Skip to main content
Log in

Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a novel and robust method for modeling cities from 3D-point data. Our algorithm provides a more complete description than existing approaches by reconstructing simultaneously buildings, trees and topologically complex grounds. A major contribution of our work is the original way of modeling buildings which guarantees a high generalization level while having semantized and compact representations. Geometric 3D-primitives such as planes, cylinders, spheres or cones describe regular roof sections, and are combined with mesh-patches that represent irregular roof components. The various urban components interact through a non-convex energy minimization problem in which they are propagated under arrangement constraints over a planimetric map. Our approach is experimentally validated on complex buildings and large urban scenes of millions of points, and is compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, S., Snavely, N., Simon, I., Seitz, S., & Szeliski, R. (2009). Building Rome in a day. In ICCV, Kyoto, Japan.

    Google Scholar 

  • Baillard, C., & Zisserman, A. (1999). Automatic reconstruction of piecewise planar models from multiple views. In CVPR, Los Alamitos, US.

    Google Scholar 

  • Banno, A., Masuda, T., Oishi, T., & Ikeuchi, K. (2008). Flying laser range sensor for large-scale site-modeling and its applications in Bayon digital archival project. International Journal of Computer Vision, 78(2–3), 207–222.

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1124–1137.

    Article  Google Scholar 

  • Briese, C., Pfeifer, N., & Dorninger, P. (2002). Applications of the robust interpolation for DTM determination. In PCV, Graz, Austria.

    Google Scholar 

  • Carlberg, M., Gao, P., Chen, G., & Zakhor, A. (2009). Classifying urban landscape in aerial lidar using 3d shape analysis. In ICIP, Cairo, Egypt.

    Google Scholar 

  • CGAL (2011). www.cgal.org.

  • Chauve, A.-L., Labatut, P., & Pons, J.-P. (2010). Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In CVPR, San Francisco, US.

    Google Scholar 

  • Chen, J., & Chen, B. (2008). Architectural modeling from sparsely scanned range data. International Journal of Computer Vision, 78(2–3), 223–236.

    Article  Google Scholar 

  • Coughlan, J. M., & Yuille, A. L. (2000). The Manhattan world assumption: Regularities in scene statistics which enable Bayesian inference. In NIPS, Denver, US.

    Google Scholar 

  • Dick, A., Torr, P., & Cipolla, R. (2004). Modelling and interpretation of architecture from several images. International Journal of Computer Vision, 60(2), 111–134.

    Article  Google Scholar 

  • Frahm, J.-M., et al. (2010). Building Rome on a cloudless day. In ECCV, Hersonissos, Greece.

    Google Scholar 

  • Frueh, C., & Zakhor, A. (2004). An automated method for large-scale, ground-based city model acquisition. International Journal of Computer Vision, 60(1), 5–24.

    Article  Google Scholar 

  • Furukawa, Y., Curless, B., Seitz, S., & Szeliski, R. (2009). Manhattan-world stereo. In CVPR, Miami, US.

    Google Scholar 

  • Furukawa, Y., Curless, B., Seitz, S., & Szeliski, R. (2010). Towards internet-scale multi-view stereo. In CVPR, San Francisco, US.

    Google Scholar 

  • Gallup, D., Frahm, J., & Pollefeys, M. (2010). Piecewise planar and non-planar stereo for urban scene reconstruction. In CVPR, San Francisco, US.

    Google Scholar 

  • Garland, M., & Heckbert, P. (1997). Surface simplification using quadric error metrics. In SIGGRAPH, Los Angeles, US.

    Google Scholar 

  • Golovinskiy, A., Kim, V., & Funkhouser, T. (2009). Shape-based recognition of 3D point clouds in urban environments. In ICCV, Kyoto, Japan.

    Google Scholar 

  • Haala, N., & Kada, M. (2010). An update on automatic 3D building reconstruction. Journal of Photogrammetry and Remote Sensing, 65(6).

  • Han, F., Tu, Z. W., & Zhu, S. C. (2004). Range image segmentation by an effective jump-diffusion method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1138–1153.

    Article  Google Scholar 

  • Lafarge, F., Descombes, X., Zerubia, J., & Pierrot-Deseilligny, M. (2010a). Structural approach for building reconstruction from a single DSM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 135–147.

    Article  Google Scholar 

  • Lafarge, F., Keriven, R., Bredif, M., & Vu, H. (2010b). Hybrid multi-view reconstruction by jump-diffusion. In CVPR, San Francisco, US.

    Google Scholar 

  • Lafarge, F., & Mallet, C. (2011). Building large urban environments from unstructured point data. In ICCV, Barcelona, Spain.

    Google Scholar 

  • Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., & Wiechert, A. (2010). Point clouds: Lidar versus 3d vision. Photogrammetric Engineering and Remote Sensing, 76(10), 1123–1134.

    Google Scholar 

  • Li, S. (2001). Markov random field modeling in image analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: state-of-the-art. Journal of Photogrammetry and Remote Sensing, 64(1), 1–16.

    Article  Google Scholar 

  • Marshall, D., Lukacs, G., & Martin, R. (2001). Robust segmentation of primitives from range data in the presence of geometric degeneracy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3), 304–314.

    Article  Google Scholar 

  • Matei, B., Sawhney, H., Samarasekera, S., Kim, J., & Kumar, R. (2008). Building segmentation for densely built urban regions using aerial lidar data. In CVPR, Anchorage, US.

    Google Scholar 

  • Mayer, H. (2008). Object extraction in photogrammetric computer vision. Journal of Photogrammetry and Remote Sensing, 63(2), 213–222.

    Article  Google Scholar 

  • Muller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural modeling of buildings. In SIGGRAPH, Boston.

    Google Scholar 

  • Munoz, D., Bagnell, J. A., Vandapel, N., & Hebert, M. (2009). Contextual classification with functional max-margin Markov networks. In CVPR, Miami, US.

    Google Scholar 

  • Pollefeys, M., et al. (2008). Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision, 78(2–3), 143–167.

    Article  Google Scholar 

  • Poullis, C., & You, S. (2009). Automatic reconstruction of cities from remote sensor data. In CVPR, Miami, US.

    Google Scholar 

  • Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum, 26(2), 214–226.

    Article  Google Scholar 

  • Sinha, S. N., Steedly, D., & Szeliski, R. (2009). Piecewise planar stereo for image-based rendering. In ICCV, Kyoto, Japan.

    Google Scholar 

  • Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., & Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo for high resolution imagery. In CVPR, Anchorage, US.

    Google Scholar 

  • Toshev, A., Mordohai, P., & Taskar, B. (2010). Detecting and parsing architecture at city scale from range data. In CVPR, San Francisco, US.

    Google Scholar 

  • Tse, R., Gold, C., & Kidner, D. (2007). Using the Delaunay triangulation/Voronoi diagram to extract building information from raw lidar data. In Proc. of international symposium on Voronoi diagrams in science and engineering, Urumchi, China.

    Google Scholar 

  • Vanegas, C., Aliaga, D., & Benes, B. (2010). Building reconstruction using Manhattan-world grammars. In CVPR, San Francisco, US.

    Google Scholar 

  • Vosselman, G., Kessels, P., & Gorte, B. (2005). The utilisation of airborne laser scanning for mapping. International Journal of Applied Earth Observation and Geoinformation, 6(3–4).

    Google Scholar 

  • Vu, H., Keriven, R., Labatut, P., & Pons, J. (2009). Towards high-resolution large-scale multiview. In CVPR, Miami, US.

    Google Scholar 

  • Weiss, Y., & Freeman, W. (2001). On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2), 736–744.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, G., & Zhang, Z. (1996). Epipolar geometry in stereo, motion and object recognition. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Xu, H., Gossett, N., & Chen, B. (2007). Knowledge and heuristic-based modeling of laser-scanned trees. Trans. on Graphics, 26(4).

  • Zebedin, L., Bauer, J., Karner, K., & Bischof, H. (2008). Fusion of feature- and area-based information for urban buildings modeling from aerial imagery. In ECCV, Marseille, France.

    Google Scholar 

  • Zhou, Q., & Neumann, U. (2010). 2.5d dual contouring: A robust approach to creating building models from aerial lidar point clouds. In ECCV, Hersonissos, Greece.

    Google Scholar 

  • Zhu, Z., & Kanade, T. (2008). Special issue on modeling and representations of large-scale 3D scenes. International Journal of Computer Vision, 78(2–3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Lafarge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafarge, F., Mallet, C. Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation. Int J Comput Vis 99, 69–85 (2012). https://doi.org/10.1007/s11263-012-0517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0517-8

Keywords

Navigation