Skip to main content

Nuclear Level Densities: From Empirical Models to Microscopic Methods

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

Abstract

The level density is among the most important statistical nuclear properties. It appears in Fermi’s golden rule for transition rates and is an important input to the Hauser–Feshbach theory of compound nucleus reactions. We discuss empirical models of level densities and summarize the main experimental methods used to determine them. The microscopic calculation of level densities in the presence of correlations is a challenging many-body problem. We review recent microscopic approaches to calculate level densities. Mean-field and combinatorial methods have been applied across the nuclear chart, but often need to be augmented with empirical collective enhancement factors. The moment method and the auxiliary-field quantum Monte Carlo (AFMC) method are formulated in the context of the configuration-interaction shell model approach, and include correlations beyond the mean-field approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  2. A. Bohr, B. R. Mottelson, Nuclear Structure, vol. 1 (Benjamin, New York, 1969)

    MATH  Google Scholar 

  3. T. Ericson, Adv. Phys. 9, 425 (1960)

    Article  ADS  Google Scholar 

  4. A. Sommerfeld, Z. Phys. 47, 1 (1928)

    Article  ADS  Google Scholar 

  5. H.A. Bethe, Phys. Rev. 50, 332 (1936)

    Article  ADS  Google Scholar 

  6. Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. C 68, 044322 (2003)

    Article  ADS  Google Scholar 

  7. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    Article  ADS  Google Scholar 

  8. Y. Alhassid, G.F. Bertsch, S. Liu, H. Nakada, Phys. Rev. Lett. 84, 4313 (2000)

    Article  ADS  Google Scholar 

  9. For discrete level scheme data, see the ENSDF database at https://www.nndc.bnl.gov/ensdf/

  10. For neutron and proton resonance data, see the RIPL-3 database at https://www-nds.iaea.org/RIPL-3/

  11. A.V. Voinov, Problem of level densities in compound nuclear reactions, in Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics (Springer International Publishing, Cham, 2020)

    Google Scholar 

  12. A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad, S. Siem, Nucl. Instrum. Meth. Phys. Res. A 447, 498 (2000)

    Article  ADS  Google Scholar 

  13. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

    Article  ADS  Google Scholar 

  14. T. von Egidy, H. Schmidt, A. Bekhami, Nucl. Phys. A 481, 189 (1988)

    Article  ADS  Google Scholar 

  15. A. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A 810, 13 (2008)

    Article  ADS  Google Scholar 

  16. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  17. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  18. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.S. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  19. S. Hilaire, S. Goriely, Nucl. Phys. A 779, 63 (2006)

    Article  ADS  Google Scholar 

  20. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  21. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  22. H. Uhrenholt, S. Åberg, A. Dobrowolski, T. Døssing, T. Ichikawa, P. Moller, Nucl. Phys. A 913, 127 (2013)

    Article  ADS  Google Scholar 

  23. K. Mon, J. French, Ann. Phys. 95, 90 (1975)

    Article  ADS  Google Scholar 

  24. V.K.B. Kota, R.U. Haq (eds.), Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Google Scholar 

  25. M. Horoi, M. Ghita, V. Zelevinsky, Phys. Rev. C 69, 041307 (2004)

    Article  ADS  Google Scholar 

  26. R.A. Sen’kov, M. Horoi, V. Zelevinsky, Comput. Phys. Commun. 184, 215 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. R.A. Sen’kov, V. Zelevinsky, Phys. Rev. C 93, 064304 (2016)

    Article  ADS  Google Scholar 

  28. V. Zelevinsky, M. Horoi, Prog. Part. Nucl. Phys. 105, 180 (2019)

    Article  ADS  Google Scholar 

  29. V. Zelevinsky, S. Karampagia, Nuclear shell model and level density, in Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18 (Springer International Publishing, Cham, 2020)

    Google Scholar 

  30. G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, Phys. Rev. C 48, 1518 (1993)

    Article  ADS  Google Scholar 

  31. Y. Alhassid, D.J. Dean, S.E. Koonin, G. Lang, W.E. Ormand, Phys. Rev. Lett. 72, 613 (1994)

    Article  ADS  Google Scholar 

  32. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 2 (1997)

    Article  ADS  Google Scholar 

  33. Y. Alhassid, Int. J. Mod. Phys. B 15, 1447 (2001)

    Article  ADS  Google Scholar 

  34. Y. Alhassid, in Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: A Symmetry-Guided Perspective, ed. by K.D. Launey (World Scientific, Singapore, 2017), pp. 267–298

    Chapter  Google Scholar 

  35. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R.L. Stratonovich, Dokl. Akad. Nauk. S.S.S.R. 115, 1097 (1957)

    Article  ADS  Google Scholar 

  36. H. Nakada, Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997)

    Article  ADS  Google Scholar 

  37. W.E. Ormand, Phys. Rev. C 56, 1678 (R) (1997)

    Google Scholar 

  38. K. Langanke, Phys. Lett. B 438, 235 (1998)

    Article  ADS  Google Scholar 

  39. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 83, 4265 (1999)

    Article  ADS  Google Scholar 

  40. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)

    Article  ADS  Google Scholar 

  41. A. Mukherjee, Y. Alhassid, Phys. Rev. Lett. 109, 032503 (2012)

    Article  ADS  Google Scholar 

  42. M. Dufour, A.P. Zuker, Phys. Rev. C 54, 1641 (1996)

    Article  ADS  Google Scholar 

  43. M. Bonett-Matiz, A. Mukherjee, Y. Alhassid, Phys. Rev. C 88, 011302 (R) (2013)

    Google Scholar 

  44. Y. Alhassid, M. Bonett-Matiz, S. Liu, H. Nakada, Phys. Rev. C 92, 024307 (2015)

    Article  ADS  Google Scholar 

  45. A.V. Voinov, S.M. Grimes, C.R. Brune, T. Massey, A. Schiller, EPJ Web Conf. 21, 05002 (2012); A.V. Voinov (private communication)

    Google Scholar 

  46. Y. Alhassid, L. Fang, H. Nakada, Phys. Rev. Lett. 101, 082501 (2008)

    Article  ADS  Google Scholar 

  47. C. Özen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)

    Article  ADS  Google Scholar 

  48. Y. Alhassid, C. Özen, H. Nakada, Nucl. Data Sheets 118, 233 (2014)

    Article  ADS  Google Scholar 

  49. Y. Alhassid, G.F. Bertsch, C.N. Gilbreth, H. Nakada, Phys. Rev. C 93, 044320 (2016)

    Article  ADS  Google Scholar 

  50. P. Fanto, Y. Alhassid, G.F. Bertsch, Phys. Rev. C 96, 014305 (2017)

    Article  ADS  Google Scholar 

  51. T. von Egidy, D. Bucurescu, Phys. Rev. C 78, 051301 (R) (2008)

    Google Scholar 

  52. T. von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)

    Article  ADS  Google Scholar 

  53. M.T. Mustonen, C.N. Gilbreth, Y. Alhassid, G.F. Bertsch, Phys. Rev. C 98, 034317 (2018)

    Article  ADS  Google Scholar 

  54. Y. Alhassid, C.N. Gilbreth, G.F. Bertsch, Phys. Rev. Lett. 113, 262503 (2014)

    Article  ADS  Google Scholar 

  55. C.N. Gilbreth, Y. Alhassid, G.F. Bertsch, Phys. Rev. C 97, 014315 (2018)

    Article  ADS  Google Scholar 

  56. K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

    Article  ADS  Google Scholar 

  57. D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986)

    Article  ADS  Google Scholar 

  58. S. Levit, Y. Alhassid, Nucl. Phys. A 413, 439 (1984)

    Article  ADS  Google Scholar 

  59. Y. Alhassid, S. Levit, J. Zingman, Phys. Rev. Lett. 57, 539 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank G.F. Bertsch, M. Bonett-Matiz, L. Fang, P. Fanto, C.N. Gilbreth, S. Liu, A. Mukherjee, M.T. Mustonen, H. Nakada, and C. Özen for their collaboration on parts of the work reviewed above. This work was supported in part by the U.S. DOE grants Nos. DE-SC0019521 and DE-FG02-91ER40608. The research presented here used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the Yale Center for Research Computing for guidance and for use of the research computing infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Alhassid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alhassid, Y. (2021). Nuclear Level Densities: From Empirical Models to Microscopic Methods. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_12

Download citation

Publish with us

Policies and ethics