Skip to main content

Deep Small Bowel Segmentation with Cylindrical Topological Constraints

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

We present a novel method for small bowel segmentation where a cylindrical topological constraint based on persistent homology is applied. To address the touching issue which could break the applied constraint, we propose to augment a network with an additional branch to predict an inner cylinder of the small bowel. Since the inner cylinder is free of the touching issue, a cylindrical shape constraint applied on this augmented branch guides the network to generate a topologically correct segmentation. For strict evaluation, we achieved an abdominal computed tomography dataset with dense segmentation ground-truths. The proposed method showed clear improvements in terms of four different metrics compared to the baseline method, and also showed the statistical significance from a paired t-test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.slicer.org.

References

  1. Small bowel obstruction (2019). https://my.clevelandclinic.org/health/diseases/15850-small-bowel-obstruction

  2. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Understand. 121, 36–42 (2014). https://doi.org/10.1016/j.cviu.2013.10.014

    Article  Google Scholar 

  3. Belchi, F., Pirashvili, M., Conway, J., Bennett, M., Djukanovic, R., Brodzki, J.: Lung topology characteristics in patients with chronic obstructive pulmonary disease. Sci. Rep. 8, 5341 (2018). https://doi.org/10.1038/s41598-018-23424-0

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Clough, J.R., Oksuz, I., Byrne, N., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. arXiv preprint arXiv:1910.01877 (2019)

  6. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012). https://doi.org/10.1016/j.mri.2012.05.001

    Article  Google Scholar 

  7. Gabrielsson, R.B., Nelson, B.J., Dwaraknath, A., Skraba, P., Guibas, L.J., Carlsson, G.E.: A topology layer for machine learning. arXiv preprint arXiv:1905.12200 (2019)

  8. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32, 5657–5668 (2019)

    Google Scholar 

  9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  10. Murphy, K.P., McLaughlin, P.D., O’Connor, O.J., Maher, M.M.: Imaging the small bowel. Curr. Opinion Gastroenterol. 30(2), 134–140 (2014)

    Article  Google Scholar 

  11. Oda, H., et al.: Visualizing intestines for diagnostic assistance of ileus based on intestinal region segmentation from 3D CT images. arXiv preprint arXiv:2003.01290 (2020)

  12. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6, 17 (2017). https://doi.org/10.1140/epjds/s13688-017-0109-5

    Article  Google Scholar 

  13. Ségonne, F., Fischl, B.: Integration of topological constraints in medical image segmentation. In: Paragios, N., Duncan, J., Ayache, N. (eds.) Handbook of Biomedical Imaging, pp. 245–262. Springer, Boston, MA (2015). https://doi.org/10.1007/978-0-387-09749-7_13

    Chapter  Google Scholar 

  14. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  15. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)

  16. Zhang, W., et al.: Mesenteric vasculature-guided small bowel segmentation on 3-D CT. IEEE Trans. Med. Imaging 32(11), 2006–2021 (2013). https://doi.org/10.1109/TMI.2013.2271487

Download references

Acknowledgments

This research was supported by the National Institutes of Health, Clinical Center and National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yeon Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, S.Y., Lee, S., Elton, D., Gulley, J.L., Summers, R.M. (2020). Deep Small Bowel Segmentation with Cylindrical Topological Constraints. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics