Policy Making Analysis and Practitioner User Experience

  • Dimitris Koryzis
  • Fotios Fitsilis
  • Dimitris SpiliotopoulosEmail author
  • Theocharis Theocharopoulos
  • Dionisis Margaris
  • Costas Vassilakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12423)


This article presents the work on social media analysis-driven policy-making platforms that are powered by classic social media analysis technologies, such as policy modelling, linguistic analysis, opinion mining, sentiment analysis and information visualization. The approach examines the user design perspective towards user experience in policymaking for all the innovative modules used. The technology behind such complex task is presented while the resulting platform is appraised on the potential for real world application. The findings drive the development and the requirements for the summative usability assessment tests. We also report on the level the practitioners adopted the policy formulation tools.


Policy making Social network analysis Opinion mining Content analysis Natural language interfaces User experience 


  1. 1.
    Capano, G., Pavan, E.: Designing anticipatory policies through the use of ICTs. Policy Soc. 38, 96–117 (2019). Scholar
  2. 2.
    Spiliotopoulos, D., Dalianis, A., Koryzis, D.: Need driven prototype design for a policy modeling authoring interface. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8518, pp. 481–487. Springer, Cham (2014). Scholar
  3. 3.
    Knecht, T., Weatherford, M.S.: Public opinion and foreign policy: the stages of presidential decision making. Int. Stud. Q. 50, 705–727 (2006). Scholar
  4. 4.
    Jasti, S., Mahalakshmi, T.S.: A review on sentiment analysis of opinion mining. In: Mallick, P.K., Balas, V.E., Bhoi, A.K., Zobaa, A.F. (eds.) Cognitive Informatics and Soft Computing. AISC, vol. 768, pp. 603–612. Springer, Singapore (2019). Scholar
  5. 5.
    Murray, G., Hoque, E., Carenini, G.: Opinion summarization and visualization. In: Sentiment Analysis in Social Networks, pp. 171–187. Elsevier (2017).
  6. 6.
    Liu, B.: Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 5, 1–167 (2012). Scholar
  7. 7.
    Hardina, D.: Strategies for citizen participation and empowerment in non-profit community-based organizations. Community Dev. 37, 4–17 (2006). Scholar
  8. 8.
    Braga, D.D.S., Niemann, M., Hellingrath, B., Neto, F.B.D.L.: Survey on computational trust and reputation models. ACM Comput. Surv. 51, 1–40 (2019). Scholar
  9. 9.
    Tambouris, E., et al.: eParticipation in Europe. In: E-Government Success around the World: Cases, Empirical Studies, and Practical Recommendations, pp. 341–357 (2013).
  10. 10.
    Alexopoulos, C., Lachana, Z., Androutsopoulou, A., Diamantopoulou, V., Charalabidis, Y., Loutsaris, M.A.: How machine learning is changing e-government. In: Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance - ICEGOV2019, pp. 354–363. ACM Press, New York (2019).
  11. 11.
    Rowledge, L.R.: CrowdRising: Building a Sustainable World through Mass Collaboration. Routledge, Abingdon (2019).
  12. 12.
    Schefbeck, G., Spiliotopoulos, D., Risse, T.: The recent challenge in web archiving: archiving the social web. In: Proceedings of the International Council on Archives Congress, pp. 1–5 (2012)Google Scholar
  13. 13.
    Fitsilis, F., Koryzis, D., Svolopoulos, V., Spiliotopoulos, D.: Implementing digital parliament innovative concepts for citizens and policy makers. In: Nah, F.F.-H., Tan, C.-H. (eds.) HCIBGO 2017. LNCS, vol. 10293, pp. 154–170. Springer, Cham (2017). Scholar
  14. 14.
    Howlett, M., Cashore, B.: Conceptualizing public policy. In: Engeli, I., Allison, C.R. (eds.) Comparative Policy Studies. RMS, pp. 17–33. Palgrave Macmillan UK, London (2014). Scholar
  15. 15.
    Sartor, G.: Legislative information and the web. In: Legislative XML for the Semantic Web, pp. 11–20. Springer, Dordrecht (2011).
  16. 16.
    Kouroupetroglou, G., Spiliotopoulos, D.: Usability methodologies for real-life voice user interfaces. Int. J. Inf. Technol. Web. Eng. 4, 78–94 (2009). Scholar
  17. 17.
    Hossain, M.A., Dwivedi, Y.K., Rana, N.P.: State-of-the-art in open data research: Insights from existing literature and a research agenda. J. Organ. Comput. Electron. Commer. 26, 14–40 (2016). Scholar
  18. 18.
    Margaris, D., Georgiadis, P., Vassilakis, C.: On replacement service selection in WS-BPEL scenario adaptation. In: Proceedings - 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications, SOCA 2015, pp. 10–17 (2015).
  19. 19.
    Margaris, D., Vassilakis, C., Georgiadis, P.: Improving QoS delivered by WS-BPEL scenario adaptation through service execution parallelization. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1590–1596. Association for Computing Machinery, New York (2016).
  20. 20.
    Margaris, D., Georgiadis, P., Vassilakis, C.: A collaborative filtering algorithm with clustering for personalized web service selection in business processes. In: 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp. 169–180 (2015).
  21. 21.
    Spiliotopoulos, D., Xydas, G., Kouroupetroglou, G.: diction based prosody modeling in table-to-speech synthesis. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 294–301. Springer, Heidelberg (2005). Scholar
  22. 22.
    Risse, T., et al.: The ARCOMEM architecture for social- and semantic-driven web archiving. Future Internet 6, 688–716 (2014). Scholar
  23. 23.
    Margaris, D., Vassilakis, C., Georgiadis, P.: An integrated framework for adapting WS-BPEL scenario execution using QoS and collaborative filtering techniques. Sci. Comput. Program. 98, 707–734 (2015). Scholar
  24. 24.
    Margaris, D., Georgiadis, P., Vassilakis, C.: Adapting WS-BPEL scenario execution using collaborative filtering techniques. In: Proceedings - International Conference on Research Challenges in Information Science, pp. 174–184 (2013).
  25. 25.
    Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., Mora, H.: Managing marketing decision-making with sentiment analysis: an evaluation of the main product features using text data mining. Sustainability 11, 4235 (2019). Scholar
  26. 26.
    Margaris, D., Vassilakis, C., Spiliotopoulos, D.: What makes a review a reliable rating in recommender systems? Inf. Process. Manage. 57, 102304 (2020). Scholar
  27. 27.
    Margaris, D., Vassilakis, C., Spiliotopoulos, D.: Handling uncertainty in social media textual information for improving venue recommendation formulation quality in social networks. Soc. Netw. Anal. Mining 9(1), 1–19 (2019). Scholar
  28. 28.
    Pino, A., Kouroupetroglou, G., Kacorri, H., Sarantidou, A., Spiliotopoulos, D.: An open source/freeware assistive technology software inventory. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010. LNCS, vol. 6179, pp. 178–185. Springer, Heidelberg (2010). Scholar
  29. 29.
    Margaris, D., Vassilakis, C.: Exploiting Internet of Things information to enhance venues’ recommendation accuracy. Serv. Oriented Comput. Appl. 11(4), 393–409 (2017). Scholar
  30. 30.
    Margaris, D., Spiliotopoulos, D., Vassilakis, C.: Social relations versus near neighbours: reliable recommenders in limited information social network collaborative filtering for online advertising. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2019), pp. 1160–1167. ACM, Vancouver (2019).
  31. 31.
    Xydas, G., Spiliotopoulos, D., Kouroupetroglou, G.: Modeling improved prosody generation from high-level linguistically annotated corpora. IEICE Trans. Inf. Syst. E88-D, 510–518 (2005).
  32. 32.
    Spiliotopoulos, D., Stavropoulou, P., Kouroupetroglou, G.: Acoustic rendering of data tables using earcons and prosody for document accessibility. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5616, pp. 587–596. Springer, Heidelberg (2009). Scholar
  33. 33.
    Mallan, K.: Gateways to digital participation. In: Digital Participation through Social Living Labs, pp. 333–349. Elsevier (2018).
  34. 34.
    Demidova, E., et al.: Analysing and enriching focused semantic web archives for parliament applications. Future Internet 6, 433–456 (2014). Scholar
  35. 35.
    Androutsopoulos, I., Spiliotopoulos, D., Stamatakis, K., Dimitromanolaki, A., Karkaletsis, V., Spyropoulos, C.D.: Symbolic authoring for multilingual natural language generation. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 131–142. Springer, Heidelberg (2002). Scholar
  36. 36.
    Antonakaki, D., Spiliotopoulos, D., Samaras, C.V., Ioannidis, S., Fragopoulou, P.: Investigating the complete corpus of referendum and elections tweets. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pp. 100–105 (2016).
  37. 37.
    Margaris, D., Vassilakis, C., Georgiadis, P.: Knowledge-based leisure time recommendations in social networks. In: Alor-Hernández, G., Valencia-García, R. (eds.) Current Trends on Knowledge-Based Systems. ISRL, vol. 120, pp. 23–48. Springer, Cham (2017). Scholar
  38. 38.
    Margaris, D., Vassilakis, C., Georgiadis, P.: Recommendation information diffusion in social networks considering user influence and semantics. Soc. Netw. Anal. Mining 6(1), 1–22 (2016). Scholar
  39. 39.
    Eckardt, M.: The Impact of ICT on policies, politics, and polities an evolutionary economics approach to information and communication technologies (ICT). SSRN Electron. J. 20 (2012).
  40. 40.
    Margaris, D., Vassilakis, C.: Exploiting rating abstention intervals for addressing concept drift in social network recommender systems. Informatics. 5, 21 (2018). Scholar
  41. 41.
    Aivazoglou, M., et al.: A fine-grained social network recommender system. Soc. Netw. Anal. Mining 10(1), 1–18 (2019). Scholar
  42. 42.
    Norton, P.: Post-legislative scrutiny in the UK Parliament: adding value. J. Legis. Stud. 25, 340–357 (2019). Scholar
  43. 43.
    Griffith, J., Leston-Bandeira, C.: How are parliaments using new media to engage with citizens? J. Legis. Stud. 18, 496–513 (2012). Scholar
  44. 44.
    Makri, E., Spiliotopoulos, D., Vassilakis, C., Margaris, D.: Human behaviour in multimodal interaction: main effects of civic action and interpersonal and problem-solving skills. J. Ambient Intell. Hum. Comput. 1, 1–16 (2020). Scholar
  45. 45.
    Margaris, D., Vassilakis, C., Georgiadis, P.: Query personalization using social network information and collaborative filtering techniques. Future Gener. Comput. Syst. 78, 440–450 (2018). Scholar
  46. 46.
    Margaris, D., Kobusinska, A., Spiliotopoulos, D., Vassilakis, C.: An adaptive social network-aware collaborative filtering algorithm for improved rating prediction accuracy. IEEE Access. 8, 68301–68310 (2020). Scholar
  47. 47.
    Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction quality in dense datasets, by pruning old ratings. In: Proceedings - IEEE Symposium on Computers and Communications, pp. 1168–1174 (2017).
  48. 48.
    Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction accuracy by considering users’ rating variability. In: Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp. 1022–1027 (2018).
  49. 49.
    Margaris, D., Vasilopoulos, D., Vassilakis, C., Spiliotopoulos, D.: Improving collaborative filtering’s rating prediction accuracy by introducing the common item rating past criterion. In: 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019, pp. 1022–1027 (2019).
  50. 50.
    Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction quality by considering shifts in rating practices. In: 2017 IEEE 19th Conference on Business Informatics (CBI), pp. 158–166 (2017).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Hellenic ParliamentAthensGreece
  2. 2.Department of Informatics and TelecommunicationsUniversity of the PeloponneseTripoliGreece
  3. 3.Department of Cultural Technology and CommunicationUniversity of the AegeanLesvosGreece
  4. 4.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece

Personalised recommendations