Policy Making Analysis and Practitioner User Experience
Conference paper
First Online:
- 2 Mentions
- 254 Downloads
Abstract
This article presents the work on social media analysis-driven policy-making platforms that are powered by classic social media analysis technologies, such as policy modelling, linguistic analysis, opinion mining, sentiment analysis and information visualization. The approach examines the user design perspective towards user experience in policymaking for all the innovative modules used. The technology behind such complex task is presented while the resulting platform is appraised on the potential for real world application. The findings drive the development and the requirements for the summative usability assessment tests. We also report on the level the practitioners adopted the policy formulation tools.
Keywords
Policy making Social network analysis Opinion mining Content analysis Natural language interfaces User experienceReferences
- 1.Capano, G., Pavan, E.: Designing anticipatory policies through the use of ICTs. Policy Soc. 38, 96–117 (2019). https://doi.org/10.1080/14494035.2018.1511194CrossRefGoogle Scholar
- 2.Spiliotopoulos, D., Dalianis, A., Koryzis, D.: Need driven prototype design for a policy modeling authoring interface. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8518, pp. 481–487. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07626-3_45CrossRefGoogle Scholar
- 3.Knecht, T., Weatherford, M.S.: Public opinion and foreign policy: the stages of presidential decision making. Int. Stud. Q. 50, 705–727 (2006). https://doi.org/10.1111/j.1468-2478.2006.00421.xCrossRefGoogle Scholar
- 4.Jasti, S., Mahalakshmi, T.S.: A review on sentiment analysis of opinion mining. In: Mallick, P.K., Balas, V.E., Bhoi, A.K., Zobaa, A.F. (eds.) Cognitive Informatics and Soft Computing. AISC, vol. 768, pp. 603–612. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0617-4_58CrossRefGoogle Scholar
- 5.Murray, G., Hoque, E., Carenini, G.: Opinion summarization and visualization. In: Sentiment Analysis in Social Networks, pp. 171–187. Elsevier (2017). https://doi.org/10.1016/B978-0-12-804412-4.00011-5
- 6.Liu, B.: Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 5, 1–167 (2012). https://doi.org/10.2200/S00416ED1V01Y201204HLT016CrossRefGoogle Scholar
- 7.Hardina, D.: Strategies for citizen participation and empowerment in non-profit community-based organizations. Community Dev. 37, 4–17 (2006). https://doi.org/10.1080/15575330609490192CrossRefGoogle Scholar
- 8.Braga, D.D.S., Niemann, M., Hellingrath, B., Neto, F.B.D.L.: Survey on computational trust and reputation models. ACM Comput. Surv. 51, 1–40 (2019). https://doi.org/10.1145/3236008CrossRefGoogle Scholar
- 9.Tambouris, E., et al.: eParticipation in Europe. In: E-Government Success around the World: Cases, Empirical Studies, and Practical Recommendations, pp. 341–357 (2013). https://doi.org/10.4018/978-1-4666-4173-0.ch017
- 10.Alexopoulos, C., Lachana, Z., Androutsopoulou, A., Diamantopoulou, V., Charalabidis, Y., Loutsaris, M.A.: How machine learning is changing e-government. In: Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance - ICEGOV2019, pp. 354–363. ACM Press, New York (2019). https://doi.org/10.1145/3326365.3326412
- 11.Rowledge, L.R.: CrowdRising: Building a Sustainable World through Mass Collaboration. Routledge, Abingdon (2019). https://doi.org/10.4324/9780429285905
- 12.Schefbeck, G., Spiliotopoulos, D., Risse, T.: The recent challenge in web archiving: archiving the social web. In: Proceedings of the International Council on Archives Congress, pp. 1–5 (2012)Google Scholar
- 13.Fitsilis, F., Koryzis, D., Svolopoulos, V., Spiliotopoulos, D.: Implementing digital parliament innovative concepts for citizens and policy makers. In: Nah, F.F.-H., Tan, C.-H. (eds.) HCIBGO 2017. LNCS, vol. 10293, pp. 154–170. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58481-2_13CrossRefGoogle Scholar
- 14.Howlett, M., Cashore, B.: Conceptualizing public policy. In: Engeli, I., Allison, C.R. (eds.) Comparative Policy Studies. RMS, pp. 17–33. Palgrave Macmillan UK, London (2014). https://doi.org/10.1057/9781137314154_2CrossRefGoogle Scholar
- 15.Sartor, G.: Legislative information and the web. In: Legislative XML for the Semantic Web, pp. 11–20. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1887-6_2
- 16.Kouroupetroglou, G., Spiliotopoulos, D.: Usability methodologies for real-life voice user interfaces. Int. J. Inf. Technol. Web. Eng. 4, 78–94 (2009). https://doi.org/10.4018/jitwe.2009100105CrossRefGoogle Scholar
- 17.Hossain, M.A., Dwivedi, Y.K., Rana, N.P.: State-of-the-art in open data research: Insights from existing literature and a research agenda. J. Organ. Comput. Electron. Commer. 26, 14–40 (2016). https://doi.org/10.1080/10919392.2015.1124007CrossRefGoogle Scholar
- 18.Margaris, D., Georgiadis, P., Vassilakis, C.: On replacement service selection in WS-BPEL scenario adaptation. In: Proceedings - 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications, SOCA 2015, pp. 10–17 (2015). https://doi.org/10.1109/SOCA.2015.11
- 19.Margaris, D., Vassilakis, C., Georgiadis, P.: Improving QoS delivered by WS-BPEL scenario adaptation through service execution parallelization. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1590–1596. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2851613.2851805
- 20.Margaris, D., Georgiadis, P., Vassilakis, C.: A collaborative filtering algorithm with clustering for personalized web service selection in business processes. In: 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp. 169–180 (2015). https://doi.org/10.1109/RCIS.2015.7128877
- 21.Spiliotopoulos, D., Xydas, G., Kouroupetroglou, G.: diction based prosody modeling in table-to-speech synthesis. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 294–301. Springer, Heidelberg (2005). https://doi.org/10.1007/11551874_38CrossRefGoogle Scholar
- 22.Risse, T., et al.: The ARCOMEM architecture for social- and semantic-driven web archiving. Future Internet 6, 688–716 (2014). https://doi.org/10.3390/fi6040688CrossRefGoogle Scholar
- 23.Margaris, D., Vassilakis, C., Georgiadis, P.: An integrated framework for adapting WS-BPEL scenario execution using QoS and collaborative filtering techniques. Sci. Comput. Program. 98, 707–734 (2015). https://doi.org/10.1016/j.scico.2014.10.007CrossRefGoogle Scholar
- 24.Margaris, D., Georgiadis, P., Vassilakis, C.: Adapting WS-BPEL scenario execution using collaborative filtering techniques. In: Proceedings - International Conference on Research Challenges in Information Science, pp. 174–184 (2013). https://doi.org/10.1109/RCIS.2013.6577691
- 25.Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., Mora, H.: Managing marketing decision-making with sentiment analysis: an evaluation of the main product features using text data mining. Sustainability 11, 4235 (2019). https://doi.org/10.3390/su11154235CrossRefGoogle Scholar
- 26.Margaris, D., Vassilakis, C., Spiliotopoulos, D.: What makes a review a reliable rating in recommender systems? Inf. Process. Manage. 57, 102304 (2020). https://doi.org/10.1016/j.ipm.2020.102304CrossRefGoogle Scholar
- 27.Margaris, D., Vassilakis, C., Spiliotopoulos, D.: Handling uncertainty in social media textual information for improving venue recommendation formulation quality in social networks. Soc. Netw. Anal. Mining 9(1), 1–19 (2019). https://doi.org/10.1007/s13278-019-0610-xCrossRefGoogle Scholar
- 28.Pino, A., Kouroupetroglou, G., Kacorri, H., Sarantidou, A., Spiliotopoulos, D.: An open source/freeware assistive technology software inventory. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010. LNCS, vol. 6179, pp. 178–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14097-6_29CrossRefGoogle Scholar
- 29.Margaris, D., Vassilakis, C.: Exploiting Internet of Things information to enhance venues’ recommendation accuracy. Serv. Oriented Comput. Appl. 11(4), 393–409 (2017). https://doi.org/10.1007/s11761-017-0216-yCrossRefGoogle Scholar
- 30.Margaris, D., Spiliotopoulos, D., Vassilakis, C.: Social relations versus near neighbours: reliable recommenders in limited information social network collaborative filtering for online advertising. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2019), pp. 1160–1167. ACM, Vancouver (2019). https://doi.org/10.1145/3341161.3345620
- 31.Xydas, G., Spiliotopoulos, D., Kouroupetroglou, G.: Modeling improved prosody generation from high-level linguistically annotated corpora. IEICE Trans. Inf. Syst. E88-D, 510–518 (2005). https://doi.org/10.1093/ietisy/e88-d.3.510
- 32.Spiliotopoulos, D., Stavropoulou, P., Kouroupetroglou, G.: Acoustic rendering of data tables using earcons and prosody for document accessibility. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5616, pp. 587–596. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02713-0_62CrossRefGoogle Scholar
- 33.Mallan, K.: Gateways to digital participation. In: Digital Participation through Social Living Labs, pp. 333–349. Elsevier (2018). https://doi.org/10.1016/B978-0-08-102059-3.00018-6
- 34.Demidova, E., et al.: Analysing and enriching focused semantic web archives for parliament applications. Future Internet 6, 433–456 (2014). https://doi.org/10.3390/fi6030433CrossRefGoogle Scholar
- 35.Androutsopoulos, I., Spiliotopoulos, D., Stamatakis, K., Dimitromanolaki, A., Karkaletsis, V., Spyropoulos, C.D.: Symbolic authoring for multilingual natural language generation. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 131–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46014-4_13CrossRefGoogle Scholar
- 36.Antonakaki, D., Spiliotopoulos, D., Samaras, C.V., Ioannidis, S., Fragopoulou, P.: Investigating the complete corpus of referendum and elections tweets. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pp. 100–105 (2016). https://doi.org/10.1109/ASONAM.2016.7752220
- 37.Margaris, D., Vassilakis, C., Georgiadis, P.: Knowledge-based leisure time recommendations in social networks. In: Alor-Hernández, G., Valencia-García, R. (eds.) Current Trends on Knowledge-Based Systems. ISRL, vol. 120, pp. 23–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51905-0_2CrossRefGoogle Scholar
- 38.Margaris, D., Vassilakis, C., Georgiadis, P.: Recommendation information diffusion in social networks considering user influence and semantics. Soc. Netw. Anal. Mining 6(1), 1–22 (2016). https://doi.org/10.1007/s13278-016-0416-zCrossRefGoogle Scholar
- 39.Eckardt, M.: The Impact of ICT on policies, politics, and polities an evolutionary economics approach to information and communication technologies (ICT). SSRN Electron. J. 20 (2012). https://doi.org/10.2139/ssrn.2445839
- 40.Margaris, D., Vassilakis, C.: Exploiting rating abstention intervals for addressing concept drift in social network recommender systems. Informatics. 5, 21 (2018). https://doi.org/10.3390/informatics5020021CrossRefGoogle Scholar
- 41.Aivazoglou, M., et al.: A fine-grained social network recommender system. Soc. Netw. Anal. Mining 10(1), 1–18 (2019). https://doi.org/10.1007/s13278-019-0621-7CrossRefGoogle Scholar
- 42.Norton, P.: Post-legislative scrutiny in the UK Parliament: adding value. J. Legis. Stud. 25, 340–357 (2019). https://doi.org/10.1080/13572334.2019.1633778CrossRefGoogle Scholar
- 43.Griffith, J., Leston-Bandeira, C.: How are parliaments using new media to engage with citizens? J. Legis. Stud. 18, 496–513 (2012). https://doi.org/10.1080/13572334.2012.706058CrossRefGoogle Scholar
- 44.Makri, E., Spiliotopoulos, D., Vassilakis, C., Margaris, D.: Human behaviour in multimodal interaction: main effects of civic action and interpersonal and problem-solving skills. J. Ambient Intell. Hum. Comput. 1, 1–16 (2020). https://doi.org/10.1007/s12652-020-01846-xCrossRefGoogle Scholar
- 45.Margaris, D., Vassilakis, C., Georgiadis, P.: Query personalization using social network information and collaborative filtering techniques. Future Gener. Comput. Syst. 78, 440–450 (2018). https://doi.org/10.1016/j.future.2017.03.015CrossRefGoogle Scholar
- 46.Margaris, D., Kobusinska, A., Spiliotopoulos, D., Vassilakis, C.: An adaptive social network-aware collaborative filtering algorithm for improved rating prediction accuracy. IEEE Access. 8, 68301–68310 (2020). https://doi.org/10.1109/ACCESS.2020.2981567CrossRefGoogle Scholar
- 47.Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction quality in dense datasets, by pruning old ratings. In: Proceedings - IEEE Symposium on Computers and Communications, pp. 1168–1174 (2017). https://doi.org/10.1109/ISCC.2017.8024683
- 48.Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction accuracy by considering users’ rating variability. In: Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp. 1022–1027 (2018). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00145
- 49.Margaris, D., Vasilopoulos, D., Vassilakis, C., Spiliotopoulos, D.: Improving collaborative filtering’s rating prediction accuracy by introducing the common item rating past criterion. In: 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019, pp. 1022–1027 (2019). https://doi.org/10.1109/IISA.2019.8900758
- 50.Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction quality by considering shifts in rating practices. In: 2017 IEEE 19th Conference on Business Informatics (CBI), pp. 158–166 (2017). https://doi.org/10.1109/CBI.2017.24
Copyright information
© Springer Nature Switzerland AG 2020