Skip to main content

The Roles of Testosterone in Cardiac Ischemia/Reperfusion Injury

  • Chapter
  • First Online:
Sex Differences in Heart Disease

Abstract

Cardiac ischemia/reperfusion (I/R) injury is a serious cardiac complication following acute myocardial infarction, which include myocardial infarct size expansion, left ventricular (LV) dysfunction, and fatal cardiac arrhythmias. Sex hormone deprivation due to aging or other pathological conditions is an independent risk factor for cardiovascular disease. Several scientific research studies have been conducted to investigate the role of sex hormones in myocardial injury during cardiac I/R. Testosterone is the primary sex hormone in men; it regulates male sexual characteristics, and controls muscle and bone mass. In addition, testosterone plays an important role in regulating LV function through multiple mechanisms, including those controlling cellular calcium homeostasis, regulating cardiac mitochondrial function and enhancing antioxidants. Findings from studies regarding the roles of testosterone on the heart during cardiac I/R are controversial; some have reported that decreased testosterone level could impair LV function, whilst others reported the benefits of testosterone deprivation during cardiac I/R. In this chapter, we include evidence regarding the effects of testosterone deprivation and exogenous testosterone administration on myocardial injury in terms of myocardial infarct size, LV function, arrhythmias and molecular alterations. Reports from in vitro, ex vivo, in vivo studies, and clinical reports are summarized and discussed. The contents of this chapter will explain the roles of testosterone during cardiac I/R in preventing cardiac complications. Insights from these reports may help to devise strategies to improve treatment in patients with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM et al (2018) Heart Disease and Stroke Statistics−2018 Update: A Report From the American Heart Association. Circulation 137:e67–e492

    Google Scholar 

  2. Collins P (2006) Risk factors for cardiovascular disease and hormone therapy in women. Heart 92(Suppl 3):iii24–8

    Google Scholar 

  3. Takawale A, Fan D, Basu R, Shen M et al (2014) Myocardial recovery from ischemia−reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4. Circ Heart Fail 7(4):652–662

    Google Scholar 

  4. Ma RC, Tong PC (2010) Testosterone levels and cardiovascular disease. Heart 96(22):1787–1788

    Google Scholar 

  5. Nieschlag E, Nieschlag S (2019) ENDOCRINE HISTORY: The history of discovery, synthesis and development of testosterone for clinical use. Eur J Endocrinol 180(6):R201–R212

    Google Scholar 

  6. Farias JM, Tinetti M, Khoury M, Umpierrez GE (2019) Low testosterone concentration and atherosclerotic disease markers in male patients with type 2 diabetes. J Clin Endocrinol Metab 99(12):4698–4703

    Google Scholar 

  7. Niccoli G, Milardi D, D’Amario D, Fracassi F et al (2015) Hypotestosteronemia is frequent in ST−elevation myocardial infarction patients and is associated with coronary microvascular obstruction. Eur J Prev Cardiol 22(7):855–863

    Google Scholar 

  8. Apaiajai N, Chunchai T, Jaiwongkam T, Kerdphoo S et al (2018) Testosterone Deprivation Aggravates Left−Ventricular Dysfunction in Male Obese Insulin−Resistant Rats via Impairing Cardiac Mitochondrial Function and Dynamics Proteins. Gerontology 64(4):333–343

    Google Scholar 

  9. Pongkan W, Pintana H, Sivasinprasasn S, Jaiwongkam T et al (2016) Testosterone deprivation accelerates cardiac dysfunction in obese male rats. J Endocrinol 229(3):209–220

    Google Scholar 

  10. Pongkan W, Pintana H, Jaiwongkam T, Kredphoo S et al (2016) Vildagliptin reduces cardiac ischemic−reperfusion injury in obese orchiectomized rats. J Endocrinol 231(1):81–95

    Google Scholar 

  11. Arinno A, Apaijai N, Kaewtep P, Pratchayasakul W, et al (2019) Combined low−dose testosterone and vildagliptin confers cardioprotection in castrated obese rats. J Endocrinol (in press)

    Google Scholar 

  12. Osterberg EC, Bernie AM, Ramasamy R (2014) Risks of testosterone replacement therapy in men. Indian J Urol 30(1):2–7

    Google Scholar 

  13. Goodale T, Sadhu A, Petak S, Robbins R (2017) Testosterone and the Heart. Methodist Debakey Cardiovasc J 13(2):68–72

    Google Scholar 

  14. Seftel AD, Kathrins M, Niederberger C (2015) Critical Update of the 2010 Endocrine Society Clinical Practice Guidelines for Male Hypogonadism: A Systematic Analysis. Mayo Clin Proc 90(8):1104–1115

    Google Scholar 

  15. Palee S, McSweeney CM, Maneechote C, Moisescu DM, et al (2019) PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid−lowering effects. J Cell Mol Med (in press)

    Google Scholar 

  16. Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T et al (2019) Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin Sci (Lond) 133(3):497–513

    Google Scholar 

  17. Apaijai N, Chinda K, Palee S, Chattipakorn S et al (2014) Combined vildagliptin and metformin exert better cardioprotection than monotherapy against ischemia−reperfusion injury in obese−insulin resistant rats. PLoS ONE 9(7):e102374

    Google Scholar 

  18. Lindsey ML, Bolli R, Canty JM Jr, Du XJ et al (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314(4):H812–H838

    Google Scholar 

  19. Borst SE, Quindry JC, Yarrow JF, Conover CF et al (2010) Testosterone administration induces protection against global myocardial ischemia. Horm Metab Res 42(2):122–129

    Google Scholar 

  20. Callies F, Stromer H, Schwinger RH, Bolck B et al (2003) Administration of testosterone is associated with a reduced susceptibility to myocardial ischemia. Endocrinology 144(10):4478–4483

    Google Scholar 

  21. Liu J, Tsang S, Wong TM (2006) Testosterone is required for delayed cardioprotection and enhanced heat shock protein 70 expression induced by preconditioning. Endocrinology 147(10):4569–4577

    Google Scholar 

  22. Rubio−Gayosso I, Ramirez−Sanchez I, Ita−Islas I, Ortiz−Vilchis P et al (2013) Testosterone metabolites mediate its effects on myocardial damage induced by ischemia/reperfusion in male Wistar rats. Steroids 78(3):362–369

    Google Scholar 

  23. Tsang S, Wu S, Liu J, Wong TM (2008) Testosterone protects rat hearts against ischaemic insults by enhancing the effects of alpha(1)−adrenoceptor stimulation. Br J Pharmacol 153(4):693–709

    Google Scholar 

  24. Ghimire A, Bisset ES, Howlett SE (2019) Ischemia and reperfusion injury following cardioplegic arrest is attenuated by age and testosterone deficiency in male but not female mice. Biol Sex Differ 10(1):42

    Google Scholar 

  25. Hadi NR, Yusif FG, Yousif M, Jaen KK (2014) Both castration and goserelin acetate ameliorate myocardial ischemia reperfusion injury and apoptosis in male rats. ISRN Pharmacol 2014:206951

    Google Scholar 

  26. Huang C, Gu H, Zhang W, Herrmann JL et al (2010) Testosterone−down−regulated Akt pathway during cardiac ischemia/reperfusion: a mechanism involving BAD, Bcl−2 and FOXO3a. J Surg Res 164(1):e1−11

    Google Scholar 

  27. Kohno H, Takahashi N, Shinohara T, Ooie T et al (2007) Receptor−mediated suppression of cardiac heat−shock protein 72 expression by testosterone in male rat heart. Endocrinology 148(7):3148–3155

    Google Scholar 

  28. Le TY, Ashton AW, Mardini M, Stanton PG et al (2014) Role of androgens in sex differences in cardiac damage during myocardial infarction. Endocrinology 155(2):568–575

    Google Scholar 

  29. Nam UH, Wang M, Crisostomo PR, Markel TA et al (2007) The effect of chronic exogenous androgen on myocardial function following acute ischemia−reperfusion in hosts with different baseline levels of sex steroids. J Surg Res 142(1):113–118

    Google Scholar 

  30. Pavon N, Martinez−Abundis E, Hernandez L, Gallardo−Perez JC, et al (2012) Sexual hormones: effects on cardiac and mitochondrial activity after ischemia−reperfusion in adult rats. Gender difference. J Steroid Biochem Mol Biol 132(1–2):135–46

    Google Scholar 

  31. Wang M, Tsai BM, Kher A, Baker LB et al (2005) Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia−reperfusion. Am J Physiol Heart Circ Physiol 288(1):H221–H226

    Google Scholar 

  32. Wang M, Wang Y, Abarbanell A, Tan J et al (2009) Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146(2):138–144

    Google Scholar 

  33. O’Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17(6):269–282

    Google Scholar 

  34. Bertero E, Maack C (2018) Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circ Res 122(10):1460–1478

    Google Scholar 

  35. Pongkan W, Chattipakorn SC, Chattipakorn N (2015) Chronic testosterone replacement exerts cardioprotection against cardiac ischemia−reperfusion injury by attenuating mitochondrial dysfunction in testosterone−deprived rats. PLoS ONE 10(3):e0122503

    Google Scholar 

  36. Svartberg J (2007) Epidemiology: testosterone and the metabolic syndrome. Int J Impot Res 19(2):124–128

    Google Scholar 

  37. Donner DG, Elliott GE, Beck BR, Bulmer AC et al (2015) Impact of Diet−Induced Obesity and Testosterone Deficiency on the Cardiovascular System: A Novel Rodent Model Representative of Males with Testosterone−Deficient Metabolic Syndrome (TDMetS). PLoS ONE 10(9):e0138019

    Google Scholar 

  38. Alexandre J, Milliez P, Rouet R, Manrique A et al (2015) Aldosterone and testosterone: two steroid hormones structurally related but with opposite electrophysiological properties during myocardial ischemia−reperfusion. Fundam Clin Pharmacol 29(4):341–351

    Google Scholar 

  39. Lauro FV, Francisco DC, Elodia GC, Eduardo PG et al (2014) Activity exerted by a testosterone derivative on myocardial injury using an ischemia/reperfusion model. Biomed Res Int 2014:217865

    Google Scholar 

  40. Kuhar P, Lunder M, Drevensek G (2007) The role of gender and sex hormones in ischemic−reperfusion injury in isolated rat hearts. Eur J Pharmacol 561(1–3):151–159

    Google Scholar 

  41. Seara FAC, Barbosa RAQ, de Oliveira DF, Gran da Silva DLS, et al (2017) Administration of anabolic steroid during adolescence induces long−term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. J Steroid Biochem Mol Biol 171: 34–42

    Google Scholar 

  42. Maldonado O, Ramos A, Guapillo M, Rivera J, et al (2019) Effects of chronic inhibition of Testosterone metabolism on cardiac remodeling after ischemia/reperfusion−induced myocardial damage in gonadectomized rats. Biol Open 8(5)

    Google Scholar 

  43. Seara FAC, Barbosa RAQ, Santos MVN, Domingos AE et al (2019) Paradoxical effect of testosterone supplementation therapy on cardiac ischemia/reperfusion injury in aged rats. J Steroid Biochem Mol Biol 191:105335

    Google Scholar 

  44. Cole AP, Hanske J, Jiang W, Kwon NK et al (2018) Impact of testosterone replacement therapy on thromboembolism, heart disease and obstructive sleep apnoea in men. BJU Int 121(5):811–818

    Google Scholar 

  45. Oni OA, Sharma R, Chen G, Sharma M et al (2017) Normalization of testosterone levels after testosterone replacement therapy is not associated with reduced myocardial infarction in smokers. Mayo Clin Proc Innov Qual Outcomes 1(1):57–66

    Google Scholar 

  46. Li H, Mitchell L, Zhang X, Heiselman D et al (2017) Testosterone Therapy and Risk of Acute Myocardial Infarction in Hypogonadal Men: An Administrative Health Care Claims Study. J Sex Med 14(11):1307–1317

    Google Scholar 

  47. Sharma R, Oni OA, Gupta K, Chen G et al (2015) Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur Heart J 36(40):2706–2715

    Google Scholar 

  48. Anderson JL, May HT, Lappé DL, Bair T et al (2016) Impact of testosterone replacement therapy on myocardial infarction, stroke, and death in men with low testosterone concentrations in an integrated health care system. Am J Cardiol 117(5):794–799

    Google Scholar 

  49. Budoff MJ, Ellenberg SS, Lewis CE, Mohler ER 3rd et al (2017) Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA 317(7):708–716

    Google Scholar 

  50. Mathur A, Malkin C, Saeed B, Muthusamy R et al (2009) Long−term benefits of testosterone replacement therapy on angina threshold and atheroma in men. Eur J Endocrinol 161(3):443–449

    Google Scholar 

  51. Malkin CJ, Pugh PJ, Morris PD, Kerry KE et al (2004) Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 90(8):871–876

    Google Scholar 

  52. Malkin CJ, Morris PD, Pugh PJ, English KM et al (2003) Effect of testosterone therapy on QT dispersion in men with heart failure. Am J Cardiol 92(10):1241–1243

    Google Scholar 

  53. Etminan M, Skeldon SC, Goldenberg SL, Carleton B, et al. Testosterone therapy and risk of myocardial infarction: a pharmacoepidemiologic study. Pharmacotherapy 35(1):72–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Thailand Research Fund (NA: TRG6280005), the Senior Research Scholar grant from the National Research Council of Thailand (SCC), a NSTDA research chair grant from the National Development Agency of Thailand (NC), and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipon Chattipakorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apaijai, N., Chattipakorn, S.C., Chattipakorn, N. (2020). The Roles of Testosterone in Cardiac Ischemia/Reperfusion Injury. In: Ostadal, B., Dhalla, N.S. (eds) Sex Differences in Heart Disease. Advances in Biochemistry in Health and Disease, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-58677-5_3

Download citation

Publish with us

Policies and ethics