Skip to main content

Method of Estimation in Biological Sample

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Saponins are commonly found in adequate amounts in the root tissue of plant, however recent studies have reported that saponins can be also found in considerable amounts in plant aerial tissues such as leaf and stem. Thus, quantification of total saponin contents in different plant species and organs are very important to understand their biological functions in plant defense. There are several methods have been developed for measuring saponin contents in medicinal as well as crop plant species. The classical colorimetric and biological methods are remain popular methods for saponin quantification. However, biological and colorimetric determinations of saponin contents doesn’t provide accurate information and sometimes might resulted in a misleading information, due the large structural variation of individual saponins not only within different species, but even also among same species. Thus, more sensitive methods have been recently introduced to measure and quantify saponin contents in different plant extracts. High performance (HP)-thin-layer chromatography (TLC) on normal (HPTLC) or reversed-phase (two-dimension, 2D-HPTLC) provides more precise and reliable saponin qualitative information, especially when these HPTLC methods are combined with a computer flying-spot scanner with dual-wavelength. After screening the saponin profile on the TLC, a 2D-analytical software can applied for the quantification of saponin level in plant extracts. However, for reliable measurements a proper saponin standards must be run with the saponin extracts for comparative analysis. Standardization and identification of the peaks by HPLC chromatograms has been also developed for saponin quantification, which relay on the comparisons of the retention times with those observed for authentic standards. On the other hand, there are limited applications of gas chromatography (GC) for quantification and determination of saponin compounds, due to the high molecular weights of the saponin compounds. In this chapter we will discussed some of these methods and the amount of saponin detected in different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Hirata S, Ito SI, Yamauchi N, Shigyo M (2014) Compartmentation and localization of bioactive metabolites in different organs of Allium roylei. Biosci Biotechnol Biochem 78:1112–1122

    Article  PubMed  CAS  Google Scholar 

  • Abdelrahman M et al (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum—A. cepa monosomic addition lines. PLoS One 12:e0181784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berhow MA, Cantrell CL, Duval SM, Dobbins TA, Mavnes J, Vaughn SF (2002) Analysis and quantitative determination of group B saponins in processed soybean product. Phytochem Anal 13:343–348

    Article  PubMed  CAS  Google Scholar 

  • Burnouf-Radosevich M, Delfel NE (1986) High-performance liquid chromatography of triterpene saponins. J Chromatogr 368:433–438

    Article  CAS  Google Scholar 

  • Bushway RJ, Barden ES, Bushway AW, Bushway AA (1979) High-performance liquid chromatographic separation of potato glycoalkaloids. J Chromatogr A 178:533–541

    Article  CAS  Google Scholar 

  • Chaicharoenpong C, Petsom A (2009) Quantitative thin layer chromatographic analysis of the saponins in tea seed meal. Phytochem Anal 20:253–255

    Article  PubMed  CAS  Google Scholar 

  • Coran SA, Mulas S (2012) Validated determination of primulasaponins in primula root by a high-performance-thin-layer-chromatography densitometric approach. J Pharm Biomed Anal 70:647–645

    Article  PubMed  CAS  Google Scholar 

  • Coulson CB (1958) Saponins. I.-Triterpenoid saponins from lucerne and other species. J Sci Food Agric 9:281–288

    Article  CAS  Google Scholar 

  • Edewor TI, Owa SO, Ologan AO, Akinfemi F (2016) Quantitative determination of the saponin content and GC-MS study of the medicinal plant Cassytha fiiformis (linn.) leaves. J Coastal Life Med 4:154–156

    Article  CAS  Google Scholar 

  • Gnoatto SCB, Schenkel EP, Bassani VL (2005) HPLC method to assay total saponins in Ilex paraguariensis aqueous extract. J Braz Chem Soc 16:1678–4790

    Article  Google Scholar 

  • Gorski PM, Jaworski A, Shannon S, Robinson RW (1985) Rapid TLC and KPLC test for cucurbitacins. Genet Coop Rep 8:69–70

    Google Scholar 

  • Gorski PM, Jaworski A, Shannon S, Robinson RW (1986) Rapid TLC and HPLC quantification of cucurbitacin C in cucumber cotyledons. HortScience 21:1034–1036

    CAS  Google Scholar 

  • Gu L, Tao G, Gu W, Prior RL (2002) Determination of soyasaponins in soy with LC-MS following structural unification by partial alkaline degradation. J Agric Food Chem 50:6951–6959

    Article  PubMed  CAS  Google Scholar 

  • Gurfinkel DM, Rao AV (2002) Determination of saponins in legumes by direct densitometry. J Agric Food Chem 50:426–430

    Article  PubMed  CAS  Google Scholar 

  • James J, Dubery I (2011) Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) urban by densitometric TLC. J Planar Chromatogr Modern TLC 24:82–87

    Article  CAS  Google Scholar 

  • Kasai R, Yamaguchi H, Tanaka O (1987) High-performance liquid chromatography of glycosides on a new type of hydroxyapatite column. J Chromatogr A 407:205–210

    Article  CAS  Google Scholar 

  • Kawahara Y, Hoshino T, Morimoto H, Shinizu T, Narukawa Y, Fuchino H, Kawahara N, Kiuchi F (2016) LC-MS-based quantification method for Achyranthes root saponins. J Nat Med 70:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kesselmeier J, Strack D (1981) High performance liquid chromatography analysis of steroidal saponins from Avena sativa L. Zeitschrift fur Naturforschung Sect C J Biosci 36:1072–1074

    Article  Google Scholar 

  • Khakimov B, Motawia MS, Bak S, Engelsen SB (2013) The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Anal Bioanal Chem 405:9193–9205

    Article  PubMed  CAS  Google Scholar 

  • Khalil AH, El-Adawy TA (1994) Isolation, identification and toxicity of saponin from different legumes. Food Chem 50:197–120

    Article  CAS  Google Scholar 

  • Kim Y, Wampler DJ (2009) Determination of saponin and various chemical compounds in Camellia sinensis and genus Ilex. Sensus Tech Note (SEN-TN-0027)

    Google Scholar 

  • Kimata H, Sumida N, Matsufuji N, Morita T, Ito K, Yata N, Tanaka O (1985) Interaction of saponin of bupleuri radix with ginseng saponin: solubilization of saikosaponin-a with chikusetsusaponin V (= ginsenoside-Ro). Chem Pharm Bull (Tokyo) 33:2849–2853

    Article  CAS  Google Scholar 

  • Kite GC, Porter EA, Simmonds MS (2007) Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J. Chromatogr A 1148:177–183

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Wang YX, Sun P, Liao DO (2016) Determination of saponin content in Hang Maidong and Chuan Maidong via HPLC-ELSD analysis. J Anal Meth Chem 2016:7214607

    Google Scholar 

  • Lin J, Wang C (2006) An analytical method for soy saponins by HPLC/ELSD. Food Sci 69:C456–C462

    Article  Google Scholar 

  • Liu R, Cai Z, Xu B (2017) Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC–DAD–ESI–MS analysis. Chem Central J 11:93

    Article  CAS  Google Scholar 

  • Liu Y-M, Zhou A, Yu N-J, Han R-C, Zhang W, Zhu Y-J, Cao Y, Li X-Y, Peng D-Y (2018) Simultaneous determination of five saponins in Bupleuri Radix by HPLC-DAD dual wavelength method. Zhongguo Zhong Yao Za Zhi 43:363–368

    PubMed  Google Scholar 

  • Mackie AM, Singh HT, Owen JM (1977) Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp Biochem Physiol Part B Comp Biochem 56:9–14

    Article  CAS  Google Scholar 

  • Mostafa A et al (2013) Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6:274–280

    Article  CAS  Google Scholar 

  • Muir AD, Ballantyne KD, Hall TW (2000) LC-MS and LC-MS/MS analysis of saponins and sapogenins—comparison of ionization techniques and their usefulness in compound identification. In: Oleszek W, Marston A (eds) Saponins in food, feedstuffs and medicinal plants. Proceedings of the Phytochemical Society of Europe, vol 45. Springer, Dordrecht

    Google Scholar 

  • Naidu MM, Shyamala BN, Naik JP, Sulochanamma G, Srinivas P (2011) Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT Food Sci Technol 44:451–456

    Article  CAS  Google Scholar 

  • Nascimento YM, Abreu LS, Lima RL, Costa VCO, de Melo JIM, Braz-Filho R, Silva MS, Tavares JF (2019) Rapid characterization of triterpene saponins from Zornia brasiliensis by HPLC-ESI-MS/MS. Molecules 24:2519

    Article  PubMed Central  CAS  Google Scholar 

  • Negi JS, Singh P, Pant GJN, Rawat MSM (2011) High-performance liquid chromatography analysis of plant saponins: An update 2005-2010. Pharmacogn Rev 5:155–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowacka J, Oleszek W (1997) High performance liquid chromatography of zanhic acid glycoside in alfalfa (Medicago sativa). Phytochem Analysis 3:227–230

    Article  Google Scholar 

  • Nyakudya E, Jeong JH, Lee NK, Jeong Y-S (2014) Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 19:59–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oleszek WA (2002) Chromatographic determination of plant saponins. J Chromatogr A 967:147–162

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Luo F, Wang S, Li L, Sun Y, Pan W (2008) Determination of sarsasapogenin in Rhizoma Anemarrhenae with precolumn derivatization by HPLC. J Shenyng Pharm Univ 25:372–375

    CAS  Google Scholar 

  • Podolak I, Hubicka U, Zuromska-Witek B, Janeczko Z, Krzek J (2013) Quantification of saponins in different plant parts of Lysimachia L. species by validated HPTLC-densitometric method. J Planar Chromatogr Modern TLC 26(3)

    Google Scholar 

  • Saito K, Horie M, Hoshino Y, Nose N, Nakazawa H (1990) High-performance liquid chromatographic determination of glycoalkaloids in potato products. J Chromatogr 508:141–147

    Article  CAS  Google Scholar 

  • Shawky E, Sallam SM (2017) Simultaneous determination of soyasaponins and isoflavones in soy (Glycine max L.) products by HPTLC-densitometry-multiple detection. J Chrom Sci 55:1059–1065

    Article  CAS  Google Scholar 

  • Slacanin I, Marston A, Hostettmann K (1988) High-performance liquid chromatographic determination of molluscicidal saponins from Phytolacca dodecandra (Phytolaccaceae). J Chromatogr 448:265–274

    Google Scholar 

  • Soni N, Singh VK, Singh DK (2020) HPLC characterization of molluscicidal component of Tamarindus indica and its mode of action on nervous tissue of Lymnaea acuminate. J. Ayurveda Integr Med 11:131–139

    Article  Google Scholar 

  • Tagiev SA, Ismailov AI (1986) Quantitative determination of gyposoide in roots of Gypsophilla bicolor Grossh. Rastit Resur 22:262–265

    CAS  Google Scholar 

  • Tal DM, Patrick PH, Elliott W (1984) Bile acids. Lxx. preparative separation of kryptogenin from companion sapogenins by high performance liquid chromatography. J Liquid Chromatogr 7:2591–2603

    Article  CAS  Google Scholar 

  • Tie-xin T, Hong W (2008) An image analysis system for thin-layer chromatography quantification and its validation. J Chromatogr Sci 46:560–564

    Article  PubMed  Google Scholar 

  • Uematsu Y, Hirata K, Saito K (2000) Spectrophotometric determination of saponin in Yucca extract used as food additive. J AOAC Int 83(6)

    Google Scholar 

  • Van Atta GR, Guggolz J, Thompson CR (1961) Plant analysis, determination of saponins in alfalfa. J Agric Food Chem 9:77–79

    Article  Google Scholar 

  • Wagner H, Bladt S, Zgainski EM (1986) Plant Drug Analysis-a thin layer chromatography atlas. Springer, Berlin

    Google Scholar 

  • Wei F, Ma L-Y, Cheng X-L, Lin R-C, Jin W-T, Khan IA, Lu JQ (2005) Preparative HPLC for Purification of Four Isomeric Bioactive Saponins from the Seeds of Aesculus chinensis. J Liquid Chromatogr Related Technol 28(5)

    Google Scholar 

  • Xu C-J, Lin J-T (1985) Comparison of silica-, C18-, and NH2-Hplc columns for the separation of neutral steroid saponins from dioscorea plants. J Liquid Chromatogr 8:361–368

    Article  CAS  Google Scholar 

  • Zhang Q (1995) Determination of oleanolic acid in roots of Achyranthes bidentata by TLC-scan. Chin Pharm J 30:592–594

    CAS  Google Scholar 

  • Zhang GD, Zhou ZH, Liu HY (1983) Analysis of ginseng. III. Isolation and determination of ginseng saponins. Acta Pharmaceutica Sinica 18:607–611

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M., Jogaiah, S. (2020). Method of Estimation in Biological Sample. In: Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-61149-1_7

Download citation

Publish with us

Policies and ethics