Ahumada, J. A., Fegraus, E., Birch, T., Fores, N., Kays, R., O’Brien, T. G., et al. (2020). Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environmental Conservation, 47(1), 1–6.
CrossRef
Google Scholar
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5.
CrossRef
Google Scholar
Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., et al. (2014). Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 173, 144–154.
CrossRef
Google Scholar
Blackwell, A. (2015). Interacting with an inferred world: The challenge of machine learning for humane computer interaction. Aarhus Series on Human Centered Computing, 1(1), 12. https://doi.org/10.7146/aahcc.v1i1.21197.
CrossRef
Google Scholar
Bonney, R., Ballard, H., Jordan, R., McCallie, E., Phillips, T., Shirk, J., & Wilderman, C. C. (2009). Public participation in scientific research: Defining the field and assessing its potential for informal science education. A CAISE inquiry group report. Washington, DC: Center for Advancement of Informal Science Education (CAISE). https://safmc.net/wp-content/uploads/2016/06/Bonneyetal2009_PPSRExecutiveSummary.pdf. Accessed 21 February 2020.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1). https://doi.org/10.1177/2053951715622512.
Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., & Oliver, J. L. (2019). Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1), 29. https://doi.org/10.5334/cstp.241.
CrossRef
Google Scholar
Chen, D., & Gomes, C.P. (2018). Bias reduction via end-to-end shift learning: Application to citizen science. https://arxiv.org/pdf/1811.00458v4.pdf. Accessed 21 February 2020.
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. In T. Bui (Ed.), Proceedings of the Hawaii International Conference on System Sciences (HICSS) (pp. 1–10). ScholarSpace/AIS Electronic Library (AISeL). https://www.alexandria.unisg.ch/254994/1/JML_706.pdf. Accessed 21 February 2020.
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. http://arxiv.org/abs/1702.08608. Accessed 21 February 2020.
Edwards, L., & Veale, M. (2018). Enslaving the algorithm: From a ‘right to an explanation’ to a ‘right to better decisions’? IEEE Security and Privacy, 16(3), 46–54. https://doi.org/10.1109/MSP.2018.2701152.
CrossRef
Google Scholar
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1, 1. https://doi.org/10.1162/99608f92.8cd550d1.
CrossRef
Google Scholar
Fortson, L., Masters, K., Nichol, R., Borne, K., Edmondson, E., Lintott, C., et al. (2012). Galaxy Zoo: Morphological classification and citizen science. https://arxiv.org/pdf/1104.5513.pdf. Accessed 21 February 2020.
Franzen, M. (2019). Changing science-society relations in the digital age: The citizen science movement and its broader implications. In D. Simon, S. Kuhlmann, J. Stamm, & W. Canzler (Eds.), Handbook on science and public policy (pp. 336–356). Cheltenham: Edward Elgar.
CrossRef
Google Scholar
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2019). Explaining explanations: An overview of interpretability of machine learning. In Proceedings – 2018 IEEE 5th international conference on data science and advanced analytics – DSAA 2018 (pp. 80–89). https://doi.org/10.1109/DSAA.2018.00018.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), Article 93, 1–42. https://doi.org/10.1145/3236009.
Haklay, M. (2013). Citizen science and volunteered geographic information: Overview and typology of participation. In D. Z. Sui, S. Elwood, & M. Goodchild (Eds.), Crowdsourcing geographic knowledge (pp. 105–122). Dordrecht: Springer.
CrossRef
Google Scholar
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399.
CrossRef
Google Scholar
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
CrossRef
Google Scholar
Lehejcek, J., Adam, M., Tomasek, P., & Trojan, J. (2019). Informacni system pro spravu fotopasti [National database of photo trap records]. http://okovprirode.cz/. Accessed 21 February 2020.
Lintott, C., & Reed, J. (2013). Human computation in citizen science. In P. Michelucci (Ed.), Handbook of human computation (pp. 153–162). New York: Springer.
CrossRef
Google Scholar
Lukyanenko, R., Wiggins, A., & Rosser, H. K. (2019). Citizen science: An information quality research frontier. Information Systems Frontiers. https://doi.org/10.1007/s10796-019-09915-z.
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias and fairness in machine learning. https://arxiv.org/pdf/1908.09635.pdf. Accessed 21 February 2020.
Michael, M., & Lupton, D. (2015). Toward a manifesto for the ‘public understanding of big data’. Public Understanding of Science, 25, 104–116. https://doi.org/10.1177/0963662515609005.
CrossRef
Google Scholar
Neal, L. (2013). The ‘human sensor’. Bridging between human data and services. In P. Michelucci (Ed.), Handbook of human computation (pp. 581–593). New York: Springer.
Google Scholar
Poncela-Casasnovas, J., Gutiérrez-Roig, M., Gracia-Lázaro, C., Vicens, J., Gómez-Gardeñes, J., Perelló, J., et al. (2016). Humans display a reduced set of consistent behavioral phenotypes in dyadic games. Science Advances, 2(8), 1–9. https://doi.org/10.1126/sciadv.1600451.
CrossRef
Google Scholar
Popenici, S., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22). https://doi.org/10.1186/s41039-017-0062-8.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x.
CrossRef
Google Scholar
Sample, I. (2018, December 2). Google’s DeepMind predicts 3D shapes of proteins. The Guardian. https://www.theguardian.com/science/2018/dec/02/google-deepminds-ai-program-alphafold-predicts-3d-shapes-of-proteins.
Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34–38.
CrossRef
Google Scholar
Sullivan, D. P., Winsnes, C. F., Åkesson, L., Hjelmare, M., Wiking, M., Schutten, R., et al. (2018). Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nature Biotechnology, 36(9), 820–832. https://doi.org/10.1038/nbt.4225.
CrossRef
Google Scholar
Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30(3), 520–531.
CrossRef
Google Scholar
Torney, C. J., Lloyd-Jones, D. J., Chevallier, M., Moyer, D. C., Maliti, H. T., Mwita, M., et al. (2019). A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods in Ecology and Evolution, 10(6), 779–787. https://doi.org/10.1111/2041-210X.13165.
CrossRef
Google Scholar
Trojan, J., Schade, S., Lemmens, R., & Frantál, B. (2019). Citizen science as a new approach in geography and beyond: Review and reflections. Moravian Geographical Reports, 27(4), 254–264. https://doi.org/10.2478/mgr-2019-0020.
CrossRef
Google Scholar
Vicens, J., Bueno-Guerra, N., Gutiérrez-Roig, M., Gracia-Lázaro, C., Gómez-Gardeñes, J., Perelló, J., et al. (2018). Resource heterogeneity leads to unjust effort distribution in climate change mitigation. PLoS One, 13(10), 1–17. https://doi.org/10.1371/journal.pone.0204369.
CrossRef
Google Scholar
Walmsley, M., Smith, L., Lintott, C., Gal, Y., Bamford, S., Dickinson, H., et al. (2019). Galaxy Zoo: Probabilistic morphology through Bayesian CNNs and active learning. Monthly Notices of the Royal Astronomical Society, 491(2), 1554–1574. https://doi.org/10.1093/mnras/stz2816.
CrossRef
Google Scholar
Watson, D., & Floridi, L. (2018). Crowdsourced science: Sociotechnical epistemology in the e-research paradigm. Synthese, 195, 741–764. https://doi.org/10.1007/s11229-016-1238-2.
CrossRef
Google Scholar
Willi, M., Pitman, R. T., Cardoso, A. W., Locke, C., Swanson, A., Boyer, A., et al. (2019). Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 10(1), 80–91. https://doi.org/10.1111/2041-210X.13099.
CrossRef
Google Scholar