Skip to main content

Domain Generalizer: A Few-Shot Meta Learning Framework for Domain Generalization in Medical Imaging

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART 2020, DCL 2020)

Abstract

Deep learning models perform best when tested on target (test) data domains whose distribution is similar to the set of source (train) domains. However, model generalization can be hindered when there is significant difference in the underlying statistics between the target and source domains. In this work, we adapt a domain generalization method based on a model-agnostic meta-learning framework [1] to biomedical imaging. The method learns a domain-agnostic feature representation to improve generalization of models to the unseen test distribution. The method can be used for any imaging task, as it does not depend on the underlying model architecture. We validate the approach through a computed tomography (CT) vertebrae segmentation task across healthy and pathological cases on three datasets. Next, we employ few-shot learning, i.e. training the generalized model using very few examples from the unseen domain, to quickly adapt the model to new unseen data distribution. Our results suggest that the method could help generalize models across different medical centers, image acquisition protocols, anatomies, different regions in a given scan, healthy and diseased populations across varied imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, D., Yang, Y., Song, Y.Z. Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence, April 2018

    Google Scholar 

  2. Meng, Q., Rueckert, D., Kainz, B.: Learning cross-domain generalizable features by representation disentanglement. arXiv preprint arXiv:2003.00321 (2020)

  3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Li, D., Yang, Y., Song, Y.Z. Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  5. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  6. Glocker, B., Robinson, R., Castro, D.C., Dou, Q., Konukoglu, E.: Machine learning with multi-site imaging data: an empirical study on the impact of scanner effects. arXiv preprint arXiv:1910.04597 (2019)

  7. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  8. Valindria, V.V., et al.: Domain adaptation for MRI organ segmentation using reverse classification accuracy. arXiv preprint arXiv:1806.00363 (2018)

  9. Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74

    Chapter  Google Scholar 

  10. Liu, Y., et al.: Cross-modality knowledge transfer for prostate segmentation from CT scans. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 63–71. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_8

    Chapter  Google Scholar 

  11. Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  12. Conjeti, S., et al.: Supervised domain adaptation of decision forests: transfer of models trained in vitro for in vivo intravascular ultrasound tissue characterization. Med. Image Anal. 32, 1–17 (2016)

    Article  Google Scholar 

  13. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: ‘Squeeze and excite’guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)

    Article  Google Scholar 

  14. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  15. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, pp. 6450–6461 (2019)

    Google Scholar 

  16. Ilse, M., Tomczak, J.M., Louizos, C., Welling, M.: DIVA: Domain invariant variational autoencoders. arXiv preprint arXiv:1905.10427 (2019)

  17. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1126–1135. JMLR. org, August 2017

    Google Scholar 

  18. Yao, J., et al.: A multi-center milestone study of clinical vertebral CT segmentation. Comput. Med. Imaging Graph. 49, 16–28 (2016)

    Article  Google Scholar 

  19. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34(8), 1649–1662 (2015)

    Article  Google Scholar 

  20. Sekuboyina, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark. arXiv preprint arXiv:2001.09193 (2020)

  21. Löffler, M.T., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020)

    Article  Google Scholar 

  22. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

  25. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt, M.: Test-time training for out-of-distribution generalization. arXiv preprint arXiv:1909.13231 (2019)

  26. Karani, N., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. arXiv preprint arXiv:2004.04668 (2020)

  27. Zhang, J., et al.: Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction. NeuroImage 211, 116579 (2020)

    Article  Google Scholar 

  28. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  29. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  30. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in statistics, pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

Download references

Acknowledgments

This work was supported by NIH grant R01 EB017255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulkit Khandelwal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8714 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khandelwal, P., Yushkevich, P. (2020). Domain Generalizer: A Few-Shot Meta Learning Framework for Domain Generalization in Medical Imaging. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics