Skip to main content

Activity Recognition for Shepherding

  • Chapter
  • First Online:
Shepherding UxVs for Human-Swarm Teaming

Part of the book series: Unmanned System Technologies ((UST))

Abstract

Activity recognition for shepherding is a way for an artificial intelligence system to learn and understand shepherding behaviours. The problem we describe is one of recognising behaviours within a shepherding environment, where a cognitive agent (the shepherd) influences agents within the system (sheep) through a shepherding actuator (sheepdog), to achieve an intent. Shepherding is pervasive in everyday life with AI agents, collections of animals, and humans all partaking in different forms. Activity recognition in this context is the generation of a transformation from sensor stream data to the perceived behaviour of an agent under observation from the perspective of an external observer. We present a method of classifying behaviour through the use of spatial data and codify action, behaviour, and intent states through a multi-level classification mapping process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983). https://doi.org/10.1145/182.358434

    Article  Google Scholar 

  2. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive Collective Systems: Herding Black Sheep. Fundamentals of Collective Adaptive Systems (2013)

    Google Scholar 

  3. Aroor, A., Epstein, S.L., Korpan, R.: Online learning for crowd-sensitive path planning. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (2018)

    Google Scholar 

  4. Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015). https://doi.org/10.1109/TKDE.2014.2356476

    Article  Google Scholar 

  5. Azkune, G.: Learning for dynamic and personalised knowledge-based activity models. Ph.D. Thesis, Universidad de Deusto (2015)

    Google Scholar 

  6. Bakar, U.A.B.U.A., Ghayvat, H., Hasanm, S.F., Mukhopadhyay, S.C.: Activity and Anomaly Detection in Smart Home: A Survey, pp. 191–220. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-21671-3_9

  7. Baumann, M., Büning, H.K.: Learning shepherding behavior. Ph.D. Thesis, University of Paderborn (2016)

    Google Scholar 

  8. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010). https://doi.org/10.1016/j.pmcj.2009.06.002

    Article  Google Scholar 

  9. Bikakis, A., Antoniou, G., Hasapis, P.: Strategies for contextual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst. 27(1), 45–84 (2011). https://doi.org/10.1007/s10115-010-0293-0

    Article  Google Scholar 

  10. Breiman, L.: Random forests. Mach. Learn.45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  11. Bruno, B., Mastrogiovanni, F., Saffiotti, A., Sgorbissa, A.: Using fuzzy logic to enhance classification of human motion primitives. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 596–605. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  12. Chen, L., Khalil, I.: Activity Recognition: Approaches, Practices and Trends, pp. 1–31. Atlantis Press, Paris (2011). https://doi.org/10.2991/978-94-91216-05-3_1

  13. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012). https://doi.org/10.1109/TSMCC.2012.2198883

  14. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012). https://doi.org/10.1109/TKDE.2011.51

    Article  Google Scholar 

  15. Chen, L., Nugent, C., Okeyo, G.: An ontology-based hybrid approach to activity modeling for smart homes. IEEE Trans. Human-Machine Syst. 44(1), 92–105 (2014). https://doi.org/10.1109/THMS.2013.2293714

    Article  Google Scholar 

  16. Cicirelli, F., Fortino, G., Giordano, A., Guerrieri, A., Spezzano, G., Vinci, A.: On the design of smart homes: a framework for activity recognition in home environment. J. Medical Syst. 40(9), 200 (2016). https://doi.org/10.1007/s10916-016-0549-7

    Article  Google Scholar 

  17. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: A smart home in a box. Computer 46(7), 62–69 (2013). https://doi.org/10.1109/MC.2012.328

    Article  Google Scholar 

  18. Cowling, P., Gmeinwieser, C.: Ai for herding sheep. In: Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE’10, pp. 2–7. AAAI Press, California (2010). http://dl.acm.org/citation.cfm?id=3014666.3014668

  19. Craig I. Schlenoff Sebti Foufou, S.B.B.: An approach to ontology-based intention recognition using state representations. In: 4th International Conference on Knowledge Engineering and Ontology Development (KEOD 2012) (2014)

    Google Scholar 

  20. Crispim-Junior, C.F., Buso, V., Avgerinakis, K., Meditskos, G., Briassouli, A., Benois-Pineau, J., Kompatsiaris, I.Y., Bremond, F.: Semantic event fusion of different visual modality concepts for activity recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1598–1611 (2016). https://doi.org/10.1109/TPAMI.2016.2537323

    Article  Google Scholar 

  21. de Carvalho, A.C.P.L.F., Freitas, A.A.: A Tutorial on Multi-label Classification Techniques, pp. 177–195. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01536-6_8

  22. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Reasoning Web. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-85658-0_1

  23. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st edn. Addison-Wesley Longman, Boston (1999)

    Google Scholar 

  24. Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biomedicine 14(2), 274–283 (2010). https://doi.org/10.1109/TITB.2009.2037317

    Article  Google Scholar 

  25. Guo, K., Li, Y., Lu, Y.: An alternative-service recommending algorithm based on semantic similarity. China Commun. 14(8), 124–136 (2017). https://doi.org/10.1109/CC.2017.8014353

    Article  Google Scholar 

  26. Hamilton, W.D.: Geometry for the selfish herd. J. Theoret. Biol. 31(2), 295–311 (1971)

    Article  Google Scholar 

  27. Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4543–4551 (2015). https://doi.org/10.1109/ICCV.2015.516

  28. He, X.: Swarm robotics: The future of medicine? (2015). https://medtechboston.medstro.com/blog/2015/10/06/swarm-robotics-what-you-need-to-know-about-the-future-of-medicine/

  29. Helaoui, R., Niepert, M., Stuckenschmidt, H.: Recognizing interleaved and concurrent activities using qualitative and quantitative temporal relationships. Pervasive Mob. Comput. 7(6), 660–670 (2011). https://doi.org/10.1016/j.pmcj.2011.08.004

    Article  Google Scholar 

  30. Helaoui, R., Riboni, D., Stuckenschmidt, H.: A probabilistic ontological framework for the recognition of multilevel human activities. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13, pp. 345–354. ACM, New York (2013). https://doi.org/10.1145/2493432.2493501

  31. Ikizler, N., Forsyth, D.: Searching video for complex activities with finite state models. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383168

  32. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Proceedings of the 35th International Conference on Machine Learning, PMLR 80, 2137–2146, (2018)

    Google Scholar 

  33. Incel, O., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013). https://doi.org/10.1007/s12668-013-0088-3

    Article  Google Scholar 

  34. Iqbal, M., Pao, H.K.: Activity recognition from minimal distinguishing subsequence mining. AIP Confer. Proc. 1867(1), 020,046 (2017). https://doi.org/10.1063/1.4994449. https://aip.scitation.org/doi/abs/10.1063/1.4994449

  35. Iwamoto, S., Ohmura, R.: Towards concurrent task verification in context-aware applications. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC’15 Adjunct, pp. 1473–1477. ACM, New York (2015). https://doi.org/10.1145/2800835.2801618

  36. Kishore, S., Bhattacharjee, S., Swetapadma, A.: A hybrid method for activity monitoring using principal component analysis and back-propagation neural network. In: 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 885–889 (2017). https://doi.org/10.1109/SmartTechCon.2017.8358499

  37. Kleiminger, W., Mattern, F., Santini, S.: Predicting household occupancy for smart heating control: a comparative performance analysis of state-of-the-art approaches. Energy Build. 85, 493–505 (2014). https://doi.org/https://doi.org/10.1016/j.enbuild.2014.09.046. http://www.sciencedirect.com/science/article/pii/S037877881400783X

  38. Kuankid, S., Rattanawong, T., Aurasopon, A.: Classification of the cattle’s behaviors by using accelerometer data with simple behavioral technique. In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, pp. 1–4 (2014)

    Google Scholar 

  39. Kumar, R.C., Bharadwaj, S.S., Sumukha, B.N., George, K.: Human activity recognition in cognitive environments using sequential ELM. In: 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1–6 (2016). https://doi.org/10.1109/CCIP.2016.7802880

  40. Kunze, K.: Real-life activity recognition – focus on recognizing reading activities. In: Iwamura, M., Shafait, F. (eds.) Camera-Based Document Analysis and Recognition, pp. 179–185. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  41. Lasecki, W.S., Marcus, A., Rzeszotarski, J.M., Bigham, J.P.: Using microtask continuity to improve crowdsourcing. Technical Report (2014)

    Google Scholar 

  42. Lee, W., Kim, D.: Autonomous shepherding behaviors of multiple target steering robots. Sensors 17(12), 2729 (2017)

    Article  Google Scholar 

  43. Lettmann, T., Baumann, M., Eberling, M., Kemmerich, T.: Modeling Agents and Agent Systems, pp. 157–181. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-24016-4_9

  44. Li, F., Dustdar, S.: Incorporating unsupervised learning in activity recognition. In: Proceedings of the 4th AAAI Conference on Activity Context Representation: Techniques and Languages, AAAIWS’11-04, pp. 38–41. AAAI Press, Cambridge (2011). http://dl.acm.org/citation.cfm?id=2908613.2908620

  45. Li, M., Hu, Z., Liang, J., Li, S.: Shepherding behaviors with single shepherd in crowd management. In: Xiao, T., Zhang, L., Ma, S. (eds.) System Simulation and Scientific Computing, pp. 415–423. Springer, Berlin (2012)

    Chapter  Google Scholar 

  46. Liao, L., Fox, D., Kautz, H.: Hierarchical conditional random fields for GPS-based activity recognition. In: Proceedings of the International Symposium of Robotis Research (ISRR 2005). Springer, Berlin (2005)

    Google Scholar 

  47. Licitra, R.A., Hutcheson, Z.D., Doucette, E.A., Dixon, W.E.: Single agent herding of n-agents: a switched systems approach. IFAC-PapersOnLine 50(1), 14374–14379 (2017). 20th IFAC World Congress. https://doi.org/10.1016/j.ifacol.2017.08.2020. http://www.sciencedirect.com/science/article/pii/S2405896317326587

  48. Lien, J.M., Pratt, E.: Interactive planning for shepherd motion. In: AAAI Spring Symposium: Agents that Learn from Human Teachers (2009)

    Google Scholar 

  49. Lien, J.M., Bayazit, O.B., Sowell, R.T., Rodriguez, S., Amato, N.M.: Shepherding behaviors. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 4159–4164. Citeseer (2004)

    Google Scholar 

  50. Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity. Neurocomputing 181(C), 108–115 (2016). https://doi.org/10.1016/j.neucom.2015.08.096

    Article  Google Scholar 

  51. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233 (2004). https://doi.org/10.1017/S0269888905000263

    Article  Google Scholar 

  52. Luz, G., Barros, K., Arajo, F.V., Barbosa da Silva, G., Augusto Ferreira da Silva, P., Condori, R., Brasil, L.: Nanorobotics in drug delivery systems for treatment of cancer: a review. J. Materials Sci. Eng. A 6 (2016). https://doi.org/10.17265/2161-6213/2016.5-6.005

  53. McVicar, K.E.: C3: The challenge of change. IEEE Trans. Aerosp. Electron. Syst. AES-20(4), 401–413 (1984). https://doi.org/10.1109/TAES.1984.4502061

    Article  Google Scholar 

  54. Mould, N., Regens, J.L., III, C.J.J., Edger, D.N.: Video surveillance and counterterrorism: the application of suspicious activity recognition in visual surveillance systems to counterterrorism. J. Polic. Intell. Count. Terror. 9(2), 151–175 (2014). https://doi.org/10.1080/18335330.2014.940819.

  55. Nadimi, E.S., Jørgensen, R.N., Blanes-Vidal, V., Christensen, S.: Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Comput. Electron. Agric. 82, 44–54 (2012). https://doi.org/10.1016/j.compag.2011.12.008

    Article  Google Scholar 

  56. Okeyo, G., Chen, L., Wang, H., Sterritt, R.: Ontology-enabled activity learning and model evolution in smart homes. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds.) Ubiquitous Intelligence and Computing, pp. 67–82. Springer, Berlin (2010)

    Chapter  Google Scholar 

  57. Okeyo, G., Chen, L., Wang, H., Sterritt, R.: Ontology-Based Learning Framework for Activity Assistance in an Adaptive Smart Home, pp. 237–263. Atlantis Press, Paris (2011). https://doi.org/10.2991/978-94-91216-05-3_11

  58. Okeyo, G., Chen, L., Wang, H., Sterritt, R.: A hybrid ontological and temporal approach for composite activity modelling. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1763–1770 (2012). https://doi.org/10.1109/TrustCom.2012.34

  59. Okeyo, G.O., Chen, L., Wang, H.: An agent-mediated ontology-based approach for composite activity recognition in smart homes. J. UCS 19, 2577–2597 (2013)

    Google Scholar 

  60. Okeyo, G., Chen, L., Wang, H., Sterritt, R.: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive Mob. Comput. 10, 155–172 (2014). https://doi.org/10.1016/j.pmcj.2012.11.004

    Article  Google Scholar 

  61. Paranjape, A.A., Chung, S.J., Kim, K., Shim, D.H.: Robotic herding of a flock of birds using an unmanned aerial vehicle. IEEE Trans. Rob. 34(4), 901–915 (2018)

    Article  Google Scholar 

  62. Parker, L.: Multiple Mobile Robot Systems, pp. 921–941. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-30301-5_41

  63. Quero, J., Orr, C., Zang, S., Nugent, C., Salguero, A., Espinilla, M.: Real-time recognition of interleaved activities based on ensemble classifier of long short-term memory with fuzzy temporal windows. Proceedings 2(19), 1225 (2018). https://doi.org/10.3390/proceedings2191225

    Article  Google Scholar 

  64. Ranasinghe, S., Machot, F.A., Mayr, H.C.: A review on applications of activity recognition systems with regard to performance and evaluation. Int. J. Distrib. Sens. Netw. 12(8), 1550147716665520 (2016). https://doi.org/10.1177/1550147716665520

    Article  Google Scholar 

  65. Rashidi, P., Cook, D.J.: COM: A method for mining and monitoring human activity patterns in home-based health monitoring systems. ACM Trans. Intell. Syst. Technol. 4(4), 64:1–64:20 (2013). https://doi.org/10.1145/2508037.2508045

  66. Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011). https://doi.org/10.1109/TKDE.2010.148

    Article  Google Scholar 

  67. Riboni, D., Bettini, C.: Context-aware activity recognition through a combination of ontological and statistical reasoning. In: Zhang, D., Portmann, M., Tan, A.H., Indulska, J. (eds.) Ubiquitous Intelligence and Computing, pp. 39–53. Springer, Berlin (2009)

    Chapter  Google Scholar 

  68. Riboni, D., Pareschi, L., Radaelli, L., Bettini, C.: Is ontology-based activity recognition really effective? In: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 427–431 (2011). https://doi.org/10.1109/PERCOMW.2011.5766927

  69. Roggen, D., Tröster, G., Lukowicz, P., Ferscha, A., del R. Millán, J., Chavarriaga, R.: Opportunistic human activity and context recognition. Computer 46(2), 36–45 (2013). https://doi.org/10.1109/MC.2012.393

  70. Sadri, F.: Logic-based approaches to intention recognition. In: Handbook of Research on Ambient Intelligence and Smart Environments: Trends and Perspectives. Citseer (2009)

    Google Scholar 

  71. Saguna, S., Zaslavsky, A., Chakraborty, D.: Complex activity recognition using context-driven activity theory and activity signatures. ACM Trans. Comput.-Hum. Interact. 20(6), 32:1–32:34 (2013). https://doi.org/10.1145/2490832

  72. Salah, A., Oudeyer, P., c li, C.M., del Solar, J.R.: Guest editorial behavior understanding and developmental robotics. IEEE Trans. Auton. Ment. Dev. 6(2), 77–79 (2014). https://doi.org/10.1109/TAMD.2014.2328731

  73. Sato, K., Fujinami, K.: Active learning-based classifier personalization: A case of on-body device localization. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–2 (2017). https://doi.org/10.1109/GCCE.2017.8229317

  74. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8(4), 10–17 (2001). https://doi.org/10.1109/98.943998

    Article  Google Scholar 

  75. Singh, H., Campbell, B., Elsayed, S., Perry, A., Hunjet, R., Abbass, H.: Modulation of force vectors for effective shepherding of a swarm: A bi-objective approach. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2941–2948. IEEE, Piscataway (2019). https://doi.org/10.1109/CEC.2019.8790228

  76. Steinhauer, H.J., Chua, S.L., Guesgen, H.W., Marsland, S.R.: Utilising temporal information in behaviour recognition. In: AAAI Spring Symposium: It’s All in the Timing (2010)

    Google Scholar 

  77. Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J.T., King, A.J.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interf. 11(100) (2014). https://browzine.com/articles/52614503

  78. Sun, Y., Rossi, L., Luan, H., Shen, C.C.: Modeling and analyzing large swarms with covert leaders. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 169–178 (2013). https://doi.org/10.1109/SASO.2013.32

  79. Tinbergen, N.: The Study of Instinct. Clarendon Press, Oxford (1951)

    MATH  Google Scholar 

  80. Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity recognition. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, pp. 235:1–235:8. ACM, New York (2007). https://doi.org/10.1145/1329125.1329409

  81. Wang, X.R., Miller, J.M., Lizier, J.T., Prokopenko, M., Rossi, L.F.: Measuring information storage and transfer in swarms. In: European Conference on Artificial Life, Paris (2011)

    Google Scholar 

  82. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  83. Weisstein, E.W.: Law of cosines. MathWorld–A Wolfram Web Resource (2019). http://mathworld.wolfram.com/LawofCosines.html

  84. Williams, H.J., Holton, M.D., Shepard, E.L.C., Largey, N., Norman, B., Ryan, P.G., Duriez, O., Scantlebury, M., Quintana, F., Magowan, E.A., Marks, N.J., Alagaili, A.N., Bennett, N.C., Wilson, R.P.: Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017)

    Article  Google Scholar 

  85. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, New York (2009). https://books.google.com.au/books?id=X3ZQ7yeDn2IC

    Google Scholar 

  86. Ye, J., Stevenson, G.: Semantics-driven multi-user concurrent activity recognition. In: Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.H. (eds.) Ambient Intelligence, pp. 204–219. Springer International Publishing, Cham (2013)

    Chapter  Google Scholar 

  87. Ye, J., Stevenson, G., Dobson, S.: A top-level ontology for smart environments. Pervasive Mob. Comput. 7(3), 359–378 (2011). Knowledge-Driven Activity Recognition in Intelligent Environments. https://doi.org/10.1016/j.pmcj.2011.02.002. http://www.sciencedirect.com/science/article/pii/S1574119211000277.

  88. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36 – 66 (2012). https://doi.org/10.1016/j.pmcj.2011.01.004. http://www.sciencedirect.com/science/article/pii/S1574119211000253

  89. Ye, J., Dasiopoulou, S., Stevenson, G., Meditskos, G., Kontopoulos, E., Kompatsiaris, I., Dobson, S.: Semantic web technologies in pervasive computing. Pervasive Mob. Comput. 23(C), 1–25 (2015). https://doi.org/10.1016/j.pmcj.2014.12.009

    Article  Google Scholar 

  90. Ye, J., Fang, L., Dobson, S.: Discovery and recognition of unknown activities. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16, pp. 783–792. ACM, New York (2016). https://doi.org/10.1145/2968219.2968288

  91. Yordanova, K., Krüger, F., Kirste, T.: Context aware approach for activity recognition based on precondition-effect rules. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 602–607 (2012). https://doi.org/10.1109/PerComW.2012.6197586

  92. Zheng, V.W., Hu, D.H., Yang, Q.: Cross-domain activity recognition. In: Proceedings of the 11th International Conference on Ubiquitous Computing, UbiComp ’09, pp. 61–70. ACM, New York (2009). https://doi.org/10.1145/1620545.1620554

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Hepworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hepworth, A.J. (2021). Activity Recognition for Shepherding. In: Abbass, H.A., Hunjet, R.A. (eds) Shepherding UxVs for Human-Swarm Teaming. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-60898-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60898-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60897-2

  • Online ISBN: 978-3-030-60898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics