Skip to main content

Extreme Wetting Properties of Liquid Metal

  • Chapter
  • First Online:
Materials with Extreme Wetting Properties

Abstract

Gallium−/indium-based liquid metal, a kind of newly emerging functional metal material with fluid state at room temperature, implements many complex functionalities such as special wettability, unconventional maneuverability, excellent fluid mechanics performance, and robust electricity capability, which have been increasingly reported. Most of the current studies of materials with extreme wetting properties are focused on the motion of water like liquid on solid surface, while researches on the wettability of liquid metal are rather limited. In this chapter, the mechanisms and applications of liquid metal enabled from wettability were systematically interpreted. Furthermore, a great emphasis was placed on the surface/interfacial characteristics and the motion under stimulation, which uncovered a new conception of transformable metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Q, Yu Y, Yang J, et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater. 2015;27:7109–16.

    Article  CAS  Google Scholar 

  2. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv. 2013;3:112117.

    Article  CAS  Google Scholar 

  3. Chiechi RC, Weiss EA, Dickey MD, et al. Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed. 2008;47:142–4.

    Article  CAS  Google Scholar 

  4. Tang J, Zhao X, Li J, et al. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces. 2017;9:35977–87.

    Article  CAS  Google Scholar 

  5. Xu J. Liquid metal robotics: a new category of soft robotics on the horizon. Sci Bull. 2015;60:1047–8.

    Article  Google Scholar 

  6. Chen S, Ding Y, Zhang Q, et al. Controllable dispersion and Reunion of liquid metal droplets. Sci China Mater. 2019;62:407–15.

    Article  CAS  Google Scholar 

  7. Deng Y, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. Int Commun Heat Mass Transf. 2010;37:788–91.

    Article  CAS  Google Scholar 

  8. Deng Y, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat Mass Transf. 2010;46:1327–34.

    Article  CAS  Google Scholar 

  9. Eaker CB, Dickey MD. Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev. 2016;3:031103.

    Article  CAS  Google Scholar 

  10. Zheng Y, He ZZ, Yang J, et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep. 2014;4:4588.

    Article  CAS  Google Scholar 

  11. Frenznick S, Swaminathan S, Stratmann M, et al. A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. J Mater Sci. 2010;45:2106–11.

    Article  CAS  Google Scholar 

  12. Wang L, Wang M, Lu J, et al. Enhanced adhesion between liquid metal ink and the wetted printer paper for direct writing electronic circuits. J Taiwan Inst Chem Eng. 2019;95:202–7.

    Article  CAS  Google Scholar 

  13. Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Interfaces. 2014;6:18369–79.

    Article  CAS  Google Scholar 

  14. Zhang J, Li N. Analysis on liquid metal corrosion–oxidation interactions. Corros Sci. 2007;49:4154–84.

    Article  CAS  Google Scholar 

  15. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep. 2014;4:7116.

    Article  Google Scholar 

  16. Yi L, Ding Y, Yuan B, et al. Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Adv. 2016;6:94692–8.

    Article  CAS  Google Scholar 

  17. Yuan B, Tan S, Liu J. Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga–in alloy inside NaOH electrolyte. Int J Hydrog Energy. 2016;41:1453–9.

    Article  CAS  Google Scholar 

  18. Tang SY, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci. 2014;111:3304–9.

    Article  CAS  Google Scholar 

  19. Yuan B, Wang L, Yang X, et al. Liquid metal machine triggered violin-like wire oscillator. Adv Sci. 2016;3:1600212.

    Article  CAS  Google Scholar 

  20. Yuan B, Tan S, Zhou Y, et al. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Sci Bull. 2015;60:1203–10.

    Article  Google Scholar 

  21. Tan SC, Yuan B, Liu J, et al. Proc R Soc A: Math Phys Eng Sci. 2015;471:20150297.

    Article  Google Scholar 

  22. Yang XH, Tan SC, Yuan B, et al. Alternating electric field actuated oscillating behavior of liquid metal and its application. SCIENCE CHINA Technol Sci. 2016;59(4):597–603.

    Article  CAS  Google Scholar 

  23. Zhang J, Yao Y, Sheng L, et al. Self-fueled biomimetic liquid metal mollusk. Adv Mater. 2015;27:2648–55.

    Article  CAS  Google Scholar 

  24. Tan SC, Gui H, Yang XH, et al. Comparative study on activation of aluminum with four liquid metals to generate hydrogen in alkaline solution. Int J Hydrog Energy. 2016;41:22663–7.

    Article  CAS  Google Scholar 

  25. Tan SC, Yang XH, Gui H, et al. Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter. 2017;13:2309–14.

    Article  CAS  Google Scholar 

  26. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One. 2012;7:e45485.

    Article  CAS  Google Scholar 

  27. Guo R, Wang H, Duan M, et al. Stretchable electronics based on nano-Fe GaIn amalgams for smart flexible pneumatic actuator. Smart Mater Struct. 2018;27:085022.

    Article  Google Scholar 

  28. Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Adv Mater. 2014;26:6036–42.

    Article  CAS  Google Scholar 

  29. Zhang W, Ou JZ, Tang SY, et al. Liquid metal/metal oxide frameworks. Adv Funct Mater. 2014;24:3799–807.

    Article  CAS  Google Scholar 

  30. Wang H, Yuan B, Liang S, et al. PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater Horizons. 2018;5:222–9.

    Article  CAS  Google Scholar 

  31. Parmuzina AV, Kravchenko OV. Activation of aluminium metal to evolve hydrogen from water. Int J Hydrog Energy. 2008;33:3073–6.

    Article  CAS  Google Scholar 

  32. Ladd C, So JH, Muth J, et al. 3D printing of free standing liquid metal microstructures. Adv Mater. 2013;25:5081–5.

    Article  CAS  Google Scholar 

  33. Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines. 2016;7:206.

    Article  Google Scholar 

  34. Tabatabai A, Fassler A, Usiak C, et al. Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir. 2013;29:6194–200.

    Article  CAS  Google Scholar 

  35. Sheng L, He Z, Yao Y, et al. Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small. 2015;11:5253–61.

    Article  CAS  Google Scholar 

  36. Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst. 2000;9:171–80.

    Article  CAS  Google Scholar 

  37. Frumkin A, Petry O, Damaskin B. The notion of the electrode charge and the Lippmann equation. J Electroanal Chem Interfacial Electrochem. 1970;27:81–100.

    Article  CAS  Google Scholar 

  38. Ilyukhina AV, Ilyukhin AS, Shkolnikov EI. Hydrogen generation from water by means of activated aluminum. Int J Hydrog Energy. 2012;37:16382–7.

    Article  CAS  Google Scholar 

  39. Quinn A, Sedev R, Ralston J. Influence of the electrical double layer in electrowetting. J Phys Chem B. 2003;107:1163–9.

    Article  CAS  Google Scholar 

  40. Flamini DO, Saidman SB, Bessone JB. Aluminium activation produced by gallium. Corros Sci. 2006;48:1413–25.

    Article  CAS  Google Scholar 

  41. An Q, Zhang B, Zhou X, et al. Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline. Heat Mass Transf. 2019;56:1077–86.

    Article  CAS  Google Scholar 

  42. Wang L, He Z, Ding Y, et al. The rebound motion of liquid metal droplet on flexible micro/nano needle forest. Adv Mater Interfaces. 2016;3:1600008.

    Article  CAS  Google Scholar 

  43. Wang L, Gao C, Hou Y, et al. Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface. J Mater Chem A. 2016;4:18289–93.

    Article  CAS  Google Scholar 

  44. Malouin BA Jr, Koratkar NA, Hirsa AH, et al. Directed rebounding of droplets by microscale surface roughness gradients. Appl Phys Lett. 2010;96:234103.

    Article  CAS  Google Scholar 

  45. Mertaniemi H, Forchheimer R, Ikkala O, et al. Rebounding droplet-droplet collisions on Superhydrophobic surfaces: from the phenomenon to droplet logic. Adv Mater. 2012;24:5738–43.

    Article  CAS  Google Scholar 

  46. Wang Z, Lopez C, Hirsa A, et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl Phys Lett. 2007;91:023105.

    Article  CAS  Google Scholar 

  47. Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nat Phys. 2014;10:515.

    Article  CAS  Google Scholar 

  48. Dupuis A, Yeomans JM. Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir. 2005;21:2624–9.

    Article  CAS  Google Scholar 

  49. Dai D, Zhou Y, Liu J. Liquid metal based thermoelectric generation system for waste heat recovery. Renew Energy. 2011;36:3530–6.

    Article  CAS  Google Scholar 

  50. Kim D, Thissen P, Viner G, et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces. 2012;5:179–85.

    Article  CAS  Google Scholar 

  51. Wang L, Gong Q, Zhan S, et al. Robust anti-icing performance of a flexible superhydrophobic surface. Adv Mater. 2016;28:7729–35.

    Article  CAS  Google Scholar 

  52. Otten A, Herminghaus S. How plants keep dry: a physicist's point of view. Langmuir. 2004;20:2405–8.

    Article  CAS  Google Scholar 

  53. Liu Y, Gao M, Mei S, et al. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl Phys Lett. 2013;103:064101.

    Article  CAS  Google Scholar 

  54. Guo R, Wang H, Sun X, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces. 2019;11:30019–27.

    Article  CAS  Google Scholar 

  55. Guo R, Yao S, Sun X, et al. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater. 2019;62:982–94.

    Article  Google Scholar 

  56. Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater. 2018;20:1800054.

    Article  CAS  Google Scholar 

  57. Guo R, Sun X, Yuan B, et al. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci. 2019;6(20):1901478.

    Article  CAS  Google Scholar 

  58. Boley JW, White EL, Chiu GTC, et al. Direct writing of gallium-indium alloy for stretchable electronics. Adv Funct Mater. 2014;24:3501–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21805294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Liu, J. (2021). Extreme Wetting Properties of Liquid Metal. In: Hosseini, M., Karapanagiotis, I. (eds) Materials with Extreme Wetting Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-59565-4_9

Download citation

Publish with us

Policies and ethics