Skip to main content

Gas Adsorption on Graphtriyne Membrane: Impact of the Induction Interaction Term on the Computational Cost

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Graphynes are a family of porous carbon allotropes that are viewed as ideal 2D nanofilters. In this present work, the authors have modified the Improved Lennard-Jones (ILJ) semi-empirical potential used in the previous works by adding the induction term (iind) to define the full interaction. The evaluation of the computational cost was done comparing ILJ vs ILJ-iind and analyzing the adsorption of 1 gas (CO\(_{2}\)) and a small mixture of gases containing CO\(_{2}\), N\(_{2}\) and H\(_{2}\)O. The computational time of the different calculations is compared and possible improvements of the potential models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Environmental Protection Agency (US EPA): Climate Change Indicators in the United States: Global Greenhouse Gas Emissions (2016). http://www.epa.gov/climate-indicators. Accessed Feb 2019

  2. Smit, B.: Carbon capture and storage: introductory lecture. Faraday Discuss. 192, 9–25 (2016). https://doi.org/10.1039/C6FD00148C

    Article  Google Scholar 

  3. World Resources Institute (WRI): Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s climate data explorer. http://cait.wri.org. Accessed 28 Feb 2019

  4. Falcinelli, S., et al.: Methane production by CO\(_{2}\) hydrogenation reaction with and without solid phase catalysis. Fuel 209, 802–811 (2017). https://doi.org/10.1016/j.fuel.2017.07.109

    Article  Google Scholar 

  5. Heijkers, S., Martini, L.M., Dilecce, G., Tosi, P., Bogaerts, A.: Nanosecond pulsed discharge for CO\(_{2}\) conversion: kinetic modeling to elucidate the chemistry and improve the performance. J. Phys. Chem. C 123(19), 12104–12116 (2019). https://doi.org/10.1021/acs.jpcc.9b01543

    Article  Google Scholar 

  6. Falcinelli, S.: Fuel production from waste CO\(_{2}\) using renewable energies. Catal. Today 348, 95–101 (2020). https://doi.org/10.1016/j.cattod.2019.08.041

    Article  Google Scholar 

  7. Song, C., et al.: Tri-reforming of methane over Ni catalysts for CO\(_{2}\) conversion to Syngas with desired H\(_{2}\)/CO ratios using flue gas of power plants without CO\(_{2}\) separation. In: Carbon Dioxide Utilization for Global Sustainability, Studies in Surface Science and Catalysis, vol. 153, pp. 315–322. Elsevier (2004). https://doi.org/10.1016/S0167-2991(04)80270-2

  8. Huck, J.M., et al.: Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014). https://doi.org/10.1039/C4EE02636E

    Article  Google Scholar 

  9. Bui, M., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018). https://doi.org/10.1039/C7EE02342A

  10. Li, J.R., et al.: Porous materials with pre-designed single-molecule traps for CO\(_{2}\) selective adsorption. Nat. Commun. 4, 1538 (2014). https://doi.org/10.1038/ncomms2552

    Article  Google Scholar 

  11. Celiberto, R., et al.: Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sources Sci. Technol. 25(3), 033004 (2016)

    Article  Google Scholar 

  12. Srinivas, G., Krungleviciute, V., Guo, Z.X., Yildirim, T.: Exceptional CO\(_{2}\) capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014). https://doi.org/10.1039/C3EE42918K

    Article  Google Scholar 

  13. Ganesan, A., Shaijumon, M.: Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2015). https://doi.org/10.1016/j.micromeso.2015.08.021

    Article  Google Scholar 

  14. Ghosh, S., Sevilla, M., Fuertes, A.B., Andreoli, E., Ho, J., Barron, A.R.: Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide-methane selectivity. J. Mater. Chem. A 4, 14739–14751 (2016). https://doi.org/10.1039/C6TA04936B

    Article  Google Scholar 

  15. Kim, J., Lin, L.C., Swisher, J.A., Haranczyk, M., Smit, B.: Predicting large CO\(_{2}\) adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J. Am. Chem. Soc. 134(46), 18940–18943 (2012). https://doi.org/10.1021/ja309818u

    Article  Google Scholar 

  16. Liu, B., Smit, B.: Molecular simulation studies of separation of CO\(_{2}\)/N\(_{2}\), CO\(_{2}\)/CH\(_{4}\), and CH\(_{4}\)/N\(_{2}\) by ZIFs. J. Phys. Chem. C 114(18), 8515–8522 (2010). https://doi.org/10.1021/jp101531m

    Article  Google Scholar 

  17. Lin, L.C., et al.: Understanding CO\(_{2}\) dynamics in metal-organic frameworks with open metal sites. Angew. Chem. Int. Ed. 52(16), 4410–4413 (2013). https://doi.org/10.1002/anie.201300446

    Article  Google Scholar 

  18. Schrier, J.: Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4(7), 3745–3752 (2012). https://doi.org/10.1021/am300867d

    Article  Google Scholar 

  19. Xiang, Z., et al.: Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015). https://doi.org/10.1021/jacs.5b06266

    Article  Google Scholar 

  20. Liu, H., et al.: A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014). https://doi.org/10.1038/ncomms6147

    Article  Google Scholar 

  21. DuBay, K.H., Hall, M.L., Hughes, T.F., Wu, C., Reichman, D.R., Friesner, R.A.: Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput. 8(11), 4556–4569 (2012). https://doi.org/10.1021/ct300175w

    Article  Google Scholar 

  22. Bartolomei, M., Carmona-Novillo, E., Giorgi, G.: First principles investigation of hydrogen physical adsorption on graphynes’ layers. Carbon 95, 1076–1081 (2015). https://doi.org/10.1016/j.carbon.2015.08.118

    Article  Google Scholar 

  23. Du, H., Li, J., Zhang, J., Su, G., Li, X., Zhao, Y.: Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115(47), 23261–23266 (2011). https://doi.org/10.1021/jp206258u

    Article  Google Scholar 

  24. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for n-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  25. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_{2}\) molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013). https://doi.org/10.1021/jp408522m

    Article  Google Scholar 

  26. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  27. Faginas-Lago, N., Laganà, A., Gargano, R., Barreto, P.: On the semiclassical initial value calculation of thermal rate coefficients for the N + N\(_{2}\) reaction. J. Chem. Phys. 125(11), 114311 (2006). https://doi.org/10.1063/1.2345363

    Article  Google Scholar 

  28. Laganà, A., Faginas-Lago, N., Rampino, S., Huarte-Larrañaga, F., García, E.: Thermal rate coefficients in collinear versus bent transition state reactions: the N + N\(_{2}\) case study. Phys. Scr. 78(5), 058116 (2008). https://doi.org/10.1088/0031-8949/78/05/058116

    Article  MATH  Google Scholar 

  29. Rampino, S., Faginas-Lago, N., Laganà, A., Huarte-Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comput. Chem. 33(6), 708–714 (2012). https://doi.org/10.1002/jcc.22878

    Article  Google Scholar 

  30. Laganà, A., Crocchianti, S., Faginas-Lago, N., Pacifici, L., Ferraro, G.: A nonorthogonal coordinate approach to atom-diatom parallel reactive scattering calculations. Collect. Czech. Chem. Commun. 68(2), 307–330 (2003). https://doi.org/10.1135/cccc20030307

    Article  Google Scholar 

  31. Faginas-Lago, N., Lombardi, A., Pacifici, L., Costantini, A.: Design and implementation of a Grid application for direct calculations of reactive rates. Comput. Theor. Chem. 1022, 103–107 (2013). https://doi.org/10.1016/j.comptc.2013.08.014

    Article  Google Scholar 

  32. Lombardi, A., Faginas-Lago, N., Laganà, A.: Grid calculation tools for massive applications of collision dynamics simulations: carbon dioxide energy transfer. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 627–639. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_43

    Chapter  Google Scholar 

  33. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

    Article  Google Scholar 

  34. Pearlman, D., et al.: AMBER. A package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Compute. Phys. Commun. 91, 1–41 (1995). https://doi.org/10.1016/0010-4655(95)00041-D

  35. Lim, J.R., Yang, C.T., Kim, J., Lin, L.C.: Transferability of CO\(_{2}\) force fields for prediction of adsorption properties in all-silica zeolites. J. Phys. Chem. C 122(20), 10892–10903 (2018). https://doi.org/10.1021/acs.jpcc.8b02208

    Article  Google Scholar 

  36. Boyd, P.G., Moosavi, S.M., Witman, M., Smit, B.: Force-field prediction of materials properties in metal-organic frameworks. J. Phys. Chem. Lett. 8(2), 357–363 (2017). https://doi.org/10.1021/acs.jpclett.6b02532

    Article  Google Scholar 

  37. Lin, L.C., Lee, K., Gagliardi, L., Neaton, J.B., Smit, B.: Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal-organic frameworks. J. Chem. Theory Comput. 10(4), 1477–1488 (2014). https://doi.org/10.1021/ct500094w

    Article  Google Scholar 

  38. Vekeman, J., García Cuesta, I., Faginas-Lago, N., Wilson, J., Sánchez-Marín, J., Sánchez de Merás, A.: Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks. Phys. Chem. Chem. Phys. (18), 25518–25530 (2018). https://doi.org/10.1039/C8CP03652G

  39. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_{2}\) molecules: state-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143(3), 034307 (2015). https://doi.org/10.1063/1.4926880

    Article  Google Scholar 

  40. Faginas-Lago, N., Albertí, M., Costantini, A., Laganà, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 1–9 (2014). https://doi.org/10.1007/s00894-014-2226-4

    Article  Google Scholar 

  41. Faginas-Lago, N., Huarte-Larrañaga, F., Laganà, A.: Full dimensional quantum versus semiclassical reactivity for the bent transition state reaction N + N\(_{2}\). Chem. Phys. Lett. 464(4–6), 249–255 (2008). https://doi.org/10.1016/j.cplett.2008.09.008

    Article  MATH  Google Scholar 

  42. Apriliyanto, Y.B., et al.: Nanostructure selectivity for molecular adsorption and separation: the case of graphyne layers. J. Phys. Chem. C 122(28), 16195–16208 (2018). https://doi.org/10.1021/acs.jpcc.8b04960

    Article  Google Scholar 

  43. Faginas-Lago, N., Yeni, D., Huarte, F., Wang, Y., Alcamí, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120(32), 6451–6458 (2016). https://doi.org/10.1021/acs.jpca.5b12574

    Article  Google Scholar 

  44. Yeamin, M.B., Faginas-Lago, N., Albertí, M., García Cuesta, I., Sánchez-Marín, J., Sánchez de Merás, A.: Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv. 4, 54447–54453 (2014). https://doi.org/10.1039/C4RA08487J

  45. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Molecular simulations of CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O gaseous mixture separation in graphtriyne membrane. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 374–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_27

    Chapter  Google Scholar 

  46. James, A., et al.: Graphynes: indispensable nanoporous architectures in carbon flatland. RSC Adv. 8, 22998–23018 (2018). https://doi.org/10.1039/C8RA03715A

    Article  Google Scholar 

  47. Bartolomei, M., Giorgi, G.: A novel nanoporous graphite based on graphynes: first-principles structure and carbon dioxide preferential physisorption. ACS Appl. Mater. Interfaces 8(41), 27996–28003 (2016). https://doi.org/10.1021/acsami.6b08743

    Article  Google Scholar 

  48. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_{2}\)-N\(_{2}\) collisions: selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37(16), 1463–1475 (2016). https://doi.org/10.1002/jcc.24359

    Article  Google Scholar 

  49. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: A full dimensional grid empowered simulation of the CO\(_{2}\) + CO\(_{2}\) processes. J. Comput. Chem. 33(22), 1806–1819 (2012). https://doi.org/10.1002/jcc.23010

    Article  Google Scholar 

  50. Albertí, M., Aguilar, A., Cappelletti, D., Laganà, A., Pirani, F.: On the development of an effective model potential to describe water interaction in neutral and ionic clusters. Int. J. Mass Spectrom. 280, 50–56 (2009). https://doi.org/10.1016/j.ijms.2008.07.018

    Article  Google Scholar 

  51. Albertí, M., Pirani, F., Laganà, A.: Carbon dioxide clathrate hydrates: selective role of intermolecular interactions and action of the SDS catalyst. J. Phys. Chem. A 117(32), 6991–7000 (2013). https://doi.org/10.1021/jp3126158

    Article  Google Scholar 

  52. Pirani, P., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the lennard-jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489–5503 (2008). https://doi.org/10.1039/B808524B

    Article  Google Scholar 

  53. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  54. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  55. Faginas Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theoret. Chem. Acc. 135(7), 1–9 (2016). https://doi.org/10.1007/s00214-016-1914-9

    Article  Google Scholar 

  56. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Ion-water cluster molecular dynamics using a semiempirical intermolecular potential. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 355–370. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_26

    Chapter  Google Scholar 

  57. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_{2}\)O)\(_{m}\) or Benzene (C\(_{6}\)H\(_{6}\))\(_{n}\) Aggregates to Solvate the K\(^{+}\)? In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

    Chapter  Google Scholar 

  58. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^{+}\) and K\(^{+}\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015). https://doi.org/10.1016/j.molliq.2015.01.029

    Article  Google Scholar 

  59. Lombardi, A., Faginas-Lago, N., Gaia, G., Federico, P., Aquilanti, V.: Collisional energy exchange in CO\(_2\)–N\(_2\) gaseous mixtures. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 246–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_19

    Chapter  Google Scholar 

  60. Albertí, M., Faginas-Lago, N.: Ion size influence on the Ar solvation shells of M\(^{+}\)C\(_{6}\)F\(_{6}\) clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116(12), 3094–3102 (2012). https://doi.org/10.1021/jp300156k

    Article  Google Scholar 

  61. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100

    Article  Google Scholar 

  62. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_2\) + N\(_2\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415

    Article  Google Scholar 

  63. Smith, W., Yong, C., Rodger, P.: DL\(\_\)POLY: application to molecularsimulation. Mol. Simul. 28(5), 385–471 (2002).https://doi.org/10.1080/08927020290018769. http://www.cse.clrc.ac.uk/ccg/software/DL_POLY/index.shtm

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). E. V. F. A thanks the Herla Project (http://hscw.herla.unipg.it) - Università degli Studi di Perugia for allocated computing time. N. F.-L and A. L. thanks MIUR and the University of Perugia for the financial support of the AMIS project through the “Dipartimenti di Eccellenza” programme. N. F.-L and A. L. also acknowledges the Fondo Ricerca di Base 2017 (RICBASE2017BALUCANI) del Dipartimento di Chimica, Biologia e Biotecnologie della Università di Perugia for financial support. A. L. acknowledges financial support from MIUR PRIN 2015 (contract 2015F59J3R 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emília Valença Ferreira de Aragão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aragão, E.V.F., Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A. (2020). Gas Adsorption on Graphtriyne Membrane: Impact of the Induction Interaction Term on the Computational Cost. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics