Skip to main content

Efficient Speed-Up of Radial Basis Functions Approximation and Interpolation Formula Evaluation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

This paper presents a method for efficient Radial basis function (RBF) evaluation if compactly supported radial basis functions (CSRBF) are used. Application of CSRBF leads to sparse matrices, due to limited influence of radial basis functions in the data domain and thus non-zero weights (coefficients) are valid only for some areas in the data domain. The presented algorithm uses space subdivision which enables us to use only relevant weights for efficient RBF function evaluation. This approach is applicable for 2D and 3D case and leads to a significant speed-up. This approach is applicable in cases when the RBF function is evaluated repeatably.

The research was supported by projects Czech Science Foundation (GACR) No. GA17-05534S, by Ministry of Education, Youth, and Sport of Czech Republic - University spec. research - 1311, and partially by SGS 2019-016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://liblas.org/.

References

  1. Adams, B., Wicke, M.: Meshless approximation methods and applications in physics based modeling and animation. In: Eurographics (Tutorials), pp. 213–239 (2009)

    Google Scholar 

  2. Atluri, S., Liu, H., Han, Z.: Meshless local Petrov-Galerkin (MLPG) mixed finite difference method for solid mechanics. Comput. Model. Eng. Sci. 15(1), 1 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1), 3–47 (1996)

    Article  Google Scholar 

  4. Biancolini, M.E.: Fast Radial Basis Functions for Engineering Applications. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-75011-8

    Book  MATH  Google Scholar 

  5. Chen, M.-B.: A parallel 3D Delaunay triangulation method. In: 2011 IEEE Ninth International Symposium on Parallel and Distributed Processing with Applications, pp. 52–56. IEEE (2011)

    Google Scholar 

  6. Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay triangulation algorithm in Ed. Comput. Aided Des. 30(5), 333–341 (1998)

    Article  Google Scholar 

  7. Davis, P.J.: Interpolation and Approximation. Courier Corporation, North Chelmsford (1975)

    MATH  Google Scholar 

  8. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    Book  Google Scholar 

  9. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algor. 45(1–4), 345–368 (2007). https://doi.org/10.1007/s11075-007-9072-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferreira, A.J.M., Kansa, E.J., Fasshauer, G.E., Leitão, V.M.A.: Progress on Meshless Methods. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8821-6

    Book  MATH  Google Scholar 

  11. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Gumerov, N.A., Duraiswami, R.: Fast radial basis function interpolation via preconditioned Krylov iteration. SIAM J. Sci. Comput. 29(5), 1876–1899 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  14. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5), 891–902 (2003)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Snoeyink, J.: A comparison of five implementations of 3D Delaunay tessellation. In: Combinatorial and Computational Geometry, vol. 52, no. 439–458, p. 56 (2005)

    Google Scholar 

  16. Majdisova, Z., Skala, V.: Big geo data surface approximation using radial basis functions: a comparative study. Comput. Geosci. 109, 51–58 (2017)

    Article  Google Scholar 

  17. Majdisova, Z., Skala, V.: Radial basis function approximations: comparison and applications. Appl. Math. Model. 51, 728–743 (2017)

    Article  MathSciNet  Google Scholar 

  18. Pan, R., Skala, V.: A two-level approach to implicit surface modeling with compactly supported radial basis functions. Eng. Comput. 27(3), 299–307 (2011). https://doi.org/10.1007/s00366-010-0199-1

    Article  Google Scholar 

  19. Prakash, G., Kulkarni, M., Sripati, U.: Using RBF neural networks and Kullback-Leibler distance to classify channel models in free space optics. In: 2012 International Conference on Optical Engineering (ICOE), pp. 1–6. IEEE (2012)

    Google Scholar 

  20. Rajan, V.T.: Optimality of the Delaunay triangulation in \(\mathbb{R}^d\). Discrete Comput. Geom. 12(2), 189–202 (1994). https://doi.org/10.1007/BF02574375

    Article  MathSciNet  MATH  Google Scholar 

  21. Skala, V.: Fast interpolation and approximation of scattered multidimensional and dynamic data using radial basis functions. WSEAS Trans. Math. 12(5), 501–511 (2013). E-ISSN 2224-2880

    Google Scholar 

  22. Skala, V.: RBF interpolation with CSRBF of large data sets. Procedia Comput. Sci. 108, 2433–2437 (2017)

    Article  Google Scholar 

  23. Smolik, M., Skala, V.: Highly parallel algorithm for large data in-core and out-core triangulation in E2 and E3. Procedia Comput. Sci. 51, 2613–2622 (2015)

    Article  Google Scholar 

  24. Smolik, M., Skala, V.: Spherical RBF vector field interpolation: experimental study. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 431–434. IEEE (2017)

    Google Scholar 

  25. Smolik, M., Skala, V.: Large scattered data interpolation with radial basis functions and space subdivision. Integr. Comput. Aided Eng. 25(1), 49–62 (2018)

    Article  Google Scholar 

  26. Smolik, M., Skala, V.: Efficient simple large scattered 3D vector fields radial basis functions approximation using space subdivision. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 337–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_25

    Chapter  Google Scholar 

  27. Smolik, M., Skala, V., Majdisova, Z.: Vector field radial basis function approximation. Adv. Eng. Softw. 123, 117–129 (2018)

    Article  Google Scholar 

  28. Torres, C.E., Barba, L.A.: Fast radial basis function interpolation with Gaussians by localization and iteration. J. Comput. Phys. 228(14), 4976–4999 (2009)

    Article  MathSciNet  Google Scholar 

  29. Uhlir, K., Skala, V.: Reconstruction of damaged images using radial basis functions. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)

    Google Scholar 

  30. Wendland, H.: Computational aspects of radial basis function approximation. Stud. Comput. Math. 12, 231–256 (2006)

    Article  MathSciNet  Google Scholar 

  31. Yingwei, L., Sundararajan, N., Saratchandran, P.: Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans. Neural Networks 9(2), 308–318 (1998)

    Article  Google Scholar 

  32. Zhang, X., Song, K.Z., Lu, M.W., Liu, X.: Meshless methods based on collocation with radial basis functions. Comput. Mech. 26(4), 333–343 (2000). https://doi.org/10.1007/s004660000181

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at the University of West Bohemia, Plzen, for their discussions and suggestions. Also, great thanks belong to our colleague Martin Cervenka for his hints and ideas. The research was supported by projects Czech Science Foundation (GACR) No. GA17-05534S, by the Ministry of Education, Youth, and Sport of Czech Republic - University spec. research - 1311, and partially by SGS 2019-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Smolik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smolik, M., Skala, V. (2020). Efficient Speed-Up of Radial Basis Functions Approximation and Interpolation Formula Evaluation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics