very efficient numerical strategy is the Forward Euler
method with a substepping time step ΔtODE. Since the non-linear ODE system on
each membrane node is independent of the others, the ODE computation possesses
the most ample parallelism.

4.4.4 The Implementation

The Python programming language has been chosen for the implementation, mostly
because of its flexibility for interfacing with numerical software libraries written
in performance-friendly languages such as C and C++. We have used the ctypes
module from the standard Python library for this purpose. The choice of Python also
simplified a partial translation from the existing MATLAB code developed in (14).

We have chosen the SuperLU library (17) for performing the LU factorization of
the intracellular matrices and the subsequent forward-backward substitution, via the
bindings that are provided by SciPy (32). For the extracellular Laplace equation, we
have used the ViennaCL library (20) for its implementation of CG and AMG. The CG
iterations are by default configured to terminate when a tolerance of 10−5 is reached.
The AMG preconditioner has been configured to use the maximum independent
set (MIS), see (4), as the coarsening algorithm and smoothed aggregation as the
interpolation algorithm. For the ODE part, the Gotran automated code generator (10)
has been used to translate the Grandi cell model into C code, callable from the Python
side.

4.4.5 Parallelization

The Python implementation currently relies on the adopted numerical libraries (Su-
perLU and ViennaCL) for an implicit parallelization of the PDE computation through
multi-threading. This form of parallelization suits for shared-memory parallel com-
puters, such as laptops or servers that use multicore CPUs. Multi-threading of the
ODE computation is also enabled by inserting OpenMP compiler directives into the
C code that is generated automatically by Gotran. The advantage of this implicit par-
allelization is that the user does not have to care about parallelization-specific coding.
The downside is that all the computations have to run on a shared-memory system. It
is possible to achieve the more general parallelization that targets distributed-memory
parallel computers, which will be a task for future work.
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4.4.6 Performance Results

The simulations in this section were run on a dual-socket server with two 32-core
AMD EPYC 7601 CPUs, each with 8-channel memory operating at 2666 MT/s.
The number of OpenMP threads was set by default to the number of logical cores,
equaling 128. Moreover, the environment variable OMP_PROC_BIND=TRUE was set
to prevent the threads from migrating between the cores (which typically leads to
unnecessary performance loss).

Table 4.2 shows the average solution time per time step for the 10 first time steps,
where all the parameters are as prescribed in Table 4.1. The number of cardiac cells
is doubled in the x and y directions for each row, and we observe that the time per
cell remains fairly constant, indicating that the time to solution is a linear function
of the number of cardiac cells simulated.

Cells time usage for all cells (s) time per cell (ms)

E M I total E M I total

4 × 4 0.38 0.03 0.09 0.50 24.0 2.2 5.3 31.5
8 × 8 1.54 0.11 0.34 1.99 24.1 1.8 5.2 31.2

16 × 16 2.27 0.45 1.20 3.92 8.8 1.7 4.7 15.3
32 × 32 8.91 1.72 4.98 15.61 8.7 1.7 4.9 15.2
64 × 64 30.46 6.73 19.15 56.33 7.4 1.6 4.7 13.8

128 × 128 123.73 30.60 72.83 227.16 7.6 1.9 4.4 13.9

Table 4.2: Average solution time per time step for the E, M and I domains.

4.5 Software

The Matlab code used to compute the solutions shown in Figure 4.2 and the Python
code discussed in Section 4.4 can be found at https://github.com/KGHustad/
emi-book-2020-splitting-code. An archived version (12) is also available.

4.6 Conclusion

In this chapter we have presented a numerical scheme for solving the EMI equations
using operator splitting. The scheme allows for parallel solution of individual cells
combined with a global solution of the equation modeling the extracellular potential.

https://github.com/KGHustad/emi-book-2020-splitting-code
https://github.com/KGHustad/emi-book-2020-splitting-code
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The latter is well suited for using optimal linear solvers such as AMG. The overall
code scales linearly with the number cells and thus allows for simulation of a large
number of cells. It remains to be seen how well this will work for very large numbers
of cells; this is subject for further work.
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Chapter 5

Solving the EMI Equations using Finite Element
Methods

Miroslav Kuchta1, Kent-André Mardal1,2 and Marie E. Rognes1

Abstract This chapter discusses 2 × 2 symmetric variational formulations and as-
sociated finite element methods for the EMI equations. We demonstrate that the
presented methods converge at expected rates, and compare the approaches in terms
of approximation of the transmembrane potential. Overall, the choice of which for-
mulation to employ for solving EMI models becomes largely a matter of desired
accuracy and available computational resources.

5.1 Introduction

In this chapter, we present different weak formulations and corresponding finite
element methods for solving the EMI equations as presented in (7, Chapter 1) over
a physiological cell Ωi and its membrane Γ surrounded by an extracellular space Ωe

and a time interval (0,T] for some time T > 0. This coupled, time-dependent, and
typically nonlinear system of equations can be targeted numerically by an operator
splitting scheme, see e.g (8, Chapter 4). Such an approach, combined with for instance
an implicit Euler discretization in time, gives the following stationary and linear, but
still coupled system of equations to be solved at each time-step: find the potentials
ue = ue(x), ui = ui(x) (and current Im = Im(x)) such that
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−∇ · (σe∇ue) = 0 in Ωe, (5.1a)
−∇ · (σi∇ui) = 0 in Ωi (5.1b)
σe∇ue · ne = −σi∇ui · ni ≡ Im on Γ, (5.1c)

ui − ue = v on Γ, (5.1d)
v − C−1

m Δt Im = f on Γ, (5.1e)

where Δt > 0 denotes a time step size, and ne (resp. ni) denotes the outward
pointing normal on Γ when viewed from Ωe (resp. Ωi). In our (implicit Euler) time
discretization context, the known right-hand side f of (5.1e) combines the previous
transmembrane potential solution, v0, and the evaluation of the ionic current, Iion,
into f ≡ v0 − C−1

m Δt Iion.

We assume that the potential is grounded on part of the external boundary ΓDe and
that the remaining external boundary ΓNe is insulated. These assumptions give the
boundary conditions:

ue = 0 on ΓDe , (5.2a)
σe∇ue · ne = 0 on ΓNe . (5.2b)

This geometrical setting is illustrated in Figure 5.1.

Ωi

Ωe
Γ

ni

ne

ΓDe

ΓNe

Ωe,hh

ΩΩΩiiii,,hhh

ΓΓhh

Fig. 5.1: (Left) Illustration of the geometric setting for the single cell EMI problem.
(Right) Sample meshes for our benchmark problem (5.17). The boundary facets of
the intracellular mesh Ωi,h form the membrane mesh Γh .

Remark 5.1 We remark that a single cell model is here considered for simplicity. In-
deed the formulations to be studied below can be similarly derived for the intercalated
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model (collections of connected cells). Formulations for a number of disconnected
cells are then practically identical to the case considered here.

Remark 5.2 If (5.2) is considered without any Dirichlet boundary data, i.e. |ΓDe | = 0,
then only the transmembrane potential is fixed and the intracellular and extracellular
potentials are determined only up to a single, common constant.

The EMI equations (5.1) set a rich scene for numerical exploration and can be solved
in a multitude of ways. In this chapter, we will derive 2×2 different weak formulations
(each defining a finite element method) of this system. The two first formulations
(in Section 5.2) compute the intracellular and extracellular potentials as the main
unknowns. These are referred to as primal formulations. The latter two formulations
(in Section 5.3) additionally introduce the current densities Ji = −σi∇ui and Je =
−σe∇ue as independent unknowns. These are referred to as mixed formulations. We
compare finite element discretizations of the primal and mixed formulations with
respect to the approximation of the transmembrane potential v in Section 5.4. This
choice is motivated by the observation that v is closely coupled to the membrane
dynamics as discussed in Chapter 1.

5.1.1 Preliminaries: Function Spaces and Norms

The EMI equations (5.1) define a multi-dimensional1 PDE system coupling unknown
fields defined over cellular domains and fields defined over the cell membrane, which
can be viewed as a lower-dimensional manifold. Identifying the right function spaces
for the different unknown fields is key to defining well-posed weak formulations of
these equations. We here present suitable Sobolev spaces for this setting; the reader
is referred to e.g. (3; 5) for more material and careful formalizations.

Let Ω be a bounded, polygonal domain in Rd for d = 2,3. We denote the space of
square-integrable functions over Ω by L2(Ω), and let H1(Ω) be the Sobolev space
of functions in L2(Ω) with weak derivatives in L2(Ω). The space H(div,Ω) contains
vector-valued functions v : Ω → R

d such that v ∈ L2(Ω) and ∇ · v ∈ L2(Ω). In
general, when clear from the context, the domain will be omitted from the notation.

The L2-inner product and norm for u, v ∈ L2(Ω) is written as

(u, v)0,Ω =
∫
Ω

uv dx, ‖v‖2
0,Ω =

∫
Ω

v2 dx.

Similarly, we define the H1-norm as ‖v‖2
1,Ω = ‖v‖2

0,Ω + ‖∇v‖2
0,Ω for v ∈ H1(Ω), and

the H(div)-norm as ‖v‖2
div,Ω = ‖v‖2

0,Ω + ‖∇ · v‖2
0,Ω.

1 PDEs coupling fields over domains of different topological dimensions are often referred to as
mixed-dimensional PDEs. To avoid the confusion-inducing term mixed-dimensional mixed in the
subsequent sections, we instead use the term multi-dimensional in this chapter.
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For Γ ⊆ ∂Ω, we define the constrained spaces H1
Γ(Ω) =

{
v ∈ H1(Ω) | v = 0 on Γ

}
,

and HΓ(div,Ω) = {v ∈ H(div,Ω) | v · n = 0 on Γ} where n is the (outward pointing)
normal vector of Γ. Finally the spaces H1/2(Γ) and H−1/2(Γ) are the trace spaces of
H1 and H(div) respectively (6, Ch. 1., 2.). Here, the spaces will be considered with
the norm defined in terms of fractional powers of the Helmholtz operator, see e.g.
(4), i.e.

‖u‖2
s = (u, (−Δ + I)su)0,Γ , u ∈ C∞(Γ).

We remark that in the following experiments the fractional norm is evaluated using
the eigenvalue decomposition of −Δ + I as detailed in (11).

5.2 Primal Formulations

We present two primal formulations of the stationary EMI system (5.1) with the
boundary conditions given by (5.2): one single-dimensional formulation and one
multi-dimensional formulation. The difference in the intra- and extracellular potential
across the cell membrane Γ sets up a potential jump, the transmembrane potential
v, c.f. (5.1d). Due to this jump, one cannot define a global, differentiable potential
u ∈ H1(Ωi ∪ Ωe) such that u|Ωi = ui and u|Ωe = ue. Instead, we seek ui ∈ H1(Ωi)

and ue ∈ H1(Ωe) separately. In the single-dimensional formulation, these are the
only unknown fields, while in the multi-dimensional formulation, we keep Im as an
additional unknown.

5.2.1 Single-Dimensional Primal Formulation

Define the function spaces

Vi = H1(Ωi), Ve = H1
ΓDe

(Ωe). (5.3)

To derive a weak formulation of (5.1), multiply (5.1a) by a test function ve ∈ Ve,
(5.1b) by another test function vi ∈ Vi , and integrate the divergence by parts. This
yields the variational formulation: find ue ∈ Ve, ui ∈ Vi satisfying∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

σe∇ue · neve ds = 0, (5.4a)∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

(−σi∇ui · ni) vi ds = 0. (5.4b)

for all ve ∈ Ve, vi ∈ Vi . In the bracketed term of (5.4b), we recognize the membrane
current density Im as defined by (5.1c), and similarly, the interface contribution in
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the corresponding extracellular equation (5.4a) hides −Im. Combining (5.1e) and
(5.1d), we find that

Im = Cm(Δt)−1 ((ui − ue) − f ) . (5.5)

After substituting (5.5) into (5.4), the single-dimensional primal weak form of (5.1)
reads: find ui ∈ Vi and ue ∈ Ve such that∫

Ωe

σe∇ue · ∇ve dx +
∫
Γ

Cm(Δt)−1ueve ds−
∫
Γ

Cm(Δt)−1uive ds =

− Cm(Δt)−1
∫
Γ

f ve ds,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

Cm(Δt)−1uivi ds−
∫
Γ

Cm(Δt)−1uevi ds =

Cm(Δt)−1
∫
Γ

f vi ds,

(5.6)

for all ve ∈ Ve and vi ∈ Vi .

We remark that (5.6) can be viewed as a coupling of two Poisson problems with a
Robin boundary condition on Γ. The well-posedness of the problem is then discussed
in (10, Chapter 6). Finally, the transmembrane potential can here be computed from
its definition (5.1d) as a difference of the computed potentials.

5.2.2 Multi-Dimensional Primal Formulation

An alternative formulation can be derived by keeping Im as a separate unknown
field. Since Γ is of a different (lower) dimension than Ωi,Ωe; and as Im : Γ → R

while ui : Ωi → R, ue : Ωe → R, we will refer to this as a multi-dimensional
primal formulation. Observe that (5.4) now yields two equations for three unknowns
ui ∈ Vi , ue ∈ Ve, and Im ∈ Q:∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

Imve ds = 0, ∀ ve ∈ Ve,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

Imvi ds = 0, ∀ vi ∈ Vi .

However, the missing equation can be obtained from (5.5). Let

Q = H1/2(Γ), Q∗ = H−1/2(Γ). (5.7)

We remind the reader that if Γ is a co-dimensional 1 subset ofΩ then trace operations
from Ω to Γ, Tu = u|Γ, u ∈ C(Ω) and Tnτ = τ |Γ · n, τ ∈ C(Ω), formally have
the following mapping properties T : H1(Ω) → H1/2(Γ) and Tn : H(div,Ω) →
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H−1/2(Γ). Hence, let jm be a a test function from Q∗. We shall then enforce that (5.5)
holds in the weak sense:∫

Γ

(ui − ue) jm ds −
∫
Γ

ΔtC−1
m Im jm ds =

∫
Γ

f jm ds, ∀ jm ∈ Q∗.

In turn, the multi-dimensional primal formulation of (5.1) reads: find ui ∈ Vi ,
ue ∈ Ve, Im ∈ Q∗ such that∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

ve Im ds = 0,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

vi Im ds = 0,∫
Γ

−ue jm ds +
∫
Γ

ui jm ds −
∫
Γ

ΔtC−1
m Im jm ds =

∫
Γ

f jm ds,

(5.8)

for all vi ∈ Vi , ve ∈ Ve and jm ∈ Q∗. We remark that (5.8) is closely related to
the Babuška problem for enforcing boundary conditions by Lagrange multipliers
(1) and the mortar finite element method, see e.g. (13). With regards to evaluation
of the transmembrane potential, we note that v can be post-computed in several
ways: from (5.1d) (as for the single-dimensional primal formulation (5.6)) or from
Im and (5.1e).

5.3 Mixed Formulations

We now turn to consider mixed formulations of the EMI system (5.1). Let us
(re)introduce the current densities

Ji = −σi∇ui, Je = −σe∇ue (5.9)

and the global field J onΩ = Ωi ∪Ωe such that J |Ωi = Ji and J |Ωe = Je. In general,
we use the convention that for a scalar or vector field u defined on Ω, the restriction
on Ωi and Ωe is denoted by ui and ue, respectively.

With these definitions, (5.1a)–(5.1c) become: find the current densities Ji, Je (or J)
and the potentials ui,ue (or u) satisfying

σ−1
e Je + ∇ue = 0 on Ωe, (5.10a)
σ−1
i Ji + ∇ui = 0 on Ωi, (5.10b)

−∇ · J = 0 in Ω, (5.10c)
Je · ne + Ji · ni = 0 on Γ. (5.10d)
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We refer to (5.10) together with (5.1d)–(5.1e) as the mixed EMI system with bound-
ary conditions given by (5.2). Weak formulations of the mixed form can enjoy
improved conservation properties and stability properties (3). In particular, approxi-
mations of J may be computed such that they are exactly divergence free, cf. (5.10c).

The continuity condition (5.10d) ensures that the normal component of J is contin-
uous on Γ. We remark that v ∈ H(div,Ω) implies continuity of v · n on Γ. Moreover,
we observe that (5.10c) involves only divergence of the field J . It is therefore suffi-
cient to seek J in S = HΓNe (div,Ω). Note that in contrast to the primal formulation,
here the Neumann boundary condition (5.2b) is enforced as an essential condition;
that is, it is included in the construction of the function space S.

5.3.1 Single-Dimensional Mixed Formulation

Let
S =

{
J ∈ HΓNe (div,Ω); J · n ∈ L2(Γ)

}
, V = L2(Ω). (5.11)

To derive a weak form of the mixed EMI system, consider a test function τ ∈ S.
Taking the dot product of (5.10a), (5.10b) with τi , τe, integrating and applying
integration by parts then yields∫

Ωe

σ−1
e Je · τe dx −

∫
Ωe

ue∇ · τe dx +
∫
Γ

ueτe · ne ds = −

∫
ΓDe

ueτe · ne ds,∫
Ωi

σ−1
i Ji · τi dx −

∫
Ωi

ui∇ · τi dx +
∫
Γ

uiτi · ni ds = 0.

Observe that by continuity of the normal component of the test function (τi ·n = τe ·n
on Γ), and the identity ne = −ni , the integrals on Γ can be added, resulting in∫
Γ
(ui − ue)τ · ni . Moreover, using (5.5), the membrane term can be rewritten as∫
Γ

(
C−1
m ΔtJ · ni + f

)
τ · ni . In turn, we arrive at the variational problem: find J ∈ S,

u ∈ V such that∫
Ω

σ−1J · τ dx +
∫
Γ

C−1
m ΔtJ · niτ · ni ds −

∫
Ω

u∇ · τ dx = −

∫
Γ

f τ · ni ds,

−

∫
Ω

q∇ · J dx = 0,
(5.12)

for all τ ∈ S and q ∈ V , with σ defined naturally as σ |Ωi = σi and likewise for Ωe.
Note that due to the extra trace regularity of the trial/test space S all the terms in
(5.12), and in particular the interface term

∫
Γ

C−1
m ΔtJ · niτ · ni ds, are well defined.

Without the extra regularity, i.e. if S = HΓNe (div,Ω), this would not be the case.

We remark that (5.12) is a Γ-perturbed mixed formulation of the Poisson problem
(see e.g. (3; 9) for more details on mixed formulations of the Poisson problem).
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Considering the task of approximating the transmembrane potential, we observe that
v can be computed in two ways, as for the multi-dimensional primal formulation.
Indeed, in addition to the identity v = ui − ue, cf. (5.1d), equation (5.1e) can be used
since Im = J · ni is readily available.

5.3.2 Multi-Dimensional Mixed Formulation

As for the primal formulations, the multi-dimensional mixed formulation is obtained
by keeping the interface term as an explicit unknown field. Let

S = HΓNe (div,Ω), V = L2(Ω), W = H1/2(Γ). (5.13)

To complete the formulation, the equation to be enforced weakly by test functions
w ∈ W is the membrane dynamics condition (5.1e) written in the form

J · ni − Cm(Δt)−1v = −Cm(Δt)−1 f on Γ.

The final multi-dimensional mixed weak formulation then reads: Find the current
densities J ∈ S, potentials u ∈ V , and transmembrane potential v ∈ W such that∫

Ω

σ−1J · τ dx −

∫
Ω

u∇ · τ dx +
∫
Γ

vτ · ni ds = 0,

−

∫
Ω

q∇ · J dx = 0,∫
Γ

wJ · ni ds −
∫
Γ

Cm(Δt)−1vw ds = −Cm(Δt)−1
∫
Γ

f w ds,

(5.14)

for all τ ∈ S, q ∈ V and w ∈ W . Note that (5.14) is defined on the standard H(div)
space, cf. (5.12), as the formulation no longer contains the troublesome interface term∫
Γ

C−1
m ΔtJ · niτ · ni ds. With regards to the approximation of v in formulation (5.14),

observe that no post-processing is required to obtain this quantity. This is contrast
to the previous three formulations. We remark that (5.14) is closely connected to the
Babuška problem for the mixed Poisson equation (2).

5.4 Finite Element Spaces and Methods

To solve the primal and mixed, single- and multi-dimensional weak formulations nu-
merically, we approximate the continuous function spaces by discrete finite element
spaces. Each choice of formulation and finite element space defines a finite element
method for solving the EMI system.
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Now, let Ωh be a mesh of the domain Ω = Ωi ∪ Ωe with characteristic mesh size h,
which conforms to Γ in the sense that no element of Ωh has its interior intersected
by Γ. The meshes Ωe,h and Ωi,h of the extracellular and intracellular domains are
formed as non-overlapping subsets of the cells of Ωh . As a consequence, the mesh
Γh of Γ is formed by the facets of elements of Ωh , cf. Figure 5.1. We remark that the
single-dimensional primal formulation allows for independent discretizations of Ωi ,
Ωe as well as Γ.

The choice of the finite element spaces plays a crucial role for the stability of the
different discrete formulations. In particular, for the saddle-point systems, the spaces
must be compatible in the sense of Babuška-Brezzi and satisfy discrete inf-sup
conditions, see e.g. (3). For the primal formulations (5.4) and (5.8), we seek discrete
unknowns and test functions in

Vi,h = P1(Ωi,h) ⊂ Vi, Ve,h = P1(Ωe,h) ⊂ Ve, Qh = P1(Γh) ⊂ Q, (5.15)

where P1 denotes the space of continuous piecewise linears (defined relative to the
relevant mesh). With these spaces, we expect linear convergence with the mesh size
h for all variables in H1-norms and quadratic convergence in the L2-norm.

For the mixed formulations (5.10) and (5.12), we seek discrete unknowns and test
functions in

Sh = RT0(Ωh) ⊂ S, Vh = P0(Ωh) ⊂ V, Wh = P0(Γh). (5.16)

Here RT0 denotes the lowest order Raviart-Thomas finite element spaces and P0
denotes the space of piecewise constants defined relative to the relevant mesh. These
spaces satisfy the relevant stability conditions, and we expect linear convergence of
all unknown fields in their respective natural norms.

5.5 Numerical Results

5.5.1 Comparison of Convergence between Formulations

In order to compare the properties of the different formulations, and in particular
their numerical stability and accuracy, we consider a manufactured solution test case
with a smooth analytical solution. We defineΩ = [0,1]2 andΩi = [0.25,0.75]2 with
|ΓNe | = 0. For simplicity, let σi = 1, σe = 2, Cm = 1, Δt ∈

{
1,10−4} and consider

the exact solution

ue = sin (π(x + y)) ,

ui =
ue
σi
+ cos

(
π(x − 1

4 )(x − 3
4 )
)

cos
(
π(y − 1

4 )(y −
3
4 )
)
,

(5.17)
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which corresponds to (Δt dependent) right hand sides f = ui − ue − Δt Im. Note,
that with (5.17) both v � 0 and Im � 0. We discretize the domain by a uniform
mesh by dividing the unit square into n × n squares and dividing each square by
the (left) diagonal into isosceles triangles of size h, cf. Figure 5.1. To compare the
dimensionality of the different formulations, Table 5.1 lists the dimensions of the
four different finite element pairings over these meshes.

h |Ve ,h | |Vi ,h | |Qh | |Sh | |Vh | |Wh |

4.42E-02 864 289 64 3136 2048 64
2.21E-02 3264 1089 128 12416 8192 128
1.10E-02 12672 4225 256 49408 32768 256
5.52E-03 49920 16641 512 197120 131072 512
2.76E-03 198144 66049 1024 787456 524288 1024
1.38E-03 789504 263169 2048 3147776 2097152 2048
6.93E-04 3151872 1050625 4096 12587008 8388608 4096

Table 5.1: Dimensions of the different finite element spaces for uniform refinements
of the unit square. The first row corresponds to a mesh of Ω with n = 16, i.e. having
2 × 16 × 16 cells.
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Fig. 5.2: Convergence properties of (left) primal formulations (5.6)–(5.8) and (right)
mixed formulations (5.12)–(5.14). The EMI system (5.1) is solved with the exact
solution given by (5.17) andΔt = 1. Filled symbols correspond to single-dimensional
formulations. The number associated with each line indicates the convergence rate
obtained from a least squares fit of the corresponding data.
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On a series of meshes and for a set of different timesteps, we compute 2 the different
approximations of all four finite element methods. We then evaluate the approxi-
mation error by evaluating the difference between (higher order interpolants of) the
exact solution and the approximations in appropriate norms. Figure 5.2 shows the
errors of the different formulations (with Δt = 1). In the primal formulations, u
refers to the global potential, i.e. ui = u|Ωi , ue = u|Ωe . As the formulations seek
the approximations ui ∈ H1(Ωi), ue ∈ H1(Ωe) the error is considered in the natural
(broken) norm ‖u‖1 = (‖ui ‖2

1+ ‖ue‖2
1 )

1/2. We observe that all the quantities converge
linearly in their respective natural norms, as expected. In particular, the errors in the
current density Im in (5.8) and the transmembrane potential v in (5.14) are reported
in the fractional norms H−1/2 and H1/2, respectively. The former is computed by
first interpolating the error into the space of continuous piecewise cubic polynomials
on Γh while for v − vh the P1 element is used for error interpolation. Without this
higher-order approximation of the error, i.e. if the error is computed in the same
space as the discrete solution, we observe quadratic convergence.

Finally, we note that the primal formulations yield identical approximations of u
cf. Figure 5.2 (left). Similarly, the mixed formulations give identical approximations
of (u, J) cf. Figure 5.2 (right). Considering for comparison the error in the potential
in the L2-norm, it can be seen that the primal formulations are more accurate
than the mixed formulations. The same experiments for Δt = 10−4 give similar
approximation results. However, it is not true that these conclusions hold in the limit
of Δt approaching 0, see e.g. Chapter 6.

5.5.2 Post-Processing the Transmembrane Potential

With the exception of the multi-dimensional mixed formulation (5.14), the trans-
membrane potential v in the remaining EMI formulations is computed by post-
processing. In (5.6) the approximation vh can be obtained by interpolating the dif-
ference ui,h − ue,h onto e.g. the space of continuous piecewise linear functions over
Γh . This procedure can, of course, be used in the other formulations as well. How-
ever (5.8) and (5.12) also offer an alternative approach. In the multi-dimensional
primal formulation, the discrete membrane current density, Im,h is computed in the
space P1(Γh) of continuous piecewise linear functions on Γh . In turn, vh can be
computed (in the same space) as a projection of C−1

m Δt Im,h + f . The same formula
can be applied in the single-dimensional mixed formulation since the current density
can be evaluated as Jh · ni . We recall that in (5.12) the natural space for vh is the
space of (discontinuous) piecewise constant functions on Γh however.

Convergence of the transmembrane potential obtained by the different formulations
and post-processing strategies is shown in Figure 5.3 for the same test case as previ-

2 The code used to produce results in this chapter is available at https://github.com/MiroK/
emi-book-fem and archived at (12).

https://github.com/MiroK/emi-book-fem
https://github.com/MiroK/emi-book-fem
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ously. We observe that the primal formulations yield quadratic convergence and that
the single-dimensional primal (5.6), and multi-dimensional primal formulation (5.8)
are practically identical. The discrete potentials obtained by solving the mixed for-
mulations converge linearly with the projection method in the single-dimensional
mixed formulation yielding the most accurate vh . In particular, the approximation
is better than that of the multi-dimensional mixed formulation for this test case.
Computing the potential in the single-dimensional mixed formulation (5.12) by in-
terpolating ui,h − ue,h leads to poorer approximation than for the multi-dimensional
mixed formulation. By comparing the results for two different time steps, we observe
that the rates do not change considerably if Δt is modified.

10−2.5 10−2 10−1.5

10−5

10−4

10−3

10−2

10−1

h

‖v
−
v h
‖ 0

single-prime: 1.97
multi-prime-Im: 1.97
single-mixed: 1
single-mixed-Im: 1
multi-mixed: 1

10−2.5 10−2 10−1.5

10−6

10−5

10−4

10−3

10−2

10−1

h

‖v
−
v h

‖ 0

single-prime: 2
multi-prime-Im: 2
single-mixed: 1
single-mixed-Im: 1
multi-mixed: 1

Fig. 5.3: Approximation of the transmembrane potential by the different EMI for-
mulations. (Left) Δt = 1, (right) Δt = 10−4. Postprocessing by projection (using the
current density) is indicated by Im. In multi-dimensional mixed formulation vh is
obtained by solving (5.14). Interpolation of ui,h − ue,h is used in other formulations.
The final number indicates the convergence rate.

5.6 Conclusions and Outlook

All four finite element formulations provide a converging approximation to the sta-
tionary problem (5.1). This system is a key building block in any operator splitting
algorithm for the time-dependent EMI equations (1.30). The formulations provide
solutions which differ by accuracy as well as computational cost, cf. Figures 5.2–5.3
and Table 5.1. The formulations also differ in robustness of their approximation
properties with respect to Δt. This issue is however beyond the scope of this chap-
ter, and the interested reader is referred to the discussion in Chapter 6. In terms
of coupling with the membrane dynamics the single/multi-dimensional primal and
single-dimensional mixed formulations require post-processing. However, all ap-
proaches discussed in Section 5.5.2 are easy to implement. Therefore, the choice of
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which formulation to employ in solving the EMI model is largely a matter of desired
accuracy and available computational resources.

Open Access This chapter is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original aut-
hor(s) and the source, provide a link to the Creative Commons license and indicate 
if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.
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Chapter 6

Iterative Solvers for EMI Models

Miroslav Kuchta1 and Kent-André Mardal1,2

Abstract This chapter deals with iterative solution algorithms for the four EMI
formulations derived in (17, Chapter 5). Order optimal monolithic solvers robust with
respect to material parameters, the number of degrees of freedom of discretization
as well as the time-stepping parameter are presented and compared in terms of
computational cost. Domain decomposition solver for the single-dimensional primal
formulation is discussed.

6.1 Introduction

Spatial discretization of EMI models describing a few cells with a complex/realistic
geometry or a large collection of cells leads to linear systems with considerable num-
ber of unknowns. In our largest simulations, we may have linear systems involving
billions of unknowns at millions of time steps. It is the purpose of this chapter to
discuss how such systems can be solved efficiently with available algorithms.

Let us denote the system size as N and let h be a typical grid/mesh size. The complex-
ity of a solution algorithm can then be analyzed in terms of how the computational
time grows with N . For instance, a naive Gaussian elimination would perhaps scale
as O(N3) and for linear system involving billions of unknowns such an approach
is therefore not feasible during a life-time. Here, we shall aim for algorithms that
are order optimal, i.e. their solution time scales linearly, O(N), with respect to the
number of unknowns. Clearly, O(N) is order optimal in the sense that this is also the
complexity of writing the results to file. In general, direct solvers, like for instance
LU, do not scale linearly in N . Here, we will use Krylov solvers like the Conjugate

1Simula Research Laboratory, Norway
2Department of Mathematics, University of Oslo, Oslo, Norway
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Gradient (CG) or the Minimal Residual (MinRes) methods. Both methods are known
to provide efficient computations when combined with proper preconditioning tech-
niques. Preconditioners based on multigrid and/or domain decomposition methods
have been shown to be order-optimal for a variety of problems, but the theory for
the EMI problem is currently limited. Efficient solvers for the EMI-problem are
discussed in the following.

We say that a solver for the transient EMI model (1.30) is order optimal if the solution
time grows linearly in Δt−1, where Δt is the time step. Considering the stationary
problem (5.1), which is to be solved at every step of the temporal loop, it is clear that
order optimality of the transient solver requires that the solver of the linear system
does not degenerate for small (or large) Δt, i.e. that it is robust with respect to the
time stepping.

In this chapter we discuss solution algorithms for the linear systems due to the finite
element discretization of (5.1) which are robust in h and well as Δt. Two types
of approaches will be considered. Monolithic approaches, where all the unknowns
are solved for at once, are the subject of Section 6.2. Section 6.3 then concerns a
domain decomposition approach where one iterates between the intra/extra-cellular
subproblems. The solvers will be compared in terms of robustness and cost, however,
only serial performance will be addressed. We remark that parallel scalable solvers
suitable for the mixed formulations of the EMI models (5.12) (5.14) are the balancing
domain decomposition methods, see e.g. (24; 25). For the elliptic single-dimensional
primal formulation (5.6), the FETI domain decomposition methods, e.g. (13; 18)
could be used. Moreover, to simplify the exposition the focus shall be on a single cell
model. We remark that all the algorithms presented further can be generalized in a
rather straightforward manner to models with multiple disconnected cells. However,
construction of robust monolithic solvers for multi-dimensional formulations for
collections of connected cells is out of the scope of this manuscript.

6.2 Monolithic Solvers

Let Ahxh = Lh be a linear system due to discretization of the continuous problem
Ax = L in W ′, where W ′ is a dual space to some Hilbert space W and A : W → W ′.
Note that in case of (5.1) the continuous operator A depends on material parameters
σi , σe, Cm as well as the time step size Δt. Here the focus is placed on the latter
dependence.

The monolithic solvers considered here are preconditioned Krylov methods where
the preconditioner B : W ′ → W shall be constructed such that the number of
iterations required for solving problems BhAhxh = BhLh is bounded in h and Δt. A
constructive framework for establishingB is operator preconditioning (19), where the
structure of the preconditioner reflects mapping properties of A as an isomorphism
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between suitably chosen Hilbert space and its dual space. In particular, if A : W →

W ′ is an isomorphism then a Riesz map with respect to the inner product of W is a
suitable preconditioner. As explained in (19), multilevel or domain decomposition
algorithms are equivalent to Riesz maps for standard elliptic problems. Furthermore,
these schemes also work in a fractional setting (1); a property which will be exploited
in this chapter. We shall illustrate the framework briefly below using the single-
dimensional formulations (5.6), (5.12) as an example.

In the following we follow the notation of Chapter 5. In particular, ‖·‖0,Ω denotes the
L2 norm of a scalar or vector field over Ω, while ‖·‖1,Ω, ‖·‖div,Ω are the H1(Ω) and
H(div,Ω) norms respectively. For a Hilbert space W other than L2, H1, H(div) the
norm is denoted as ‖·‖W while (·, ·)W denotes the inner product on W . Moreover, we
let (·, ·)Ω be the L2 inner product. If the domain is clear the subscript will be omitted.
By (·, ·) we shall also denote a duality pairing between a Hilbert space and its dual.
The dual of an operator A with respect to the L2 inner product is then denoted as A′.
Finally, let us introduce scaled, sum and intersection spaces, which will be required
for well-posedness of some of the formulations. If W,Q are Hilbert spaces and a an
arbitrary positive real number, the scaled space aW , the sum space W + Q and the
intersection space W ∩ Q are Hilbert spaces with norms ‖x‖aW = a‖ · ‖W ,

‖x‖W+Q = inf
w+q=x

w∈W ,q∈Q

√
‖w‖2

W + ‖q‖2
Q

and ‖x‖W∩Q =

√
‖x‖2

W + ‖x‖2
Q
.

6.2.1 Single-Dimensional Primal Solvers

In order to simplify the analysis let σi , σe and Cm be positive constants and let
us consider a slightly modified (cf. the underlined term) single-dimensional primal
formulation (5.6): Find ui ∈ Vi = H1(Ωi), ue ∈ Ve = H1

ΓDe
(Ωe) such that for all

ve ∈ Ve, vi ∈ Vi

(σe∇ue,∇ve) +
Cm

Δt (Teue,Teve) −
Cm

Δt (Tiui,Teve) =
Cm

Δt ( f , ve),

−Cm

Δt (Teue,Tivi) + (σi∇ui,∇vi) + (ui, vi) +
Cm

Δt (Tiui,Tivi) = −Cm

Δt ( f , vi).
(6.1)

Here, Te, Ti are the trace operators Tiui = ui |Γ and Teue = ue |Γ. Letting W = Ve ×Vi ,
u = (ue,ui) the problem (6.1) can be stated as Au = L in W ′ with the operator A
and functional L defined as

A =

(
−∇·(σe∇) +

Cm

Δt T ′
eTe −Cm

Δt T ′
eTi

−Cm

Δt T ′
i Te −∇·(σi∇) + I + Cm

Δt T ′
i Ti

)
and L(v) = Cm

Δt

(
( f , ve)
−( f , vi)

)
.

(6.2)
Note that the underlined lower order term in (6.1) corresponds to I in A.
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To precondition (6.1) using the operator preconditioning framework we proceed
to show that A : W → W ′ is an isomorphism. This statement follows from the
Lax-Milgram theorem, see e.g. (6, Ch 2.7). Let ‖·‖W be some norm of the space
W (we shall see shortly that different norms can be considered leading to different
preconditioners). Hence coercivity of A, i.e.

There exists α∗ > 0 such that α∗‖u‖2
W ≤ (Au,u), ∀u ∈ W (6.3)

and boundedness of A, i.e.

There exists α∗ > 0 such that (Au, v) ≤ α∗‖u‖W ‖v‖W , ∀u, v ∈ W (6.4)

need to be shown. While the details of the proof are beyond the scope of the current
text, we remark that using the space W = H1

ΓDe
(Ωe)×H1(Ωi), we obtained the bound

(Au,u) ≤ max
(
σe + 2Ce

Cm

Δt , σi,1,2Ci
Cm

Δt

)
‖u‖2

W (6.5)

by trace, Cauchy-Schwarz, and Young inequalities. Hence, the operator A is
bounded. Note, however, that the constant α∗ depends on Δt and, in particular,
it blows up for small time steps. Then, the lower bound is

(Au,u) = σe‖∇ue‖2
0 + σi ‖∇ui ‖2

0 + ‖ui ‖2
0 +

Cm

Δt ‖Teue − Tiui ‖2
0

= min (1, σi, σe) ‖u‖2
W

(6.6)

and the coercivity thus holds with constant α∗ = min (1, σi, σe) which is indepen-
dent of the time step. The condition number of the preconditioned system, using a
preconditioner deduced from W , is then α∗

α∗
and from this theoretical consideration

we may then expect the number of iterations to grow linearly as Δt decreases.

The exact preconditioner based on W is block diagonal opearator

B =

(
−∇·(σi∇) 0

0 −∇·(σe∇) +I

)−1
. (6.7)

Observe that the preconditioner is efficient in the sense that its evaluation mounts to
solving two smaller subproblems posed on Ωi and Ωe respectively. However, from
our analysis we expect the performance of B to deteriorate for small time steps.
Indeed, this behavior is confirmed by results1 in Table 6.1. Therein it can be seen

1 All the experiments in this chapter are conducted using the manufactured problem (5.17)
considered in the convergence study in Chapter 5. In particular, we use uniform meshes obtained
by dividing the unit square (Ωe ∪ Ωi ) first into n2

h
squares each of which is then subdivided to 2

isosceles triangles with diameter h. The finite element discretization is as described in Chapter 5.
We set σi = 1, σe = 2.2 and Cm = 1.

The discrete linear systems Ahxh = Lh are solved iteratively using the CG or MinRes methods.
Implementation of the methods is provided by (2). The solvers are always started from a random
initial vector. As a convergence criterion the relative preconditioned residual norm is required to
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that the iterations stabilize with h for Δt > 10−4 while for smaller time steps finer
meshes are needed to attain the bounds.

In an attempt to find a more robust preconditioner let us observe that estimates
(6.5), (6.6) show that u �→ (Au,u)1/2 defines a different norm on W . Let now
‖u‖W = (Au,u)1/2. Then (Au,u) = ‖u‖2

W and (Au, v) ≤ (Au,u)1/2(Av, v)1/2 so
that the conditions (6.3) and (6.4) hold with α∗ = 1, α∗ = 1. In another words,
a Riesz map preconditioner with respect to the inner product (u, v)W = (Au, v) is
independent of Δt. As the Riesz map in this case is in fact A−1 its exact evaluation
(by LU) is not feasible. However, for the purpose of preconditioning, it suffices to
replace the mapping by a spectrally equivalent operator. Then, provided that the
equivalence is robust in Δt the approximate operator will lead to iterations bounded
in time step and the discretization parameter. We remark that since the preconditioner
takes the entire A into account, including the off-diagonal terms cf. block diagonal
operator (6.7), we shall refer to it as monolithic.

Δt
nh Diagonal (6.7) Monolithic BoomerAMG(A)

23 24 25 26 27 28 23 24 25 26 27 28

108 8 5 5 5 5 5 8 8 8 8 8 9
106 7 7 7 7 7 7 8 8 8 8 8 9
104 7 7 7 7 7 7 8 8 8 8 8 9
102 6 6 6 6 6 6 7 8 8 8 8 9
1 11 11 11 11 10 10 8 8 8 9 9 9

10−2 26 30 33 32 33 32 8 8 9 9 10 10
10−4 39 70 90 114 139 155 28 26 19 14 11 10
10−6 42 79 134 181 234 300 56 81 101 104 87 62
10−8 42 78 130 179 244 327 81 140 226 320 359 378

Table 6.1: Primal single-dimensional formulation. Number of CG iterations using
(left) the diagonal operator (6.7) and (right) the Riesz map with respect to the A

induced norm. Neither preconditioner is robust for Δt � 1.

Since (5.6) leads to symmetric positive-definite matrices, cf. the coercivity condi-
tion (6.3), we shall here use algebraic multigrid to construct the approximation of
A−1. More precisely, the action of the operator is realized by single V-cycle of
BoomerAMG (23). In Table 6.1 it can be seen that this choice leads to h bounded
CG iterations for Δt > 10−8. However, there is a clear sensitivity of the bound to
Δt. Thus BoomerAMG approximations of A−1 are not Δt- robust. In fact, estimates
of the condition number for the preconditioned problems with nh = 28 are 1.2, 1.5,
2.0, 9.2 and 53 for Δt = 1,10−2,10−4,10−6 and 10−8 respectively.

be less than 10−12 in magnitude. Unless specified otherwise the preconditioners Bh are evaluated
exactly by LU. Finally, condition number estimates of the preconditioned linear systems are obtained
by using iterative Krylov-Schur solver from (10) applied to the generalized eigenvalue problem
Ahxh = λhB

−1
h
xh . The reported condition number is then max |λh |/min |λh |.

The source code used for the experiments can be found on https://github.com/MiroK/
emi-book-solvers and is arxived at (15).

https://github.com/MiroK/emi-book-solvers
https://github.com/MiroK/emi-book-solvers
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6.2.2 Single-Dimensional Mixed Solvers

We next consider preconditioners for the single-dimensional mixed formulation
(5.12): Find E ∈ S, u ∈ Q such that

(σ−1J,τ) + Δt
Cm

(TnJ,Tnτ) − (u,∇· τ) = −( f ,Tnτ), ∀τ ∈ S,

(q,∇· J) = 0, ∀q ∈ Q,

where S = HΓNe (div,Ω), Q = L2(Ω) and Tn is the normal trace operator Tnτ = τ ·ni .
Letting W = S×Q, x = (J,u) the single-dimensional mixed formulation is equivalent
to the problem Ax = L in W ′ with

A =

(
σ−1I + Δt

Cm
T ′
nTn −∇

∇· 0

)
and L(x) = −( f ,TnJ). (6.8)

Note that in (6.8) the membrane term (TnJ,Tnτ) is weighted by Δt/Cm, cf. (6.2).
Thus, unlike in the single-dimensional primal formulation, the term does not domi-
nate for small time steps.

In order to apply the operator preconditioning framework to (6.8) the operator A
needs to be shown to be an isomorphism. To this end we consider A as an abstract
operator over W = S × Q with the form

A =

(
A B′

B 0

)
where

A :S → V ′,

B :S → Q′,
(6.9)

and apply the Brezzi theory (7). This leads us to the potential preconditioners for the
multi-dimensional mixed problem

B1 =

(
σ−1I − ∇∇· 0

0 I

)−1
and B2 =

(
σ−1I − ∇∇·+ ΔtCm

T ′
nTn 0

0 I

)−1

, (6.10)

which are the Riesz mappings with respect to the inner products of the spaces

W1 = S × Q and W2 = S ∩

√
Δt
Cm

N × Q, (6.11)

where N =
{
v ∈ S; ‖v · n‖0,Γ < ∞

}
. Note that in W2 we enforce additional regularity

on the normal trace since Tn maps S to H−1/2(Γ), e.g. (9, Ch. 2). Moreover the traces
are considered in a weighted space.

A consequence of the mapping properties of the normal trace operator is the fact that
the term (TnJ,Tnτ) cannot be bounded using the H(div) norm and in turn the Brezzi
conditions are not satisfied on W1. We remark that if such a bound were possible the
boundedness constant would depend on Δt, cf. (6.5). As the Brezzi conditions do not
hold on W1 we expect preconditioner B1 to perform poorly. Indeed, Table 6.2 shows
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that the condition numbers of B1,hAh are not bounded in h. The condition numbers
for fixed h can be seen to grow with the time step. In Table 6.3 the ill-posedness of
the problem in W1 manifests as unstable iterations or failure of MinRes to converge.
We note that for small Δt the iterations appear bounded in h.

Δt
nh B1 B2

22 23 24 25 26 27 22 23 24 25 26 27

102 4223 7540 14766 29437 4785 9569 13.52 13.52 13.52 13.52 13.52 13.52
101 75.0 132 259 515 1028 2057 2.28 2.28 2.28 2.28 2.28 2.28
1 8.86 15 27 52 104 207 2.20 2.20 2.20 2.20 2.20 2.20

10−1 2.27 2.85 4.11 6.66 12 22 2.20 2.20 2.20 2.20 2.20 2.20
10−2 2.20 2.20 2.20 2.20 2.59 3.60 2.20 2.20 2.20 2.20 2.20 2.20

Table 6.2: Conditioning of single-dimensional mixed formulation. (Left) Posing the
problem in H(div) × L2 violates Brezzi conditions. (Right) Preconditioner based
on W2 in (6.11) is inf-sup stable with the inf-sup constant depending on Δt for
Δt/Cm > 1.

Posing (6.8) in W2 it can be shown that the Brezzi conditions hold with the constants
independent of the time step.

We shall not prove the validity of the Brezzi theory here. Instead, Table 6.2 offers nu-
merical evidence that the discrete condition is satisfied. Therein condition numbers of
the B2 preconditioned problems are reported and boundedness in h can be observed.
Moreover, it can be seen that the inf-sup constant depends on Δt, in particular, the
bound goes to 0 as Δt grows. However, on the subspace

{
(J,u) ∈ W2; (u,1)0,Ωi = 0

}
the inf-sup condition holds independent of Δt. The single run-away mode appears to
have no effect on the MinRes iterations, cf. Table 6.3, see also (20).

Δt
nh B1 B2

23 24 25 26 27 28 23 24 25 26 27 28

108 – – – – – – 10 10 10 10 10 10
106 – – – – – – 15 12 12 12 12 12
104 – – – – – – 15 15 15 16 16 16
102 156 – – – – – 15 15 15 15 16 16
101 26 36 57 86 129 209 14 14 14 14 14 14
1 35 50 72 107 155 234 16 16 16 16 16 16

10−1 16 19 23 32 44 60 16 17 17 18 18 18
10−2 18 19 21 27 34 45 19 19 19 19 20 20
10−4 19 19 20 20 20 20 19 19 20 20 20 21
10−6 19 19 20 20 21 21 19 19 20 20 21 21
10−8 19 19 20 20 21 21 19 19 20 20 21 21

Table 6.3: MinRes iterations with preconditioned single-dimensional mixed formula-
tion using preconditioners (6.10). Failure to converge within 500 iterations is denoted
by –. Convergence of B2 seems unaffected by the single Δt unbounded inf-sup mode.

Considering order optimality of the B2 based solver we recall that the iterations in
Table 6.3 were run with the exact preconditioner. In particular, the S ∩ N Riesz map
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was computed by LU. In practical computations such realization is not feasible and
scalable approximation is needed. For standard H(div) inner product, i.e. the one
used in B1, the Riesz map can be efficiently realized by multigrid algorithms (14).
However, in the authors’ experience this approach does not work equally well with
the S ∩ N inner product.

We have seen in Sections 6.2.1 and 6.2.2 that construction of order optimal monolithic
solvers for the single-dimensional EMI formulations presents a challenge. In primal
formulationΔt robustness of the monolithic approach was problematic. For the mixed
formulation, order optimality required a specialized solver for the Riesz mapping
over the subspace of H(div). These two problems are addressed by solvers for multi-
dimensional formulations.

6.2.3 Multi-Dimensional Solvers

In this section we consider the construction of preconditioners for the operators

Ap =
���
−∇·(σe∇) 0 −T ′

e

0 −∇·(σi∇) T ′
i

−Te Ti − ΔtCm
I

��� and Am =
���
σ−1I −∇ T ′

n

∇· 0 0
Tn 0 −Cm

Δt I

��� , (6.12)

which induce respectively the multi-dimensional primal weak formulation (5.8) and
the multi-dimensional mixed weak formulation (5.14). In order to discuss well-
posedness let

Wp = H1
ΓDe

(Ωe) × H1(Ωi) × H−1/2(Γ) ∩
√
Δt
Cm

L2(Γ) (6.13)

and
Wm = HΓNe (div,Ω) × L2(Ω) × H1/2(Γ) ∩

√
Cm

Δt L2(Γ). (6.14)

We remark that the fractional space H−1/2, in which the membrane current density
Im in (5.6) is sought, and H1/2, which is the space of the transmembrane potential v
in (5.14), are dictated by the mapping properties of the trace operators Te, Ti and Tn.
For example, as Ti : H1(Ωi) → H1/2(Γ), Im ∈ (H1/2)′ so that the term (Tiui, Im) is
bounded. Note also that only the spaces involving Γ are now Δt-dependent, cf. e.g.
W2 in (6.11).

Due to the Δt-weighted (penalty) terms in Ap and Am the operators cannot be
established as isomorphisms on Wp and Wm by straightforward application of the
Brezzi theory. Instead, Ap for Δt/Cm ≤ 1 and Am for Δt/Cm ≥ 1 can be analyzed
using the framework for saddle point systems with penalty, see (4, Ch. 3.4). A crucial
assumption then is that the system without the penalty term satisfies the Brezzi
conditions. While here the well-posedness shall be demonstrated only by numerical
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experiments, let us point out an important difference between the operators. To this
end let c > 0 be a constant and consider a piecewise constant potential u such that
ui = c, ue = 0 and set J = 0. Then for any τ ∈ H(div) by divergence theorem

(∇· τ,u)Ω + (Tnτ, v) = (∇· τ,u)Ωi + (Tnτ, v) = c(Tnτ,1) + (Tnτ, v)

and in turn, if v = −c we have that

���
σ−1I −∇ T ′

n

∇· 0 0
Tn 0 0

��� ���
J
u,
v

��� = ���
c(Tnτ,1) + (Tnτ, v)

0
0

��� = ���
0
0
0

��� .
Thus the operator Am without the penalty term is singular with a one dimensional
kernel spanned by vector (0,u,−c) and the Brezzi conditions do not hold. We shall
see implications of this property on the convergence of the iterative solvers shortly.
We remark that Ap without the penalty term is non-singular.

Assuming that Ap : Wp → W ′
p is an isomorphism we consider as a preconditioner

for the single-dimensional primal formulation the operator

Bp =
���
−∇·(σe∇) 0 0

0 −∇·(σi∇) + I 0
0 0 (−Δ + I)−1/2 + Δt

Cm
I

���
−1

. (6.15)

Observe that the preconditioner consists of (approximate) solvers for three decoupled
subproblems posed onΩe,Ωi and Γ. Moreover, the problems on extra and intracellu-
lar domains are standard elliptic operators for which efficient (black-box) multigrid
techniques exist, e.g. (23). The problem on the interface is then less standard as it
concerns a fractional Helmholtz operator. However, efficient multilevel solvers have
been established e.g. in (5; 1). We remark that if the discrete spaces for Im (or v)
contain only a few thousands of degrees of freedom an eigenvalue realization of the
fractional preconditioner is feasible cf. (16). As the interfacial spaces here are small,
cf. Table (5.1), we use further the spectral approach.

Δt
nh 22 23 24 25 26 27

102 2752 2752 2752 2752 2752 2752
101 29.61 29.62 29.62 29.62 29.62 29.62
1 6.86 6.88 6.89 6.89 6.89 6.89

10−1 8.84 8.88 8.89 8.89 8.89 8.89
10−2 8.89 8.93 8.94 8.94 8.94 8.94

Δt
nh 24 25 26 27 28 29

108 10 10 10 10 10 10
106 10 10 10 10 10 10
104 15 15 15 15 15 15
102 18 18 18 17 17 17
1 27 27 27 26 26 26

10−2 43 47 46 44 44 43
10−4 49 60 62 60 57 56
10−6 51 60 62 61 59 59
10−8 49 60 62 61 59 59

Table 6.4: Fractional preconditioner (6.15) for multi-dimensional primal formulation.
(Left) Condition numbers are bounded in h. Growth in Δt for Δt > 1 is caused by a
single mode. (Right) MinRes iterations counts are bounded in h and time step.
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Using (6.15) Table 6.4 reports the condition numbers of the preconditioned problems
Bp,hAp,h . It can be seen that the results are bounded in h, thus providing a numerical
evidence for Ap being an isomorphism on Wp in (6.13). Moreover, it can be seen
that the conditioning of the problem deteriorates with Δt large. However, in this
case it is only a single mode ui = 0, ue = const, Im = 0 which causes the blowup.
Considering the MinRes iteration counts, the presence of this mode seems to have
almost no impact on boundedness in h or Δt.

