Skip to main content

Ontology-Enabled Activity Learning and Model Evolution in Smart Homes

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6406))

Included in the following conference series:

Abstract

Activity modelling plays a critical role in activity recognition and assistance in smart home based assisted living. Ontology-based activity modelling is able to leverage domain knowledge and heuristics to create Activities of Daily Living (ADL) models with rich semantics. However, they suffer from incompleteness, inflexibility, and lack of adaptation. In this paper, we propose a novel approach for learning and evolving activity models. The approach uses predefined ”seed” ADL ontologies to identify activities from sensor activation streams. We develop algorithms that analyze logs of activity data to discover new activities as well as the conditions for evolving the seed ADL ontologies. We illustrate our approach through a scenario that shows how ADL models can be evolved to accommodate new ADL activities and preferences of individual smart home’s inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems - an ambient intelligence approach. In: 28th International Conference on Software Engineering, pp. 43–50. ACM, New York (2006)

    Google Scholar 

  2. Chen, L., Nugent, C.D.: Ontology-based activity recognition in intelligent pervasive environments. Inter. J. of Web Info. Sys. 5, 410–430 (2009)

    Article  Google Scholar 

  3. Haase, P., Sure, Y.: State-of-the-Art on Ontology Evolution. Technical report, Semantically Enabled Knowledge Technologies (2004)

    Google Scholar 

  4. Patterson, D.J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: 9th IEEE Int. Symp. on Wearable Computers, pp. 44–51. IEEE Computer Society, Washington (2005)

    Chapter  Google Scholar 

  5. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 11th IEEE Int. Symp. on Wearable Computers, pp. 37–40. IEEE Computer Society, Washington (2007)

    Google Scholar 

  6. Huynh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: 3rd Int. Conf. on Location-and Context-Awareness, pp. 50–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using hierarchical conditional random fields. Int. J. Robotics Res. 26, 119–134 (2007)

    Article  Google Scholar 

  8. Huynh, T., Schiele, B.: Unsupervised discovery of structure in activity data using multiple eigenspaces. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 151–167. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chua, S., Marsland, S., Guesgen, H.W.: Spatio-temporal and context reasoning in smart homes. In: Int. Conf. on Spatial Information Theory, pp. 9–20. Springer, Heidelberg (2009)

    Google Scholar 

  10. Lafti, F., Lefebvre, B., Descheneaux, C.: Ontology-Based Management of the Telehealth Smart Home, Dedicated to Elders in Loss of Cognitive Autonomy. In: 3rd Int. Workshop (2007)

    Google Scholar 

  11. Akdemir, U., Turaga, P., Chellappa, R.: An ontology based approach for activity recognition from video. In: 16th ACM Int. Conf. on Multimedia, pp. 709–712. ACM, New York (2008)

    Google Scholar 

  12. Yamada, N., Sakamoto, K., Kunito, G., Isoda, Y., Yamazaki, K., Tanaka, S.: Applying ontology and probabilistic model to human activity recognition from surrounding things. Trans. of the Info. Processing Soc. of Japan 48, 2823–2834 (2007)

    Google Scholar 

  13. Stojanovic, L.: Methods and Tools for Ontology Evolution, PhD Thesis, Research Center for Info. Technologies at the Uni. of Karslruhe (2004)

    Google Scholar 

  14. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology change: classification and survey. Knowl. Eng. Rev. 23, 117–152 (2008)

    Article  Google Scholar 

  15. Horrocks, I.: OWL: A description logic based ontology language. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Castano, S., Ferrara, A., Hess, G.: Discovery-Driven Ontology Evolution. In: 3rd Italian Semantic Web Workshop (2006)

    Google Scholar 

  17. Zablith, F., Sabou, M., d’Aquin, M., Motta, E.: Using Background Knowledge for Ontology Evolution. In: Int. Workshop on Ontology Dynamics (2008)

    Google Scholar 

  18. Zablith, F.: Ontology Evolution: A Practical Approach. In: Workshop on Matching and Meaning at Artificial Intelligence and Simulation of Behaviour (2009)

    Google Scholar 

  19. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: 6th European Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 348–360. Springer, London (2002)

    Google Scholar 

  21. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Protege, http://protege.stanford.edu

  23. RDF-Graph-Visualization-Tool, http://semweb.salzburgresearch.at/apps/rdf-gravity

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okeyo, G., Chen, L., Wang, H., Sterritt, R. (2010). Ontology-Enabled Activity Learning and Model Evolution in Smart Homes. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds) Ubiquitous Intelligence and Computing. UIC 2010. Lecture Notes in Computer Science, vol 6406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16355-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16355-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16354-8

  • Online ISBN: 978-3-642-16355-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics