Skip to main content

Sex-Specific Differences of Apoptosis in Heart Failure Due to Volume-Overload

  • Chapter
  • First Online:
Sex Differences in Heart Disease

Abstract

Volume overload induced by arteriovenous shunt for 4 and 16 weeks has been shown to produce sex-specific alterations in cardiac hypertrophy and heart failure, respectively. These changes were accompanied by sex-dependent alterations in the pro- and anti-apoptotic protein content and cardiomyocyte apoptosis in the heart. Cardiac hypertrophy in both male and female hearts produced a small depression in the extent of apoptosis without any change in mRNA levels for caspases 3 and 9. On the other hand, heart failure in males, unlike females, showed a marked increase in apoptosis and elevated mRNA levels for both caspase isoforms. Content for unphosphorylated and phosphorylated Bad proteins as well as Bax protein content in failing male hearts were higher than those in female hearts. Phosphorylated Bcl-2 protein content in male failing hearts were lower and that for females were higher in comparison to the respective sham control values. Increased apoptosis as well as the protein content for caspase 3, caspase 9, phosphorylated Bad and Bax in 16 weeks AV-shunt ovariectomized animals were attenuated by treatment with estrogen. AV-shunt induced alterations in Bcl-2 and phosphorylated Bcl-2 protein content in ovariectomized hearts were also prevented by estrogen treatment. These alterations in cardiomyocyte apoptosis as well as, pro-and anti-apoptotic factors in the heart may provide a possible mechanism to explain the sex-specific differences in the cardiac remodelling and cardiac function induced by volume overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  3. Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu 17:229–259

    PubMed  Google Scholar 

  4. Ucker DS (1991) Death by suicide: one way to go in mammalian cellular development? New Biol 3:103–109

    CAS  PubMed  Google Scholar 

  5. Arends MJ, Wyllie AH (1991) Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32:223–254

    Article  CAS  PubMed  Google Scholar 

  6. Brown KA, Page MT, Nguyen C et al (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865

    Google Scholar 

  7. Xu YJ, Saini HK, Zhang M et al (2006) MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine. Cardiovasc Res 72:163–174

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578

    Article  CAS  PubMed  Google Scholar 

  9. Azhar G, Liu L, Zhang X, Wei JY (1999) Influence of age on hypoxia/reoxygenation-induced DNA fragmentation and bcl-2, bcl-xl, bax and fas in the rat heart and brain. Mech Ageing Dev 112:5–25

    Article  CAS  PubMed  Google Scholar 

  10. Chao W, Shen Y, Li L et al (2002) Importance of FADD signaling in serum-deprivation- and hypoxia-induced cardiomyocyte apoptosis. J Biol Chem 277:31639–31645

    Article  CAS  PubMed  Google Scholar 

  11. Ing DJ, Zang J, Dzau VJ et al (1999) Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide. Bak and Bcl-x. Circ Res 84:21–33

    Article  CAS  PubMed  Google Scholar 

  12. Bialik S, Cryns VL, Drincic A et al (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403–414

    Article  CAS  PubMed  Google Scholar 

  13. de Moissac D, Gurevich RM, Zheng H et al (2000) Caspase activation and mitochondrial cytochrome c release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32:53–63

    Article  CAS  PubMed  Google Scholar 

  14. Adams JW, Pagel AL, Means CK et al (2000) Cardiomyocyte apoptosis induced by Gαq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ Res 87:1180–1187

    Article  CAS  PubMed  Google Scholar 

  15. Itoh G, Tamura J, Suzuki M et al (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bishopric NH, Andreka P, Slepak T, Webster KA (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150

    Article  CAS  PubMed  Google Scholar 

  17. Kitsis RN, Narula J (2008) Introduction – cell death in heart failure. Heart Fail Rev 13:107–109

    Article  PubMed  Google Scholar 

  18. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  19. Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256:50–57

    Article  CAS  PubMed  Google Scholar 

  20. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  21. Condorelli G, Morisco C, Stassi G et al (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078

    Article  CAS  PubMed  Google Scholar 

  22. Regula KM, Kirshenbaum LA (2005) Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 38:3–13

    Article  CAS  PubMed  Google Scholar 

  23. Tamarappoo BK, John BT, Reinier K et al (2012) Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a post-mortem histological evaluation. J Am Heart Assoc 1:1–9

    Article  Google Scholar 

  24. Dent MR, Das S, Dhalla NS (2007) Alterations in both death and survival signals for apoptosis in heart failure due to volume overload. J Mol Cell Cardiol 43:726–732

    Article  CAS  PubMed  Google Scholar 

  25. Dent MR, Tappia PS, Dhalla NS. Gender differences in apoptotic signaling in heart failure due to volume overload. Apoptosis 15: 499–510, 2010a. Erratum in: Apoptosis 16, 757–758, 2011

    Google Scholar 

  26. Das S, Babick AP, Xu YJ et al (2010) TNF-alpha-mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. J Cell Mol Med 14:1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hassan AF, Kamal MM (2013) Effect of exercise training and anabolic androgenic steroids on hemodynamics, glycogen content, angiogenesis and apoptosis of cardiac muscle in adult male rats. Int J Health Sci. 7:47–60

    Article  Google Scholar 

  28. Kajstura J, Cheng W, Reiss K et al (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables to infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  29. Baldi A, Abbate A, Bussani R et al (2002) Apoptosis and post-infarction left ventricular remodelling. J Mol Cell Cardiol 34:165–174

    Article  CAS  PubMed  Google Scholar 

  30. Kurrelmeyer K, Michael L, Baumgarten G et al (2000) Endogenous myocardial tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 290:5456–5461

    Article  Google Scholar 

  31. Cheng W, Kajstura J, Nitahara JA et al (1996) Programmed cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327

    Article  CAS  PubMed  Google Scholar 

  32. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189

    Article  CAS  PubMed  Google Scholar 

  33. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human. N Engl J Med 336:1131–1141

    Article  CAS  PubMed  Google Scholar 

  34. Mihailidou AS, Loan Le TY, Mardini M, Funder JW (2009) Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 54:1306–1312

    Article  PubMed  CAS  Google Scholar 

  35. Gottlieb R (2005) ICE-ing the heart. Circ Res 96:1036–1038

    Article  CAS  PubMed  Google Scholar 

  36. Yaoita H, Ogawa K, Maehara K et al (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281

    Article  CAS  PubMed  Google Scholar 

  37. Meldrum DR, Wang M, Tsai BM et al (2005) Intracelllular signaling mechanisms of sex hormones in acute myocardial inflammation and injury. Front Biosci 10:1835–1867

    Article  CAS  PubMed  Google Scholar 

  38. Booij HG, Yu H, De Boer RA et al (2016) Overexpression of A kinase interacting protein 1 attenuates myocardial ischaemia/reperfusion injury but does not influence heart failure development. Cardiovasc Res 111:217–226

    Article  CAS  PubMed  Google Scholar 

  39. Bing OH (1994) Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 26:943–948

    Article  CAS  PubMed  Google Scholar 

  40. Fu HY, Okada K, Liao Y et al (2010) Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 122:361–369

    Article  CAS  PubMed  Google Scholar 

  41. O’Connell TD, Swigart PM, Rodrigo MC et al (2006) Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 116:1005–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zankov DP, Sato A, Shimizu A, Ogita H (2017) Differential effects of myocardial afadin on pressure overload-induced compensated cardiac hypertrophy. Circ J 81:1862–1870

    Article  CAS  PubMed  Google Scholar 

  43. Chen C, Zou LX, Lin QY et al (2019) Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol 20:390–401

    Article  CAS  PubMed  Google Scholar 

  44. Gogiraju R, Hubert A, Fahrer J et al (2019) Endothelial leptin receptor deletion promotes cardiac autophagy and angiogenesis following pressure overload by suppressing Akt/mTOR signaling. Circ Heart Fail 12:1–16

    Article  CAS  Google Scholar 

  45. Chen YW, Pat B, Gladden JD et al (2011) Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 300:H2251–H2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moorjani N, Westaby S, Narula J et al (2009) Effects of left ventricular volume overload on mitochondrial and death-receptor-mediated apoptotic pathways in the transition to heart failure. Am J Cardiol 103:1261–1268

    Article  CAS  PubMed  Google Scholar 

  47. Treskatsch S, Shakibaei M, Feldheiser A et al (2015) Ultrastructural changes associated with myocardial apoptosis, in failing rat hearts induced by volume overload. Int J Cardiol 197:327–332

    Google Scholar 

  48. Kolpakov MA, Seqqat R, Rafiq K et al (2009) Pleiotropic effects of neutrophils on myocyte apoptosis and left ventricular remodeling during early volume overload. J Mol Cell Cardiol 47:634–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohamed BA, Schnelle M, Khadjeh S et al (2016) Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 18:362–371

    Article  CAS  PubMed  Google Scholar 

  50. Reddy S, Zhao M, Hu DQ et al (2013) Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Physiol 304:H1314–H1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shaqura M, Mohamed DM, Aboryag NB et al (2017) Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats. PLoS ONE 12:1–19

    Article  CAS  Google Scholar 

  52. Aboryag NB, Mohamed DM, Dehe L et al (2017) histopathological changes in the kidney following congestive heart failure by volume overload in rats. Oxid Med Cell Longev 1–10:2017

    Google Scholar 

  53. Wang X, Ren B, Liu SY et al (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94:752–763

    Article  CAS  PubMed  Google Scholar 

  54. Dent MR, Dhalla NS, Tappia PS (2004) Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 287:H719–H727

    Article  CAS  PubMed  Google Scholar 

  55. Guerra S, Leri A, Wang X et al (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85:856–866

    Article  CAS  PubMed  Google Scholar 

  56. Chen SN, Lombardi R, Karmouch J et al (2019) dna damage response/tp53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ Res 124:856–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takagi C, Urasawa K, Yoshida I et al (1999) Enhanced GRK5 expression in the hearts of cardiomyopathic hamsters, J2N-k. Biochem Biophys Res Commun 262:206–210

    Article  CAS  PubMed  Google Scholar 

  58. Cesselli D, Jakoniuk I, Barlucchi L et al (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286

    Article  CAS  PubMed  Google Scholar 

  59. Takeda N (2003) Cardiomyopathy: molecular and immunological aspects. Int J Mol Med 11:13–26

    CAS  PubMed  Google Scholar 

  60. Bennett, Martin R (2002) Apoptosis in the cardiovascular system. Heart 87:480–487

    Google Scholar 

  61. Rodrigues PG, Miranda-Silva D, Costa SM et al (2019) Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. Am J Physiol Heart Circ Physiol 316:H459–H475

    Article  CAS  PubMed  Google Scholar 

  62. Xia Y, Chen Z, Chen A et al (2017) LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J Mol Cell Cardiol 108:138–148

    Article  CAS  PubMed  Google Scholar 

  63. Xie D, Liao Y, Wu B et al (2018) Cardiac nestin + cells derived from early stage of dilated cardiomyopathy enhanced the survival of the doxorubicin-injured cardiac muscle hl-1 cells. Int Heart J 59:180–189

    Article  CAS  PubMed  Google Scholar 

  64. Major JL, Salih M, Tuana BS (2017) E2F6 protein levels modulate drug induced apoptosis in cardiomyocytes. Cell Signal 40:230–238

    Article  CAS  PubMed  Google Scholar 

  65. Wu J, Guo W, Lin SZ et al (2016) Gp130-mediated STAT3 activation by S-propargyl-cysteine, an endogenous hydrogen sulfide initiator, prevents doxorubicin-induced cardiotoxicity. Cell Death Dis 7:1–13

    CAS  Google Scholar 

  66. Wu L, Chen Y, Chen Y et al (2019) Effect of HIF-1α/miR-10b-5p/PTEN on hypoxia-induced cardiomyocyte apoptosis. J Am Heart Assoc 8:1–15

    Google Scholar 

  67. De Angelis A, Piegari E, Cappetta D et al (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292

    Article  PubMed  CAS  Google Scholar 

  68. Li Z, Bing OH, Long X et al (1997) Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272:H2313–H2319

    CAS  PubMed  Google Scholar 

  69. Mitsuhashi S, Saito N, Watano K et al (2003) Defect of delta-sarcoglycan gene is responsible for development of dilated cardiomyopathy of a novel hamster strain, J2N-k: calcineurin/PP2B activity in the heart of J2N-k hamster. J Biochem 134:269–276

    Article  CAS  PubMed  Google Scholar 

  70. Sakamoto A, Ono K, Abe M et al (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94:13873–13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ren J (2007) Influence of gender on oxidative stress, lipid peroxidation, protein damage and apoptosis in hearts and brains from spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 34:432–438

    Article  CAS  PubMed  Google Scholar 

  72. Liu JJ, Peng L, Bradley CJ et al (2000) Increased apoptosis in the heart of genetic hypertension, associated with increased fibroblasts. Cardiovasc Res 45:729–735

    Article  CAS  PubMed  Google Scholar 

  73. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moe GW, Marin-Garcia J (2016) Role of cell death in the progression of heart failure. Heart Fail Rev 21:157–167

    Article  PubMed  Google Scholar 

  75. Perlman H, Maillard L, Krasinski K et al (1997) Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 95:981–987

    Article  CAS  PubMed  Google Scholar 

  76. Pollman MJ, Hall JL, Mann MJ et al (1998) Inhibition of neointimal cell Bcl-x expression induces apoptosis and regression of vascular disease. Nature Med 4:222–227

    Article  CAS  PubMed  Google Scholar 

  77. Shekhar A, Heeger P, Reutelingsperger C et al (2018) Targeted imaging for cell death in cardiovascular disorders. JACC Cardiovasc Imaging 11:476–493

    Article  PubMed  Google Scholar 

  78. Brill A, Torchinsky A, Carp H, Toder V (1999) The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet 16:512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reed, Douglas R (2011) Apoptosis: physiology and pathology. John C. Green (ed) Cambridge University Press, London. 978-0-521-88656-7

    Google Scholar 

  80. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  82. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Bio 1:120–129

    Article  CAS  Google Scholar 

  83. Mughal W, Dhingra R, Kirshenbaum LA (2012) Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 14:540–547

    Article  CAS  PubMed  Google Scholar 

  84. Teringova E, Tousek P (2017) Apoptosis in ischemic heart disease. J Transl Med 87

    Google Scholar 

  85. Favaloro B, Allocati N, Graziano V et al (2012) Role of apoptosis in disease. Aging 4:330–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    Article  CAS  PubMed  Google Scholar 

  87. Kessler EL, Rivaud MR, Vos MA, van Veen TAB (2019) Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biol Sex Differ 10:1–11

    Article  CAS  Google Scholar 

  88. Meyer S, van der Meer P, van Tintelen JP, van den Berg MP (2014) Sex differences in cardiomyopathies. Eur J Heart Fail 16:238–247

    Article  PubMed  Google Scholar 

  89. Winham SJ, de Andrade M, Miller VM (2014) Genetics of cardiovascular disease: importance of sex and ethnicity. Atherosclerosis 241:219–228

    Article  CAS  Google Scholar 

  90. Pedram A, Razandi M, Lubahn D et al (2008) Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-β to inhibit calcineurin. Endocrinology 149:3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Voloshenyuk TG, Gardner JD (2010) Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females. Am J Physiol Integr Comp Physiol 299:683–693

    Article  CAS  Google Scholar 

  92. Kararigas G, Fliegner D, Gustafsson J-A, Regitz-Zagrosek V (2011) Role of the estrogen/estrogen-receptor-beta axis in the genomic response to pressure overload-induced hypertrophy. Physiol Genomics 43:438–446

    Article  CAS  PubMed  Google Scholar 

  93. Dunlay SM, Roger VL (2012) Gender differences in the pathophysiology, clinical presentation, and outcomes of ischemic heart failure. Curr Heart Fail Rep 9:267–276

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen C, Hu LX, Dong T et al (2013) Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats. Life Sci 93:265–270

    Article  CAS  PubMed  Google Scholar 

  95. Tower J (2015) Programmed cell death in aging. Ageing Res Rev 23:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mallat Z, Fornes P, Costagliola R et al (2001) Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J Gerontol A Biol Sci Med Sci 56:M719–M723

    Article  CAS  PubMed  Google Scholar 

  97. Olivetti G, Giordano G, Corradi D et al (1995) Gender differences and aging: effects on the human heart. J Am Coll Cardiol 26:1068–1079

    Article  CAS  PubMed  Google Scholar 

  98. Zhang XP, Vatner SF, Shen YT et al (2007) Increased apoptosis and myocyte enlargement with decreased cardiac mass; distinctive features of the aging male, but not female, monkey heart. J Mol Cell Cardiol 43:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kang PM, Izumo S (2000) Apoptosis and heart failure. A critical review of the literature. Circ Res 86:1107–1113

    Google Scholar 

  100. Biondi-Zaccai GGL, Abbate A, Bussani R et al (2005) Reduced post-infarction myocardial apoptosis in women: a clue to their different clinical course? Heart 91:99–101

    Article  Google Scholar 

  101. Shehata ML, Lossnitzer D, Skrok J et al (2011) Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. Am J Roentgenol 196:87–94

    Article  Google Scholar 

  102. Fairweather DL, Cooper LT, Blauwet LA (2013) Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 38:7–46

    Article  PubMed  PubMed Central  Google Scholar 

  103. Akdis D, Saguner AM, Shah K et al (2017) Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 38:1498–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Arimura T, Onoue K, Takahashi-Tanaka Y et al (2013) Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to Lamin A/C mutations. Cardiovasc Res 99:382–394

    Article  CAS  PubMed  Google Scholar 

  105. Calkins H (2015) Arrhythmogenic right ventricular dysplasia/cardiomyopathy – three decades of Progress. Circ J 79:901–913

    Article  PubMed  Google Scholar 

  106. Bauce B, Frigo G, Marcus FI et al (2008) Comparison of clinical features of arrhythmogenic right ventricular cardiomyopathy in men versus women. Am J Cardiol 102:1252–1257

    Article  PubMed  Google Scholar 

  107. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the american heart association. Circulation 135:1–775

    Article  Google Scholar 

  108. Bozkurt B, Shaden K (2017) Heart failure in women. Methodist Debakey Cardiovasc J 13:216–223

    PubMed  PubMed Central  Google Scholar 

  109. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675

    Article  CAS  PubMed  Google Scholar 

  110. Pfeffer MA, Swedberg K, Granger CB et al (2003) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362:759–766

    Article  CAS  PubMed  Google Scholar 

  111. Pitt B, Poole-Wilson PA, Segal R et al (2000) Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial – the losartan heart failure survival study ELITE II. Lancet 355:1582–1587

    Article  CAS  PubMed  Google Scholar 

  112. Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA (2016) the importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ Res 118:1294–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang F, He Q, Sun Y et al (2010) Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 55:1172–1178

    Article  CAS  PubMed  Google Scholar 

  114. Cavasin MA, Tao Z, Menon S et al (2004) Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci 75:2181–2192

    Article  CAS  PubMed  Google Scholar 

  115. Shaw LJ, Bairey Merz CN, Pepine CJ et al (2006) Insights from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study: Part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol 47:S4–S20

    Article  PubMed  Google Scholar 

  116. Kanaya AM, Grady D, Barrett-Connor E (2002) Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med 62:1737–1745

    Article  Google Scholar 

  117. Gregg EW, Gu Q, Cheng YJ et al (2007) Mortality trends in men and women with diabetes, 1971 to 2000. Ann Intern Med 147:149–155

    Article  PubMed  Google Scholar 

  118. Taylor AL (2015) Heart failure in women. Curr Heart Failure Rep 12:187–195

    Article  Google Scholar 

  119. Schulman-Marcus J, Hartaigh BO, Gransar H et al (2016) Sexspecific associations between coronary artery plaque extent and risk of major adverse cardiovascular events the CONFIRM long-term registry. JACC Cardiovasc Imaging 9:364–372

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang M, Baker L, Tsai BM et al (2005) Sex differences in the myocardial inflammatory response to ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 288:E321–E326

    Article  CAS  PubMed  Google Scholar 

  121. Wang M, Crisostomo PR, Markel TA et al (2008) Mechanisms of sex differences in TNFR2-mediated cardioprotection. Circulation 118:S38–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang M, Tsai BM, Kher A et al (2005) Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion. Am J Physiol Heart Circ Physiol 288:H221–H226

    Article  CAS  PubMed  Google Scholar 

  123. Alves MG, Machado NG, Sardao VA et al (2011) Anti-apoptotic protection afforded by cardioplegic celsior and histidine buffer solutions to hearts subjected to ischemia and ischemia/reperfusion. J Cell Biochem 112:3872–3881

    Article  CAS  PubMed  Google Scholar 

  124. Eefting F, Rensing B, Wigman J et al (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61:414–426

    Article  CAS  PubMed  Google Scholar 

  125. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease-a novel therapeutic target? FASEB J 16:135–146

    Article  CAS  PubMed  Google Scholar 

  126. Liu H, Pedram A, Kim JK (2011) Oestrogen prevents cardiomyocyte apoptosis by suppressing p38 alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38 beta. Cardiovasc Res 89:119–128

    Article  CAS  PubMed  Google Scholar 

  127. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97:1–37

    Article  PubMed  Google Scholar 

  128. Hartman RJG, Huisman SE, den Ruijter HM (2018) Sex differences in cardiovascular epigenetics-a systematic review. Biol Sex Differ 9:1–8

    Article  CAS  Google Scholar 

  129. Chella Krishnan K, Mehrabian M, Lusis AJ (2018) Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol 29:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Appelman Y, van Rijn BB, ten Haaf ME et al (2014) Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis 241:211–218

    Article  CAS  Google Scholar 

  131. Salton CJ, Chuang ML, O’Donnell CJ, et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham heart study offspring cohort. J Am Coll Cardiol 39:1055–1060

    Google Scholar 

  132. Sandstede J, Lipke C, Beer M et al (2000) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  CAS  PubMed  Google Scholar 

  133. Narula J, Kharbanda S, Khaw BA (1997) Apoptosis and the heart. Chest 112:1358–1362

    Article  CAS  PubMed  Google Scholar 

  134. Narula J, Hajjar RJ, Dec GW (1998) Apoptosis in the failing heart. Cardiol Clin 16:691–710

    Article  CAS  PubMed  Google Scholar 

  135. Mehilli J, Ndrepepa G, Kastrati A et al (2005) Gender and myocardial salvage after reperfusion treatment in acute myocardial infarction. J Am Coll Cardiol 45:828–831

    Article  PubMed  Google Scholar 

  136. Cleland JG, Swedberg K, Follath F, et al (2003) The EuroHeart failure survey programme–a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J 24:442–463

    Google Scholar 

  137. Carroll JD, Carroll EP, Feldman T et al (1992) Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86:1099–1107

    Article  CAS  PubMed  Google Scholar 

  138. Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280

    Article  CAS  PubMed  Google Scholar 

  139. Petrov G, Regitz-Zagrosek V, Lehmkuhl E et al (2010) Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122:S23–S28

    Article  PubMed  Google Scholar 

  140. Dent MR, Tappia PS, Dhalla NS (2011) Gender differences in beta-adrenoceptor system in cardiac hypertrophy due to arteriovenous fistula. J Cell Physiol 226:181–186

    Article  CAS  PubMed  Google Scholar 

  141. Crabbe DL, Dipla K, Ambati S et al (2003) Gender differences in post-infarction hypertrophy in end-stage failing hearts. J Am Coll Cardiol 41:300–306

    Article  PubMed  Google Scholar 

  142. Regitz-Zagrosek V, Seeland U (2011) Sex and gender differences in myocardial hypertrophy and heart failure. Wien Med Wochenschr 161:109–116

    Article  PubMed  Google Scholar 

  143. Schipke J, Grimm C, Arnstein G et al (2016) Cardiomyocyte loss is not required for the progression of left ventricular hypertrophy induced by pressure overload in female mice. J Anat 229:75–81

    Article  PubMed  PubMed Central  Google Scholar 

  144. Fliegner D, Schubert C, Penkalla A et al (2010) Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol 298:R1597–R1606

    Article  CAS  PubMed  Google Scholar 

  145. Aurigenvna GP, Gaasch WH (1995) Gender differences in older patients with pressure-overload hypertrophy of the left ventricle. Cardiol 86:310–317

    Article  Google Scholar 

  146. Villari B, Campbell SE, Schneider J et al (1995) Sex-dependent differences in left ventricular function and structure in chronic pressure overload. Eur Heart J 16:1410–1419

    Article  CAS  PubMed  Google Scholar 

  147. Weinberg EO, Thienelt CD, Katz SE et al (1999) Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol 34:264–273

    Article  CAS  PubMed  Google Scholar 

  148. Previlon M, Pezet M, Vinet L et al (2014) Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS ONE 9:1–12

    Article  CAS  Google Scholar 

  149. Douglas PS, Katz SE, Weinberg EO et al (1998) Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll of Cardiol 32:1118–1125

    Article  CAS  Google Scholar 

  150. Gardner JD, Brower GL, Janicki JS (2002) Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail 8:101–107

    Article  PubMed  Google Scholar 

  151. Beaumont C, Walsh-Wilkinson E, Drolet MC et al (2017) Female rats with severe left ventricle volume overload exhibit more cardiac hypertrophy but fewer myocardial transcriptional changes than males. Sci Rep 7:729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in cardiac dysfunction and remodeling due to volume overload. J Card Fail 16:439–449

    Article  PubMed  Google Scholar 

  153. Van Eickels M, Grohe C, Cleutjens JP et al (2001) 17 β-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423

    Article  PubMed  Google Scholar 

  154. Skavdahl M, Steenbergen C, Clark J et al (2005) Estrogen receptor-β mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Circ Physiol 288:H469–H476

    Article  CAS  Google Scholar 

  155. Patten RD, Pourati I, Aronovitz MJ et al (2008) 17-Estradiol differentially affects left ventricular and cardiomyocyte hypertrophy following myocardial infarction and pressure overload. J Card Fail 14:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gardner JD, Murray DB, Voloshenyuk TG et al (2010) Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts. Am J Physiol Heart Circ Physiol 298:H497–H504

    Article  CAS  PubMed  Google Scholar 

  157. Bouma W, Noma M, Kanemoto S et al (2010) Sex-related resistance to myocardial ischemia-reperfusion injury is associated with high constitutive ARC expression. Am J Physiol 298:H1510–H1517

    Article  CAS  Google Scholar 

  158. Huang C, Gu H, Zhang W et al (2010) Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion: a mechanism involving BAD, Bcl-2 and FOXO3a. J Surg Res 64:1–11

    Article  CAS  Google Scholar 

  159. Appiah D, Schreiner PJ, Demerath EW et al (2016) Association of age at menopause with incident heart failure: a prospective cohort study and meta-analysis. J Am Heart Assoc 5:1–10

    Article  CAS  Google Scholar 

  160. Schonfelder G (2005) The biological impact of estrogens on gender differences in congestive heart failure. Cardiovasc Res 67:573–574

    Article  PubMed  CAS  Google Scholar 

  161. Rossouw JE (2002) Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res 53:550–557

    Article  CAS  PubMed  Google Scholar 

  162. Wang M, Wang Y, Weil B et al (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296:R972–R978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Richards RG, Di Augustine RP, Petrusz P et al (1996) Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in uterus. Proc Natl Acad Sci USA 93:12002–12007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mendelsohn ME, Karas RH (1999) The protective effects of estrogen on the cardiovascular system. N Engl J Med 340:1801–1811

    Article  CAS  PubMed  Google Scholar 

  165. Mahmoodzadeh S, Fliegner D, Dworatzek E (2012) Sex differences in animal models for cardiovascular diseases and the role of estrogen. Handb Exp Pharmacol 214:23–48

    Article  CAS  Google Scholar 

  166. Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R (2010) Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 74:1265–1273

    Article  CAS  PubMed  Google Scholar 

  167. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  168. Olivetti G, Melissari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68:1560–1568

    Google Scholar 

  169. Mahmoodzadeh S, Eder S, Nordmeyer J et al (2006) Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB J 20:926–934

    Article  CAS  PubMed  Google Scholar 

  170. Mendelsohn ME (2002) Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol 90:3F–6F

    Article  CAS  PubMed  Google Scholar 

  171. Ventetuolo CE, Ouyang P, Bluemke DA et al (2011) Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am J Respir Crit Care Med 183:659–667

    Article  PubMed  Google Scholar 

  172. Kuroski De Bold ML (1999) Estrogen, natriuretic peptides and the reninangiotensin system. Cardiovasc Res 41:524–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The infrastructure support for this project was provided by the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhullar, S.K., Shah, A.K., Dhalla, N.S. (2020). Sex-Specific Differences of Apoptosis in Heart Failure Due to Volume-Overload. In: Ostadal, B., Dhalla, N.S. (eds) Sex Differences in Heart Disease. Advances in Biochemistry in Health and Disease, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-58677-5_7

Download citation

Publish with us

Policies and ethics