We finally come back to the multi-dimensional mixed formulation. Based on the
space Wm in (6.14) let a preconditioner for the multi-dimensional mixed formulation
be

Bm =
���
σ−1I − ∇∇· 0 0

0 I 0
0 0 (−Δ + I)1/2 + Cm

Δt I

���
−1

. (6.16)

We remark that the preconditioner uses a standard H(div) inner product, cf. B2 in
(6.10), which can be efficiently realized by multigrid methods, e.g. (14). Note also
that the fractionality of the Laplacian is 1/2, cf.−1/2 of the multi-dimensional primal
preconditioner (6.15). In addition to the previously mentioned multilevel methods,
problems (−Δu + u)sx = b for 0 < s < 1 can be efficiently solved by a number of
approaches, see (3) and references therein.

Using (6.16) Table 6.5 reports the condition numbers of the preconditioned multi-
dimensional mixed formulation. The conditioning can be seen to be stable in h,
while in agreement with the limit singularity property, there is a growth with Δt.
Given that only a single mode is responsible for the lack of Δt-boundedness and
recalling results of Table 6.4 or 6.3 we might expect that also here the MinRes solver
will not be affected. However, Table 6.6 shows that this is not the case. In fact,
as Δt grows the iterations become unstable in h. Figure 6.1 then shows a typical
convergence behavior of the solver. We see that the relative preconditioned residual
norm is quickly reduced to about 10−9 in approximately 30 iterations (regardless of
the mesh resolution). Afterwards the convergence stalls. We conclude that for robust
preconditioning the nullspace of Am must be addressed.

Δt
nh BmAm B0

mA0
m

22 23 24 25 26 27 22 23 24 25 26 27

102 17566 17627 17733 17810 17857 17882 4.40 4.42 4.51 4.58 4.63 4.67
101 177 178 179 180 180 180 4.39 4.41 4.50 4.57 4.62 4.66
1 3.31 3.73 3.96 4.09 4.18 4.27 3.31 3.73 3.96 4.09 4.18 4.27

10−1 1.08 1.16 1.30 1.56 1.96 2.48 2.61 2.61 2.61 2.61 2.64 3.14
10−2 1.03 1.03 1.03 1.03 1.03 1.03 2.62 2.62 2.62 2.62 2.62 2.62

Table 6.5: Conditioning of the multi-dimensional mixed formulation. (Left) Problem
considered on Wm in (6.14) yields operator Am with a singular limit as Δt →

∞. (Right) Formulation including an additional constraint on the transmembrane
potential

∫
Γ
v dS = 0 yields h and Δt robust condition numbers.
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Motivated by the observation that Am becomes singular in the limit Δt = ∞ with
a mode J = 0, ue = 0, ui = c, v = −c in the kernel, let W0

e = We × R and
let us define a new solution operator for the multi-dimensional mixed formulation
A0

m : W0
e → (W0

e )
′ and its preconditioner B0

m : (W0
e )

′ → W0
e as

A0
m =

�����
σ−1I −∇ T ′

n 0
∇· 0 0 0
Tn 0 −Cm

Δt I I
0 0 I 0

����� ,B
0
m =

�����
σ−1I − ∇∇· 0 0 0

0 I 0 0
0 0 (−Δ + I)1/2 + Cm

Δt I 0
0 0 0 μI

�����
−1

,

(6.17)
where μ = min (1,Cm/Δt). Note that A0

m includes an additional unknown, a sin-
gle scalar, which enforces (1, v)Γ = 0. The new constraint thus eliminates constant
transmembrane potential and in turn the new operator is non-singular2. Considering
results reported in Tables 6.5, 6.6 it can be seen that the new preconditioned formu-
lation leads to condition numbers and iteration counts, which are bounded in both
the mesh size and the time step. Note that the extra unknown has only a small impact
on the number of iterations compared to the Bm preconditioner.

Δt
nh BmAm B0

mA0
m

23 24 25 26 27 28 23 24 25 26 27 28

108 457 – 241 – – – 28 32 34 36 37 37
106 54 174 82 301 258 227 28 32 34 36 37 37
104 37 41 45 45 47 47 28 32 34 36 37 37
102 32 37 39 39 41 41 28 32 34 36 37 37
1 28 30 32 34 34 35 30 33 35 35 37 38

10−2 19 22 25 29 33 35 20 23 29 33 35 39
10−4 10 10 10 11 11 12 12 12 12 13 13 14
10−6 7 7 9 9 9 9 9 9 10 10 10 10
10−8 7 7 7 7 7 7 9 9 9 9 9 9

Table 6.6: MinRes iterations for the multi-dimensional mixed formulation. No con-
vergence in 500 iterations is indicated by –. (Left) For large Δt the iterations are
unstable since operator Am becomes singular in the limit as Δt → ∞. (Right) Con-
straining transmembrane potential the operator A0

m does not have the limit singular
property.

2 A physical motivation for the constraint can be found in considering the EMI interface equation
Cm

∂v
∂t = Im + Iion on Γ. By integrating the left-hand side we obtain Cm

d
dt (1, v)Γ. Recall that

Im = σi∇ui · ni on Γ and −∇ · (σi∇ui ) = 0 in Ωi . Then, setting Iion = 0 and integrating the
right-hand side we have

(1, Im + Iion)Γ = (1, Im)Γ = (1, −∇ · (σi∇ui ))Ωi = 0.

Thus we obtain a conservation relation Cm
d
dt (1, v)Γ = 0.
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Fig. 6.1: (Left) Convergence of the MinRes method for (6.12)-based multi-
dimensional mixed formulation with Δt = 10−8 and problem from Table 6.6. For
all mesh resolutions the norm is reduced in cca. 30 iterations. Afterwards the re-
duction stalls. (Right) Convergence of the Robin/Neumann domain decomposition
algorithm. For small Δt the algorithm becomes sensitive to mesh size and can even
diverge.

6.3 Domain Decomposition Solvers

Having seen that monolithic solvers for the EMI equations can be sensitive to spatial
and temporal resolution we next briefly discuss robustness of the non-overlapping
domain decomposition (DD) approach. The focus here shall only be on the single-
dimensional primal formulation and the Robin/Neumann DD algorithm in the form
presented in (12, Chapter 4). In particular, our implementation shall not include any
coarse space, cf. (21), or a preconditioner, see e.g. (8) for interpretation of DD as
Steklov-Poincaré operators in fractional Sobolev spaces.

For the sake of self-containedness we review the variational formulation of the
Robin/Neumann algorithm. Let Ve = H1

ΓDe
(Ωe), Vi = H1(Ωi) and v0, u0

e be the
given initial transmembrane and extracellular potentials. A single iteration of the
DD algorithm then produces a new approximation v1 in three steps. (i) We find
ui ∈ Vi such that

(σi∇ui,∇vi) +
Cm

Δt (Tiui,Tivi) = −Cm

Δt ( f , vi) +
Cm

Δt (Teu0
e,Tivi), ∀vi ∈ Vi .

(ii) Using the computed intracellular potential the new extracellular potential ue ∈ Ve

is found such that

(σe∇ue,∇ve) = (−σi∇ui · ni,Teve), ∀ve ∈ Ve .

(iii) Finally v1 = Tiui−Teue. The iterations continue by assigning v0 = v1 and u0
e = ue

until convergence. which in the following is determined as ‖vk−vk−1‖0/‖v
k−1‖0 < ε ,

where ε = 10−5. We remark that the tolerance was chosen such that in the refinement
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studies, where convergence of DD was observed, the approximation error in the
H1 × H1 norm decreased with the expected order as O(h) (we recall that P1 − P1
elements were used).

To test robustness of the DD solver we consider the setup of the single cell experiment
used with the monolithic approaches in Section 6.2. Here the Robin problem (i) and
the Neumann problem (ii) shall be solved by LU to eliminate effects of inexact
subdomain solvers. We remark that due to the conforming triangulation, see Figure
5.1, and P1 discretization of both Vi and Ve the discrete transmembrane potential
is computed simply by interpolation. Figure 6.1 plots evolution of the potential
difference ‖vk

h
− vk−1

h
‖0/‖v

k−1
h

‖0 with DD iterations for several mesh resolutions and
time step values Δt ≤ 1. It can be seen that for Δt = 1 the algorithm converges
in about 5 iterations irrespective of the spatial discretization. For smaller timesteps
convergence is delayed on finer meshes and for Δt = 10−4 the iterations diverge.

Considering the results in Figure 6.1 we conclude that in the form presented here
domain decomposition is not a robust algorithm for the single-dimensional primal
formulation of the EMI equations. However, due to its simplicity (relative to e.g.
the multi-dimensional formulations) and speed (see Section 6.4), DD might be the
method of choice in practical cardiac modeling. It is therefore natural to ask whether
the divergence conditions are likely to arise in real applications. To address this
question we perform a scaling analysis based on the membrane dynamical condition
Cm

∂v
∂t ∼ σi∇ui · ni . Letting L be a characteristic length scale and ∇′ = L∇ the

equation becomes (LCm/σi)
∂v
∂t = ∇′ui · ni and the pre-factor T = LCm/σi can

be seen to have the unit of seconds. Following (22) let us insert Cm = 1μF/cm2,
σi = 10mS/cm, L = 100μm, where the length scale is determined by the size of
a typical cell used by the authors’. We remark that this a sensible choice given the
setup of our experiments. As a result T = 10−6s and thus Δt = 1 in the experiments
reported here corresponds to a time step of 10−6 seconds. Note that this is the finest
time step considered in (11). Furthermore, therein the spatial resolution is 2μm
while here with nh = 28 and L = 100μm the mesh size is approximately 0.4μm. In
summary, the conditions for divergence of the DD algorithm discussed here can be
encountered not far away from the parameter regime in (11).

6.4 Solver Comparison

To complete our discussion of EMI solvers we finally address the speed of the differ-
ent algorithms. Recall that until this point results for all solvers, but the monolithic
single-dimensional primal one, were obtained using LU in the construction. Such an
implementation, however, is not scalable. Here we show that the proposed algorithms
are order optimal if LU is replaced by suitable multilevel methods.
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Referring to the legend of Figure 6.2 we shall compare 8 different methods. Single-
dimensional primal formulation (sp) shall be solved either with the BoomerAMG(A)-
preconditioner (mono), or diagonal preconditioner (6.7). In the latter case all the
blocks of the diagonal preconditioner are approximated by single algebraic multigrid
V-cycle. The single-dimensional mixed (sm) formulations shall use the B1 precondi-
tioner (6.10) with the leading block approximated by H(div) multigrid HypreAMS
of (14). We recall that the solver in general is not independent of the discretization,
cf. Table 6.3, however, HypreAMS does not work well for the robust preconditioner
B2. Finally, the multi-dimensional primal (mp) and multi-dimensional mixed (mm)
formulations shall use (6.15) and (6.16) with the Ωi , Ωe and Ω subproblems of
the preconditioners approximated by multigrid (BoomerAMG in case of (6.15) and
HypreAMS for (6.16)). The fractional operators will be computed exactly. In ad-
dition, two implementations of Robin/Neumann domain decomposition algorithm
are considered with the subproblems solved either exactly by LU or by 4 V-cycles
of BoomerAMG. Finally, a reference solution time is provided by timings of exact
solution of the single-dimensional formulation (sp-LU).

We compare the algorithms using the single cell setup of the previous experiments
with Δt = 10−3 where this value was chosen with the intention to not favor any of
the methods. Using tolerance ε = 10−3 for DD and 10−12 for CG/MinRes, Figure
6.2 reports solution times3 of the algorithms for 23 ≤ nh ≤ 210. It can be seen that
with the exception of LU-based solvers all the methods are indeed order optimal.
The monolithic approach (sp-mono) and the multi-dimensional primal (mp) solver
are then the fastest solvers while solvers for the mixed formulations (sm-B1, mm)
are the slowest. For nh = 210 the solution times of the solvers were cca. 26s, 140s,
640s, 570s respectively. We remark that the mixed formulations have approximately
5 times more unknowns compared to the single-dimensional ones. Thus the cost
per degree of freedom is comparable between the two approaches. Considering the
scalable DD implementation (DD-AMG) the timing for nh = 210 is cca. 160s. The
method thus has a similar cost to multi-dimensional primal formulation.

3 The timings include setup times of the preconditioners for monolithic methods. For DD the
subproblems were assembled and their solvers constructed only once.
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Fig. 6.2: Solution times (including preconditioner setup) of the solvers for the EMI
system (5.1) in terms of number of unknowns N or mesh size h. Single cell model
with Δt = 10−3 is used. All but multi-dimensional primal solver with LU (sp-LU)
and LU-based domain decomposition solver (DD-LU) are order optimal. The former
scales as N3/2. Legend is shared between the figures.
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Chapter 7

Improving Neural Simulations with the EMI
Model

Alessio Paolo Buccino1,2, Miroslav Kuchta3, Jakob Schreiner3, and Kent-André
Mardal3,4

Abstract Mathematical modeling of neurons is an essential tool to investigate neu-
ronal activity alongside with experimental approaches. However, the conventional
modeling framework to simulate neuronal dynamics and extracellular potentials
makes several assumptions that might need to be revisited for some applications.
In this chapter we apply the EMI model to investigate the ephaptic effect and the
effect of the extracellular probes on the measured potential. Finally, we introduce
reduced EMI models, which provide a more computationally efficient framework for
simulating neurons with complex morphologies.

7.1 Introduction

In recent years, huge efforts and resources have been spent in computational mod-
eling of neuronal activity. For example, the Blue Brain Project (18; 16)(https:
//bbp.epfl.ch/nmc-portal/welcome) has constructed and distributed several
hundreds of biophysically detailed cell models (multi-compartment models) from rat
sensory cortex. A similar effort is being conducted by the Allen Institute of Brain
Science, whose cell-type database (8) (https://celltypes.brain-map.org/)
includes hundreds of cell models both from mice and even from humans. As the
experimental data used become more comprehensive and available, these models are
expected to become elaborated and more accurate in reproducing neuronal dynam-
ics. However, the modeling framework which is commonly used to simulate these

1Bio Engineering Laboratory, Department of Biosystems and Science Engineering, ETH Zurich,
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2Center for Integrative Neuroplasticity (CINPLA), Faculty of Mathematics and Natural Sciences,
University of Oslo, Oslo, Norway
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multi-compartment models makes several key assumptions that might be violated
for certain applications.

The most widely used approach to simulate neuronal dynamics of neurons is the
cable equation. The solution of this equation enables one to compute transmembrane
currents for each of the model compartment. In order to simulate extracellular
potentials, we can use volume conduction theory and sum the individual contributions
of the currents to the electric potential at any point in space (6). Whereas the use of
this modeling framework has been the gold standard to simulate neuronal activity
for decades (19; 6), there are some important assumptions that need to be discussed:

• A neuron is represented as a discrete set of nodes. Multi-compartment models
split the neuronal morphologies into a discrete set of segments. Therefore, neurons
are not represented as a continuum and this might affect the accuracy of the
simulations. However, this assumption can be alleviated by using very small
segments that can accurately replicate the neuronal complex geometry.

• Extracellular potentials are assumed to be constant. When solving the cable
equation, the extracellular potentials outside the membrane are assumed to be
constant. This assumption is harder to relax, as it prevents to include so-called
ephaptic coupling in the simulation (9; 1). Ephaptic coupling refers to the effect
of extracellular potentials on the neuronal dynamics. The use of the EMI model
allows one to include these phenomena in the simulation, both to simulate the
effect other neurons’ activity or the same neuron’s activity (self-ephaptic) has on
the membrane potential.

• The extracellular space is assumed to be homogeneous. The most common ap-
proach to compute extracellular potentials arising from neuronal currents is to use
volume conduction theory with the point-source or line-source approximations
(6), which assume that the extracellular medium is homogeneous (in addition to
linear, isotropic, and infinite). However, this assumption is clearly violated when
using extracellular devices to record neuronal activity, which introduce a clear
inhomogeneity in the extracellular space. Extracellular probes can be explicitly
modeled in the extracellular space with the EMI model and they show to greatly
contribute to the recorded signals (3).

In applications where any of the assumptions listed above may be violated the EMI
model (10, (1.30)) provides a suitable modeling framework. In particular, the ge-
ometry of the neuron (and the extracellular space) is accurately represented. Here
we will show how the model is convenient to study both the ephaptic coupling
of neurons (Section 7.3) and the effects of extracellular probes on the recorded
electric potentials (Section 7.4). However, the detailed representation of the geome-
tries makes EMI much more computationally intense than the standard modeling
framework (21; 3). This limits the complexity of the simulation mainly to simple
neuronal morphologies, such as ball-and-stick neurons (3). In order to target more
realistic morphologies Section 7.5 discusses the reduced EMI model where the
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(three-dimensional) intracellular space is lumped to a curve that is the centerline of
the neuron.

7.2 EMI Simulations of Neurons using the neuronmi Python
Package

Before discussing the applications let us first briefly introduce a Python package
called neuronmi1, which has been used for the simulation results reported further.
neuronmi provides a high-level application programming interface (API) to enable
users to easily set up and run EMI simulations of neurons.

The workflow of the neuronmi package consists of two parts. First, a mesh needs to
be generated. This is done with the generate_mesh function, that uses gmsh (7) as
backend. With this function the user can choose different kinds of neurons to place
in the mesh and optionally place a probe device in the extracellular space. Mesh
resolution and sizes of the bounding box can also be adjusted, as well as parameters
of the neurons and the probe. In the following code example, we create a mesh with
a ball–and–stick neuron (bas) and a microwire probe. By default, the center of the
soma is at (0,0,0) μm, the dendrite extends in the positive z direction and the axon in
the negative z direction.

import neuronmi
mesh_folder = neuronmi.generate_mesh(neurons='bas',

probe='microwire')

Once a mesh is generated, the EMI simulation can be invoked with thesimulate_emi
function, which implements the finite element method for the multi-dimensional
mixed formulation (14, (5.14)) following the discretization proposed in (20). Through
a set of parameters, the user can stimulate the neuron with a synaptic input, a step
current, or a pulse current. Alternatively, the probe contacts can be used to stimulate
the neuron extracellularly. By default, the neuron receives a synaptic input on its
dendrite. The user can probe electric potentials u at any point in the mesh, while
transmembrane currents i and membrane potentials v are available at facets on the
neuron surface. The full solutions are also saved as pvd or xdmf files. The simulation
is run as follows:

u, i, v = neuronmi.simulate_emi(mesh_folder,
u_probe_locations=points_v,
i_probe_locations=points_i,
v_probe_locations=points_v)

1 https://github.com/MiroK/nEuronMI

https://github.com/MiroK/nEuronMI
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Several parameters can be set to customize the mesh generation and the simulation.
For further details, we refer to the package documentation (https://neuronmi.
readthedocs.io/en/latest/).

7.3 Investigating the Ephaptic Effect between Neurons

Neurons are surrounded by the electrically conductive extracellular space. Groups
of neurons create fluctuations in the local extracellular electrical field. These fluctu-
ations in turn influence the intracellular electrical field through the ephaptic effect.
Ephaptic coupling cannot influence neurons at rest, however, it can affect the spike
timings of a neuron receiving suprathreshold stimulus.

We will illustrate how the EMI model can be used to compute the ephaptic cou-
pling between two ball–and–stick neurons embedded in an extracellular space. The
simulation is based on the neuronmi package detailed above. One of the neurons is
stimulated with a synaptic input which elicits an action potential. The intracellular
potential in the other neuron is sampled. We ran several experiments increasing the
distance between the neurons.

Fig. 7.1: Two ball–and–stick neurons embedded in an extracellular space (left) and
the increase in the intracellular potential due to ephaptic coupling (right).

The intracellular potential is sampled in the centre of the ephaptically stimulated
neuron (right) to measure the strength of the synaptic coupling. The deflection is
4.7 μV when the neurons are 5 μm apart and decreases to 3.2 μV when they are 40
μm apart with the soma of the stimulated neuron adjacent to the axon of the other
neuron.

https://neuronmi.readthedocs.io/en/latest/
https://neuronmi.readthedocs.io/en/latest/
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While in these simulations we only showed the effect of a single spike on an adja-
cent neuron, the occurrence of synchronous activity in populations of neurons can
cause larger degrees of ephaptic coupling. The neuronmi package enables users
to instantiate several neurons in the mesh and to define their inputs (which can
be synchronous), hence allowing in principle to investigate ephaptic effects at the
population level.

7.4 Investigating the Effect of Measuring Devices on
Extracellular Potentials

While the presence of recording devices is usually ignored in the computation of
extracellular potentials, recent findings suggest that newly developed silicon-based
devices, or Multi-Electrode Arrays (MEAs), have a strong effect on the measured
signals (3).

Using neuronmi, which is built on the EMI model, one can easily incorporate the
neural devices in the mesh and investigate their effects on the recorded signals. To
demonstrate this, we built meshes with a simple ball-and-stick neuron and different
types of neural probes in its vicinity:

Microwire: the first type of probe represents a microwire. For this kind of probes
we used a cylindrical insulated model with 30 μm diameter. The extracellular
potential, after the simulations, was measured at the center of tip of the cylinder.
The microwire probe is shown in Figure 7.2A alongside with the simplified
neuron.

Neuronexus (MEA): the second type of probe model represents a commercially
available silicon MEA (A1x32-Poly3-5mm-25s-177-CM32 probe from Neu-
ronexus Technologies), which has 32 electrodes in three columns (the central
column has 12 recording sites and first and third columns have 10) with hexago-
nal arrangement, a y-pitch of 18 μm, and a z-pitch of 22 μm. The electrode radius
is 7.5 μm. This probe has a thickness of 15 μm and a maximum width of 114 μm,
and it is shown in Figure 7.2B.

Neuropixels (MEA): the third type of probe model represents the Neuropixels
silicon MEA (11). The original probe has more than 900 electrodes over a
1 cm shank. The probbe is 70 μm wide and 20 μm thick. In our mesh, shown
in Figure 7.2C we used 24 12x12 μm recording sites arranged in the chessboard
configuration with an inter-electrode-distance of 25 μm (11).

We ran EMI simulations using the meshes with and without the probe in the extra-
cellular space (Figure 7.2A-B-C show the meshes with the probe), and we compared
the obtained extracellular action potentials - EAPs (Figure 7.2D-E-F, blue without
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probe - orange with probe). The probes were placed in the extracellular space at a
distance of 30 μm from the center of the neuron.

A B C

D E F
x

y
z

no probe

with probe

Fig. 7.2: Effect of different probes on the recorded potentials. (A-B-C) Meshes
including a neuron and a microwire (A), a neuron and a Neuronexus probe, a neuron
and a Neuropixels probe (C). (D-E-F) Extracellular action potentials computed at the
electrodes’ location without (blue) and with the probe (orange) in the extracellular
space. Large MEAs seem to strongly affect the recorded signals (E-F).

Microwire probes do not affect the recorded potentials, with an EAP peak of
−21.63 μV without the probe and of −20.53 μV with the probe (Figure 7.2D). How-
ever, when recording with silicon MEAs, the extracellular potentials are strongly
affected. For the Neuronexus probe (Figure 7.2D), the EAP peak without the probe
is −30.47 μV, while with the probe it is −56.09 μV (peak ratio=1.84). For the Neu-
ropixels probe (Figure 7.2E), the EAP peak without the probe is −32.73 μV, while
with the probe it is −63.63 μV (peak ratio=1.94). The probe effect is probably due to
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the insulating properties of the silicon probes, which act as electrical walls for the
generated currents. For further details and analysis we refer to (3).

7.5 Reduced EMI Model

In the examples considered thus far the problem geometry was simple allowing for
computations on a serial desktop computer. In order to apply the EMI framework to
realistic neurons two challenges need to be addressed: representation of neurons in
the form of a finite element mesh and efficient solvers for large linear systems due
to the EMI equations. However, even with the order optimal algorithms discussed in
(12, Chapter 6) and efficient mesh generators for neuron surface geometries, see e.g.
(17), the computational cost of the 3D-3D EMI models remains large (compared
to the conventional approaches). As a computationally feasible alternative we shall
next discuss the 3D-1D models.

Topological order reduction is a modeling technique used e.g. in reservoir simula-
tions (4) or studies of tissue perfusion (5), which exploits geometrical properties
of the system in order to derive its reduced model. Viewing a dendrite (branch) as
generalized cylinder with length L and radius R we observe that R � L and that
in a typical domain of interest the neuron’s volume is negligible compared to its
surroundings. This property motivates a reduced representation of the neuron in
terms of a (one dimensional) curve, the centerline, along with a function R, which
provides radius of the crossection at each point of the line. An illustration of the
concept can be seen in Figure 7.3. Thus, referring to the notation of Chapter 5, Ωi is
reduced to a line while Ωe newly occupies the entire domain, i.e. Ω = Ωe. In turn,
the reduced EMI model presents a coupling between three dimensional extracellular
space and the one-dimensional intracellular space. We remark that the membrane is
one-dimensional as well.

In order to apply order reduction to the EMI model we consider the single-
dimensional primal formulation (5.6). Note that therein, the coupling on the mem-
brane Γ requires that both ue and ui are restricted from Ωe and Ωi respectively by
the dedicated trace operator. In a reduced model Ωi = Γ, Γ = Λ and thus ui needs
not to be restricted. On the other hand, restriction of ue to curve Λ can no longer
be realized as a trace since such an operation is not well-defined for H1 functions,
see e.g. (5). To define a value of the extracellular potential on Λ let us introduce an
averaging operator

Πu(x) = ū(x) = |CR(x)|−1
∫
CR (x)

u(y) dS, x ∈ Γ,u ∈ H1(Ω).

Here CR(x) = {y ∈ Γ; (y − x) ⊥ n(x)} with n(x) being the unit tangent vector of Λ
at x, cf. Figure 7.3. Thus, Πue is computed by sampling ue on the original (two-
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Γ

�n(x)

Λ

Ωe

x
ΩΩΩΩΩΩΩΩΩΩiiii CR(x)

R(x)

Fig. 7.3: Reduced representation of neurons. (Left) Neuron Ωi is collapsed to cen-
terline Λ. Extracellular potential defined on Ω is evaluated at Λ by averaging ue
on the cylindrical surface Γ. (Right) Surface mesh and centerline representation of
RatS1-6-39 neuron generated by AnaMorph (17). The dendritic part satisfies R � L
property, while the reduced model assumptions do not hold on the soma.

dimensional) neuron surface. However, in practical computations we assume that Γ
has a circular cross section so that |CR(x)| = 2πR(x).

Using Π the reduced single-scale primal formulation of the EMI model reads: Find
ue ∈ H1

ΓDe
(Ω), ui ∈ H1(Λ) such that for all ve ∈ H1

ΓDe
(Ω), vi ∈ H1(Λ)∫

Ω

σe∇ue · ∇ve dx +
∫
Λ

2πRCm

Δt ūe v̄e ds−2πR
∫
Λ

Cm

Δt v̄eui ds

=

∫
Λ

2πR f v̄e ds,

−

∫
Λ

2πRCm

Δt vi ūe ds +
∫
Λ

πR2σi∇ui · ∇vi ds+
∫
Λ

2πRCm

Δt uivi ds

= −

∫
Λ

2πR f vi ds.

(7.1)

Here, the factors 2πR arise in reducing the integration domain from Γ to Λ and
similarly for πR2 andΩi . Thus, defining the reduced specific membrane capacitance
Cm = 2πRCm and the reduced intracellular conductivity σi = πR2σi the operator
form of (7.1) can be seen to be (6.2) with the new restriction operators Ti = I and
Te = Π. Note also that in (7.1) the function f , which characterizes the membrane
dynamics, is defined on Γ.

For the proof of well-posedness of (7.1) as well as a detailed discussion of modeling
assumptions, which allow for model reduction from (5.6) the reader is referred to
(4). Moreover the reduced multi-dimensional primal formulation (5.8) is analyzed
in (13).
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To assess the reduced model (7.1) the surface mesh of a rat neocortex neuron RatS1-6-
39 from the NeuroMorpho database (2) has been generated usingAnaMorph (17). The
neuron has been embedded into a (box-shaped) domain Ω such that |Ω|/|Ωi | ∼ 100
with the resulting geometry meshed by gmsh. The full 3D-3D single-dimensional
primal formation has been used to compute the response to a 1 ms synaptic stimulus
of 50 nA. Referring to Figure 7.4 the lower branch close to node number 4 has
been stimulated. Using the centerline representation of the neuron the response has
also been computed with (7.1). We remark that P1-P1 elements were used with both
formulations and that spaces were setup on conforming meshes. In particular, with
(7.1) the discretization of Λ consisted of the edges of the cells of Ω. However, such
a geometrically conforming discretization is not required in the reduced model. In
fact, the meshes of Λ and Ω can be independent, see (4). The reduced model then
resulted in 4587 unknowns, which is to be contrasted with 18248 unknowns due to
(5.6). In turn, the simulation time using the reduced model is about 110 seconds
while the full EMI model required cca. 340 seconds to complete.

The two models are compared in Figure 7.4 which shows values of the computed
intracellular potentials at different points along the centerline. In general, there is
qualitative agreement between the model predictions. However, the reduced model
can be seen to tend to underestimate both the minima and the maxima, while the
excitation occurs faster compared to the full model. More precisely, the peak po-
tentials due to the full model at points 2-5 were {27.64,26.09,22.87,12.64}mV
with occurrences after {2.08,2.11,2.15,2.57}ms. For the reduced model the max-
ima {22.31,21.65,19.39,16.02}mV were recorded at {1.56,1.58,1.51,1.86}ms. In
addition to the intracellular potentials, the extracellular potentials were compared by
sampling 6.52μm away from the soma center (node 1 in Figure 7.4). We remark that
the soma radius was 5.71μm. It can be seen that with −2.99μV < ue < 1.07μV for
(7.1) and −1.99μV < ue < 0.67μV for (5.6) the reduced model overestimates the
extrema. As with the extracellular potentials there is a temporal shift in the response;
the negative peak is observed at 1.26ms, respectively 1.87ms.

While results of the comparison in Figure 7.4 shall be viewed as preliminary we argue
that they illustrate sufficiently the potential of reduced EMI models. In particular,
the reduced model is able to capture qualitatively the properties of the full EMI
simulations. However, clear differences, especially in the temporal shifts of the
peaks, have been observed. In the future we aim to investigate if suitable scaling of
the stimulus and/or the parameters of the membrane ODEs can reduce the prediction
error. In addition, the modeling error of the reduced model shall be evaluated similar
to (15). More specifically, the soma, being approximated as a sphere in the 3D-3D
model, cannot be represented as a slender cylinder (unlike the dendrites and axons).
Thus the model reduction assumptions are not met on the soma. While localized in
space, the effect of this error on temporal predictions should be analyzed. In turn,
improved reduced models, which take into account the spherical nature of the soma,
e.g. in construction of averaging operators, might be needed.
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Fig. 7.4: Comparison of full 3D-3D and reduced 3D-1D EMI models. RatS1-6-39
neuron is stimulated close to node 4 in the dendritic part (plotted in blue). Intracellular
potentials (nodes 2-5) are measured on the centerline with node 2 being the soma (in
red, dashed line indicates the radius) center. Extracellular potentials are compared in
node 1 next to soma. Axis of each response plot is anchored at the center next to the
measurement point. The full and reduced EMI models provide qualitatively similar
predictions.

7.6 Conclusions

In this chapter, we have showcased some applications in which the EMI model
can be a viable alternative to standard modeling frameworks in order to investigate
aspects of neuronal activity and recorded signals. We introduced an open-source
software package named neuronmi to easily assemble meshes including simplified
neurons and probes in the extracellular space. Finally, we performed preliminary
investigations into accuracy and solution cost of a reduced 3D-1D EMI model
suitable for simulating complex neuronal morphologies.
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