Skip to main content

PUGeo-Net: A Geometry-Centric Network for 3D Point Cloud Upsampling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12364))

Included in the following conference series:

Abstract

In this paper, we propose a novel deep neural network based method, called PUGeo-Net, for upsampling 3D point clouds. PUGeo-Net incorporates discrete differential geometry into deep learning elegantly by learning the first and second fundamental forms that are able to fully represent the local geometry unique up to rigid motion. Specifically, we encode the first fundamental form in a \(3\times 3\) linear transformation matrix \(\mathbf{T}\) for each input point. Such a matrix approximates the augmented Jacobian matrix of a local parameterization that encodes the intrinsic information and builds a one-to-one correspondence between the 2D parametric domain and the 3D tangent plane, so that we can lift the adaptively distributed 2D samples learned from the input to 3D space. After that, we use the learned second fundamental form to compute a normal displacement for each generated sample and project it to the curved surface. As a by-product, PUGeo-Net can compute normals for the original and generated points, which is highly desired for surface reconstruction algorithms. We evaluate PUGeo-Net on a wide range of 3D models with sharp features and rich geometric details and observe that PUGeo-Net consistently outperforms state-of-the-art methods in terms of both accuracy and efficiency for upsampling factor 4\(\sim \)16. We also verify the geometry-centric nature of PUGeo-Net quantitatively. In addition, PUGeo-Net can handle noisy and non-uniformly distributed inputs well, validating its robustness. The code is publicly available at https://github.com/ninaqy/PUGeo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sketchfab. https://sketchfab.com

  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Visual Comput. Graphics 9(1), 3–15 (2003)

    Article  Google Scholar 

  3. Bolognesi, M., Furini, A., Russo, V., Pellegrinelli, A., Russo, P.: Testing the low-cost RPAS potential in 3D cultural heritage reconstruction. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40, 229–235 (2015)

    Article  Google Scholar 

  4. Campen, M., Bommes, D., Kobbelt, L.: Quantized global parametrization. ACM Trans. Graph. (TOG) 34(6), 192:1–192:12 (2015)

    Article  Google Scholar 

  5. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice Hall, New Jersey (1976)

    MATH  Google Scholar 

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  7. Cole, D.M., Newman, P.M.: Using laser range data for 3D SLAM in outdoor environments. In: Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 1556–1563. IEEE (2006)

    Google Scholar 

  8. Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Visual Comput. Graphics 18(6), 914–924 (2012)

    Article  Google Scholar 

  9. Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)

    Google Scholar 

  10. Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: Proceedings of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Conference (RSS), vol. 27 (2011)

    Google Scholar 

  11. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  12. Gu, X., Yau, S.: Global conformal parameterization. In: First Eurographics Symposium on Geometry Processing, 23–25 June 2003, pp. 127–137 (2003)

    Google Scholar 

  13. Hakala, T., Suomalainen, J., Kaasalainen, S., Chen, Y.: Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 20(7), 7119–7127 (2012)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Held, R., Gupta, A., Curless, B., Agrawala, M.: 3d puppetry: a kinect-based interface for 3D animation. In: UIST, pp. 423–434. Citeseer (2012)

    Google Scholar 

  16. Hormann, K., Greiner, G.: MIPS: an efficient global parametrization method. In: Curve and Surface Design: Saint-Malo, vol. 2000, p. 10, November 2012

    Google Scholar 

  17. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  19. Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. (TOG) 28(5), 176 (2009)

    Article  Google Scholar 

  20. Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., Zhang, H.R.: Edge-aware point set resampling. ACM Trans. Graph. (TOG) 32(1), 9 (2013)

    Article  Google Scholar 

  21. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (TOG) 32(3), 29 (2013)

    Article  Google Scholar 

  22. Kimoto, K., Asada, N., Mori, T., Hara, Y., Ohya, A., et al.: Development of small size 3D LiDAR. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4620–4626. IEEE (2014)

    Google Scholar 

  23. Komarichev, A., Zhong, Z., Hua, J.: A-CNN: annularly convolutional neural networks on point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7421–7430 (2019)

    Google Scholar 

  24. Lafarge, F., Mallet, C.: Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. Int. J. Comput. Vision 99(1), 69–85 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  26. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

    Google Scholar 

  27. Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1513–1518. IEEE (2017)

    Google Scholar 

  28. Li, R., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-GAN: a point cloud upsampling adversarial network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7203–7212 (2019)

    Google Scholar 

  29. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)

    Google Scholar 

  30. Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H.: arameterization-free projection for geometry reconstruction. ACM Trans. Graph. (TOG) 26, 22 (2007)

    Article  Google Scholar 

  31. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  32. Musialski, P., Wonka, P., Aliaga, D.G., Wimmer, M., Van Gool, L., Purgathofer, W.: A survey of urban reconstruction. In: Computer Graphics Forum, vol. 32, pp. 146–177. Wiley Online Library (2013)

    Google Scholar 

  33. Nie, S., Wang, C., Dong, P., Xi, X., Luo, S., Zhou, H.: Estimating leaf area index of maize using airborne discrete-return LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(7), 3259–3266 (2016)

    Article  Google Scholar 

  34. Orts-Escolano, S., et al.: Holoportation: virtual 3D teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 741–754. ACM (2016)

    Google Scholar 

  35. Paine, J.G., Caudle, T.L., Andrews, J.R.: Shoreline and sand storage dynamics from annual airborne LIDAR surveys, Texas Gulf Coast. J. Coastal Res. 33(3), 487–506 (2016)

    Google Scholar 

  36. Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., Wimmer, M.: Continuous projection for fast L1 reconstruction. ACM Trans. Graph. (TOG) 33(4), 47:1–47:13 (2014)

    Article  Google Scholar 

  37. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  38. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  39. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: Learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  40. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  41. Santana, J.M., Wendel, J., Trujillo, A., Suárez, J.P., Simons, A., Koch, A.: Multimodal location based services—semantic 3D city data as virtual and augmented reality. In: Gartner, G., Huang, H. (eds.) Progress in Location-Based Services 2016. LNGC, pp. 329–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47289-8_17

    Chapter  Google Scholar 

  42. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2018)

    Google Scholar 

  43. Te, G., Hu, W., Zheng, A., Guo, Z.: RGCNN: Regularized graph CNN for point cloud segmentation. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 746–754. ACM (2018)

    Google Scholar 

  44. Wang, Y., Wu, S., Huang, H., Cohen-Or, D., Sorkine-Hornung, O.: Patch-based progressive 3D point set upsampling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5958–5967 (2019)

    Google Scholar 

  45. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 146 (2019)

    Article  Google Scholar 

  46. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  47. Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., Wang, R.: Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6(11), 10413–10434 (2014)

    Article  Google Scholar 

  48. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  49. Yu, L., Li, X., Fu, C.-W., Cohen-Or, D., Heng, P.-A.: EC-Net: an edge-aware point set consolidation network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 398–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_24

    Chapter  Google Scholar 

  50. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-Net: point cloud upsampling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2018)

    Google Scholar 

  51. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE (2018)

    Google Scholar 

  52. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019)

    Google Scholar 

  53. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of China under Grant 61871342, and in part by the Hong Kong Research Grants Council under grants 9048123 (CityU 21211518) and 9042955 (CityU 11202320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Hou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12969 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, Y., Hou, J., Kwong, S., He, Y. (2020). PUGeo-Net: A Geometry-Centric Network for 3D Point Cloud Upsampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics