Skip to main content

The Origin of the Sun and the Early Evolution of the Solar System with Special Emphasis on Mars, Asteroids, and Meteorites

  • Chapter
  • First Online:
Geoforming Mars

Abstract

Many of the details of the origin and evolution of the Solar System are still debated. In this chapter I develop a model that utilizes a natural progression of events: (1) accumulation of dust and gas from previous stellar explosions, (2) X-Wind model for the formation of the first dateable crystals in the form of calcium-aluminum inclusions (CIAs) in meteorites; Vulcanoid planetoids then form by accretion of CAI material in orbits near the Sun, (3) Disc-Wind model for the formation of chondrules which are the major constituents in chondritic meteorites which then form the terrestrial planet and asteroids, (4) sequence of FU Orionis joule heating events to remelt an outer portion of the larger Vulcanoid planetoids (like Luna) and perhaps melt all or some of the smaller Vulcanoid planetoids located between the Sun and the orbit of Mercury. Various combinations of meteorites then accrete to form the terrestrial planets and asteroids. The outer planets then form from some combination of volatiles expelled from the inner solar system because of X-Wind action and material drifting in from the outer reaches of the solar nebular cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfven, H. (1969). Atom, man, and the universe: The long chain of complications. San Francisco: WH. Freeman and, 110 p.

    Google Scholar 

  • Alfven, H., & Alfven, K. (1972). Living on the third planet. San Francisco: WH. Freeman and Company, 187 p.

    Google Scholar 

  • Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum—Rich inclusions. Science, 297, 1678–1683.

    Google Scholar 

  • Anderson, D. L. (1973a). The moon as a high temperature condensate. The Moon, 8, 33–57.

    Article  Google Scholar 

  • Anderson, D. L. (1973b). The composition and origin of the moon. Earth and Planetary Science Letters, 18, 301–316.

    Article  Google Scholar 

  • Anderson, D. L. (1975). On the composition of the lunar interior. Journal of Geophysical Research, 80, 1555–1557.

    Article  Google Scholar 

  • Batygin, K., Laughlin, G., & Morbidelli, A. (2016). Born of chaos. Scientific American, 314(5), 30–37.

    Article  Google Scholar 

  • Benz, W., Ida, S., Alibert, Y., Lin, D., & Mordasini, C. (2014). Planet population synthesis. In H. Beuther et al. (Eds.), Protostars and planets VI (pp. 691–713). Tucson: University of Arizona Press.

    Google Scholar 

  • Bostrom, R. C. (2000). Tectonic consequences of Earth’s rotation. Oxford: Oxford University Press, 266 p.

    Google Scholar 

  • Brearley, A. J., & Jones, R. H. (1998). Chapter 3: Chrondritic meteorites. In J. J. Papike (Ed.), Planetary materials: Reviews of mineralogy (Vol. 36, pp. 1–398). Washington, D.C.: Mineralogical Society of America.

    Google Scholar 

  • Britt, D. T., Macke, R. J., Kiefer, W., & Consolmagno. (2010). An overview of achondritic density, porosity and magnetic susceptibility: Abstracts, 41st Lunar and Planetary Science Conference, 1869. pdf.

    Google Scholar 

  • Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., & Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, 113, 2886–2891.

    Article  Google Scholar 

  • Budde, G., Burkhardt, C., Brennecka, G. A., Fischer-Goode, M., Kruijer, T. S., & Kleine, T. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293–303.

    Article  Google Scholar 

  • Calvet, N., Hartmann, L., & Strom, S. E. (2000). Evolution of disk accretion. In V. Manning, A. P. Boss, & S. S. Russell (Eds.), Protostars and planets, IV (pp. 377–399). Tuscon: University of Arizona Press.

    Google Scholar 

  • Cameron, A. G. W. (1962). The formation of the sun and the planets. Icarus, 1, 13–69.

    Article  Google Scholar 

  • Cameron, A. G. W. (1972). Orbital eccentricity of mercury and the origin of the moon. Nature, 240, 299–300.

    Article  Google Scholar 

  • Cameron, A. G. W. (1973). Properties of the solar nebula and the origin of the moon. The Moon, 7, 377–383.

    Article  Google Scholar 

  • Cameron, A. G. W., & Pine, M. R. (1973). Numerical models of the primitive solar nebula. Icarus, 18, 377–406.

    Article  Google Scholar 

  • Ceisla, F. J. (2007). Outward transport of high temperature materials around the midplane of the solar nebula. Science, 318, 613–615.

    Article  Google Scholar 

  • Cloud, P. E. (1978). Cosmos, earth and man. New Haven: Yale University Press, 371 p.

    Google Scholar 

  • Cloud, P. E. (1988). Oasis in space: Earth history from the beginning. New York: W. W. Norton and Company, 508 p.

    Google Scholar 

  • Connolly, H. C., & Desch, S. J. (2004). On the origin of the “klein Kugelchen” called chondrules. Chemie der Erde/Geochemistry, 64, 95–125.

    Google Scholar 

  • Connolly, H. C., Jr., & Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. Journal of Geophysical Research: Planets, 121, 1885–1899. https://doi.org/10.1002/2016JE005113.

    Article  Google Scholar 

  • DeMeo, F. E., Polishook, D., Carry, B., Burt, B. J., Hsieh, H. H., Benzel, R. P., Moskovitz, & Burbine, T. H. (2019). Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families. Icarus, 322, 13–30.

    Article  Google Scholar 

  • de Pater, I., & Lissauer, J. J. (2001). Planetary sciences. Cambridge: Cambridge University Press, 528 p.

    Google Scholar 

  • de Pater, L., & Lissauer, J. J. (2015). Planetary sciences (2nd ed.). Cambridge: Cambridge University Press, 688 p.

    Book  Google Scholar 

  • Desch, S. J., & Cuzzi, J. N. (2000). The generation of lightning in the solar nebula. Icarus, 143, 87–105.

    Article  Google Scholar 

  • Desch, S. J., Ciesla, F. J., Hood, L. L., & Nakamoto, T. (2005). Heating of chondritic materials in solar nebula shocks. In A. N. Krot, E. R. D. Scott, & B. Reipurth (Eds.), Chrondrites and the protoplanetary disk (Vol. 341, pp. 849–872). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Ehlmann, B. L., Anderson, F. S., et al. (2016). The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from mars for understanding the evolution of earth-like worlds. Journal of Geophysical Research: Planets, 121, 1927–1961.

    Google Scholar 

  • Evans, N. W., & Tabachnik, S. (1999). Possible long-lived asteroid belts in the inner solar system. Nature, 399, 41–43.

    Article  Google Scholar 

  • Evans, N. W., & Tabachnik, S. (2002). Structure of possible long-lived asteroid belts. Monthly Notices of the Royal Astronomical Society, 333, L1–L5.

    Article  Google Scholar 

  • Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 1089–1092.

    Article  Google Scholar 

  • Gast, P. W. (1972). The chemical composition and structure of the moon. The Moon, 5, 121–148.

    Article  Google Scholar 

  • Gerber, S., Burkhardt, C., Bidde, G., Metzler, K., & Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variation among chrondrules. The Astrophysical Journal Letters, 841, L17. (7 p.). https://doi.org/10.3847/2041-8213/aa72a2.

    Article  Google Scholar 

  • Greenwood, R. C., Franchi, I. A., Jambon, A., & Buchanan, P. C. (2005). Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 916–918.

    Article  Google Scholar 

  • Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.

    Article  Google Scholar 

  • Grossman, L. (1988). Formation of chondrules. In J. F. Kerridge & M. S. Mathews (Eds.), Meteorites and the early solar system (pp. 680–696). Tucson: University of Arizona Press.

    Google Scholar 

  • Guterl, F. (2008). Mission to the forgotten planets: Discover (Feb. issue), p. 48–52.

    Google Scholar 

  • Hasegawa, Y. (2016). Super-earths as failed cores in orbital migration traps. The Astrophysical Journal, 832, 83. (18 p.). https://doi.org/10.3847/0004-637X/832/1/83.

    Article  Google Scholar 

  • Hasegawa, Y., Turner, N. J., Masiero, J., Wakita, S., Matsumoto, Y., & Oshino, S. (2016). Forming chrondrites in a solar nebula with magnetically induced turbulence. The Astrophysical Journal Letters, 820, L12–L18. https://doi.org/10.3847/2041-8205/820/L12.

    Article  Google Scholar 

  • Hasegawa, Y., Okuzumi, S., Flock, M., & Turner, N. J. (2017). Magnetically induced disk winds and transport in the HL Tau disk. The Astrophysical Journal, 845, 31. , (13 p.). https://doi.org/10.3847/1538-4357/aa7d55.

    Article  Google Scholar 

  • Herbert, F., Sonett, C. P., & Gaffey, M. J. (1991). Protoplanetary thermal metamorphism: The hypothesis of electromagnetic induction in the protosolar wind. In C. P. Sonett, M. S. Giampapa, & M. S. Mathews (Eds.), The sun in time (pp. 710–739). Tuscon: University of Arizona Press.

    Google Scholar 

  • Humayun, M., & Clayton, R. N. (1995). Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 2131–2148.

    Article  Google Scholar 

  • Ida, S., & Lin, D. N. C. (2004). Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. The Astrophysical Journal, 604, 388–413.

    Article  Google Scholar 

  • Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics and Planetary Science, 47, 1176–1190. https://doi.org/10.1111/j.1945-5100.2011.01327.x.

    Article  Google Scholar 

  • Joswiak, D. J., & Brownlee, D. E. (2014). Refractory-rich materials in comets: CAIs, Al-rich chondrules and AOAs from comet wild 2 and a giant cluster interplanetary dust particle (IPD) of probable cometary origin and comparison to refractory-rich objects in chondrites: 45th lunar and planetary science conference, Lunar and Planetary Institute, Houston, 2282 pdf.

    Google Scholar 

  • Joswiak, D. J., Brownlee, D. E., Nguyen, A. N., & Messenger, S. (2017). Refractory materials in comet samples. Meteoritics and Planetary Science, 52, 1612–1648.

    Article  Google Scholar 

  • Kobayashi, D., & Sprenke, K. F. (2010). Lithospheric drift on early mars: Evidence in the magnetic field. Icarus, 210, 37–42.

    Article  Google Scholar 

  • Kowal, C. T. (1996). Asteroids – Their nature and utilization (2nd ed.). Chichester: Praxis Publishing Company (Wiley), 153 p.

    Google Scholar 

  • Krot, A. N., McKeegan, K. D., Leshin, L. A., MacPherson, G. J., & Scott, E. R. D. (2002). Existence of an 16O-rich gaseous reservoir in the solar nebula. Science, 295, 1051–1054.

    Article  Google Scholar 

  • Kubo-Oka, T., & Nakazawa, K. (1995). Gradual increase in the obliquity of Uranus due tidal interaction with a hypothetical retrograde satellite. Icarus, 114, 21–32.

    Article  Google Scholar 

  • Laskar, J. (1990). The chaotic motion of the solar system: A Numerical estimate of the size of the chaotic zones. Icarus, 88, 266–291.

    Article  Google Scholar 

  • Laskar, J., Froeschle, C., & Cellitti, A. (1992). The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the Standard Mapping: Physica D, 56, 253–269.

    Google Scholar 

  • Laskar, J. (1994). Large-scale chaos in the solar system. Astronomy and Astrophysics, 287, L9–L12.

    Google Scholar 

  • Laskar, J. (1995). Large scale chaos and marginal stability in the solar system: XIth international congress of mathematical physics. Boston: International Press, 120 p.

    Google Scholar 

  • Laskar, J. (1996). Large scale chaos and marginal stability in the solar system. Celestial Mechanics and Dynamical Astronomy, 64, 115–162.

    Article  Google Scholar 

  • Lauretta, D. S., Nagahara, H., & Alexander, C. M. O.’. D. (2006). Petrology and origin of ferromagnesian silicate chondrules. In D. S. Lauretta & H. Y. McSween (Eds.), Meteoritics and the early solar system, II (pp. 431–459). Tucson: University of Arizona Press.

    Google Scholar 

  • Leake, M. A., Chapman, C. R., Weidenschilling, S. J., Davis, D. R., & Greenberg, R. (1987). The chronology of Mercury’s geological and geophysical evolution: The Vulcanoid hypothesis. Icarus, 71, 350–375.

    Article  Google Scholar 

  • Lewis, J. S. (1972). Metal/silicate fractionation in the solar system. Earth and Planetary Science Letters, 15, 286–290.

    Article  Google Scholar 

  • Lewis, J. S. (1974). The chemistry of the solar system. Scientific American, 230(3), 51–65.

    Article  Google Scholar 

  • Licandro, J., Popescu, M., Morate, D., & de Leon, J. (2017). V-type candidates and Vesta family asteroids in the Moving Objects Vista (Movis) catalogue. Astronomy and Astrophysics, 600, A126. , (9 p.). https://doi.org/10.1051/0004-6361/201629465.

    Article  Google Scholar 

  • Liebske, C., & Khan, A. (2019). On the principal building blocks of mars and earth. Icarus, 322, 121–134.

    Article  Google Scholar 

  • Liffman, K., Pignatale, F. C., Maddison, S., & Brooks, G. (2012). Refractory metal nuggets—Formation of the first condensates in the solar nebula. Icarus, 221, 89–105.

    Article  Google Scholar 

  • Lodders, K., & Fegley, B., Jr. (1998). The planetary scientist’s companion (371 p). New York: Oxford University Press.

    Google Scholar 

  • MacDonald, G. J. F. (1963). The internal constitutions of the inner planets and the moon. Space Science Reviews, 2, 473–557.

    Article  Google Scholar 

  • MacDonald, G. J. F. (1964). Tidal friction. Reviews of Geophysics, 2, 467–541.

    Article  Google Scholar 

  • Malcuit, R. J. (2015). The twin sister planet, Venus and earth: Why are they so different? (401 p). Cham: Springer International Publishers.

    Book  Google Scholar 

  • Mann, A. (2018). Cataclysm’s end. Nature, 553, 393–395.

    Article  Google Scholar 

  • McNally, C. P., Hubbard, A., MacLow, M. M., Ebel, D. S., & D’Alessio. (2013). Mineral processing by short circuits in protoplanetary disks. The Astrophysical Journal Letters, 767, L2. (6 p.).

    Article  Google Scholar 

  • McSween, H. Y., Jr. (1999). Meteorites and their parent bodies. Cambridge: Cambridge University Press, 310 p.

    Google Scholar 

  • Mordisini, C., Alibert, Y., & Benz, W. (2009). Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution. Astronomy and Astrophysics, 501, 1139–1160. https://doi.org/10.1051/0004-6361/200810301.

    Article  Google Scholar 

  • Mordisini, C., van Boekel, R., Molliere, P., Henning, T., & Benneke, B. (2016). The imprint of exoplanet formation history on observable present-day spectra of hot jupiters. The Astrophysical Journal, 832, 41. (32 p.).

    Article  Google Scholar 

  • Moreau, L. (@laurinemoreau.com).

  • Morris, M. A., Boley, A. C., Desch, S. J., & Athanassladou, T. (2012). Chrondrule formation in bow shocks around eccentric planetary embryos. The Astrophysical Journal, 752, 27–44. https://doi.org/10.1088/0004-637X/752/1/27.

    Article  Google Scholar 

  • Robert, F. (2001). The origin of water on earth. Science, 293, 1056–1058.

    Article  Google Scholar 

  • Rubin, A. E. (2013). Secrets of primitive meteorites. Scientific American, 308(2), 36–41.

    Article  Google Scholar 

  • Rubin, A. E. (2015). Maskelynite in asteroidal, lunar and planetary meteorites: An indicator of shock pressure during impact ejection from their parent bodies. Icarus, 257, 221–229.

    Article  Google Scholar 

  • Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1999). Giant impact and fission hypotheses for the origin of the moon: A critical review of some geochemical evidence. In G. A. Snyder, C. R. Neal, & W. G. Ernst (Eds.), Planetary petrology and geochemistry (Vol. 2, pp. 121–134). Boulder: Geological Society of America, International Book Series.

    Google Scholar 

  • Ruzicka, A., Snyder, G. A., & Taylor, L. A. (2001). Comparative geochemistry of basalts for the moon, earth, HED asteroid, and mars: Implications for the origin of the Moon. Geochimica et Cosmochimica Acta, 65, 979–997.

    Article  Google Scholar 

  • Salmeron, R., & Ireland, T. R. (2012). Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth and Planetary Science Letters, 327-328, 61–67.

    Article  Google Scholar 

  • Shu, F. H., Shang, H., & Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 1545–1552.

    Article  Google Scholar 

  • Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E., & Lee, T. (2001). The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysical Journal, 548, 1029–1050.

    Article  Google Scholar 

  • Smoluchowski, R. (1973a). Lunar tides and magnetism. Nature, 242, 516–517.

    Article  Google Scholar 

  • Smoluchowski, R. (1973b). Magnetism of the Moon. The Moon, 7, 127–131.

    Article  Google Scholar 

  • Steenstra, E. S., Dankers, D., Berndt, J., Klemme, S., Matveev, S., & van Westrenen, W. (2019). Significant depletion of volatile elements in the mantle of asteroid Vesta due to core formation. Icarus, 317, 669–681.

    Article  Google Scholar 

  • Taylor, S. R. (1998). Destiny or chance: Our solar system and its place in the cosmos. Cambridge: Cambridge University Press, 229 p.

    Google Scholar 

  • Taylor, S. R. (2001). Solar system evolution: A new perspective. Cambridge: Cambridge University Press, 460 p.

    Book  Google Scholar 

  • Taylor, S. R. (2012). Destiny or chance revisited: Planets and their place in the Cosmos. Cambridge: Cambridge University Press, 291 p.

    Book  Google Scholar 

  • Vinogradov, A. P., Surkov, Y. A., & Kirnozov, F. F. (1973). The content of uranium, thorium, and potassium in the rocks of Venus as measured by Venera 8. Icarus, 20, 253–259.

    Article  Google Scholar 

  • Wang, H., Weiss, B. P., Bai, X.-N., et al. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science, 355, 623–627.

    Article  Google Scholar 

  • Weidenschilling, S. J. (1978). Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99–111.

    Article  Google Scholar 

  • Wilson, S. A., Howard, A. D., Moore, J. M., & Grant, J. A. (2016). A cold-wet middle latitude environment on mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes. Journal of Geophysical Research: Planets, 121, 1667–1694.

    Google Scholar 

  • Wood, J. A. (1974). Summary of the 5th lunar science conference: Constraints on structure and composition of the lunar interior: Geotimes, June Issue, p. 16–17.

    Google Scholar 

  • Wood, J. A. (2004). Formation of chondritic refractory inclusions: The astrophysical setting. Geochimica et Cosmochimica Acta, 68, 4007–4021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malcuit, R. (2021). The Origin of the Sun and the Early Evolution of the Solar System with Special Emphasis on Mars, Asteroids, and Meteorites. In: Geoforming Mars. Springer, Cham. https://doi.org/10.1007/978-3-030-58876-2_2

Download citation

Publish with us

Policies and ethics