Skip to main content

Non-destructive Electrochemical Evaluation of Pipeline Degradation

  • Conference paper
  • First Online:
Degradation Assessment and Failure Prevention of Pipeline Systems

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 102))

Abstract

Long-term operation of natural gas transmission pipelines leads not only to the appearance of macro defects but also to in-bulk damaging of pipeline steels at nano- and micro-scales. In-bulk steel degradation and a decrease in characteristics of brittle fracture resistance of pipeline steels under long-time operation increase significantly a failure risk. Therefore, deterioration of pipelines under operation calls for effective methods for current condition evaluation. The paper is aimed to the development of a prediction method of degradation of pipeline steel in operating conditions based on electrochemical correlation. The low-carbon ferrite-pearlite steels with different strength of gas transit pipelines after long-term operation were investigated. It was shown that mechanical and electrochemical properties of the pipeline steels were deteriorated due to long-term operation. It was found that one of the most sensitive parameters to in-bulk steel degradation among electrochemical properties was polarization resistance. An acceptable correlation between relative changes in polarization resistance and impact toughness of steels caused by long-term service was revealed. It was concluded that mechanical properties changes of pipeline steels caused by degradation under operation can be evaluated by measurements of changes in their electrochemical characteristics. Having initial properties of the steel, its current properties can be predicted. The method enables non-destructive in-service assessment of degradation degree of brittle fracture resistance of pipeline steels. The verification studies of prediction method of pipeline steel degradation were carried out on damaged and operated pipeline steels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiefner, J.F., Rosenfeld, M.J.: The role of pipeline age in pipeline safety. INGAA Foundation final report No. 2012.04. November 8, 2012, https://www.ingaa.org/file.aspx?id=19307. Accessed on 1 Mar 2020

  2. Vodenicharov, S.: Degradation of the physical and mechanical properties of pipeline material depending on exploitation term. In: Pluvinage, G., Elwany, M.H. (eds.) NATO Science for Peace and Security Series C: Environmental Security “Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines,” pp. 299–315. Springer, Dordrecht (2008)

    Google Scholar 

  3. Nykyforchyn, H.M., Lunarska, E., Zonta, P.: Degradation of properties of long term exploited main oil and gas pipelines steels and role of environment in this process. In: Bolzon, G., Boukharouba, T., Gabetta, G., Elboujdaini, M., Mellas, M. (eds.), Integrity of Pipelines Transporting Hydrocarbons. NATO Science for Peace and Security Series C: Environmental Security, vol. 1, pp. 59–74. Springer, Dordrecht (2011)

    Google Scholar 

  4. Mil’man, Yu.V., Nykyforchyn, H.M., Hrinkevych, K.E., Tsyrul’nyk, O.T., Tkachenko, I.V., Voloshyn, V.A., Mordel, L.V.: Assessment of the in-service degradation of pipeline steel by destructive and nondestructive methods. Mater. Sci. 47(5), 583–589 (2012)

    Article  Google Scholar 

  5. Maruschak, P.O., Danyliuk, I.M., Bishchak, R.T., Vuherer, T.: Low temperature impact toughness of the main gas pipeline steel after long-term degradation. Central Eur. J. Eng. 4(4), 408–415 (2014)

    Google Scholar 

  6. Meshkov, Y.Y., Shyyan, A.V., Zvirko, O.I.: Evaluation of the in-service degradation of steels of gas pipelines according to the criterion of mechanical stability. Mater. Sci. 50(6), 830–835 (2015)

    Google Scholar 

  7. Nykyforchyn, H., Zvirko, O., Tsyrulnyk, O., Kret, N.: Analysis and mechanical properties characterization of operated gas main elbow with hydrogen assisted large-scale delamination. Eng. Fail. Anal. 82, 364–377 (2017)

    Article  Google Scholar 

  8. Zvirko, O.I., Kret, N.V., Tsyrulnyk, O.T., Vengrynyuk, T.P.: Influence of textures of pipeline steels after operation on their brittle fracture resistance. Mater. Sci. 54(3), 400–405 (2018)

    Article  Google Scholar 

  9. Zvirko, O., Gabetta, G., Tsyrulnyk, O., Kret, N.: Assessment of in-service degradation of gas pipeline steel taking into account susceptibility to stress corrosion cracking. Proc. Struct. Integr. 16, 121–125 (2019)

    Article  Google Scholar 

  10. Marushchak, P.O., Kret, N.V., Bishchak, R.T., Kurnat, I.M.: Influence of texture and hydrogenation on the mechanical properties and character of fracture of pipe steel. Mater. Sci. 55(3), 381–385 (2019)

    Article  Google Scholar 

  11. Krechkovs’ka, H.V., Tsyrul’nyk, O.T., Student, O.Z.: In-service degradation of mechanical characteristics of pipe steels in gas mains. Strength Mater. 51(3), 406–417 (2019)

    Google Scholar 

  12. Dzioba, I.R., Tsyrul’nyk, O.T.: Analysis of the integrity of welded pipes of gas mains by the FITNET procedures. Mater. Sci. 45(6), 817–825 (2009)

    Google Scholar 

  13. Andreikiv, O.E., Hembara, O.V., Tsyrul’nyk, O.T., Nyrkova L.I.: Evaluation of the residual lifetime of a section of a main gas pipeline after long-term operation. Mater. Sci. 48(2), 231–238 (2012)

    Google Scholar 

  14. Andreikiv, O.Y., Dolins’ka, I.Y., Shtoiko, I.P., Raiter, O.K., Matviiv, Y.Y.: Evaluation of the residual service life of main pipelines with regard for the action of media and degradation of materials. Mater. Sci. 54(5), 638–646 (2019)

    Google Scholar 

  15. Tsyrul’nyk, O.T., Slobodyan, Z.V., Zvirko, O.I., Hredil, M.I., Nykyforchyn, H.M., Gabetta, D.: Influence of operation of Kh52 steel on corrosion processes in a model solution of gas condensate. Mater. Sci. 44(5), 619–629 (2008)

    Google Scholar 

  16. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y.: Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Mater. Sci. 50(5), 671–675 (2015)

    Google Scholar 

  17. Zvirko, O.I.: Corrosion degradation of pipeline steels with different strength grades. J. Hydrocarbon Power Eng. 4(1), 38–42 (2017a)

    Google Scholar 

  18. Zvirko, O.I., Mytsyk, A.B., Tsyrulnyk, O.T., Gabetta, G., Nykyforchyn, H.M.: Corrosion degradation of steel of long-term operated gas pipeline elbow with large-scale delamination. Mater. Sci. 52(6), 861–865 (2017)

    Article  Google Scholar 

  19. Zvirko, O.I.: Electrochemical methods for the evaluation of the degradation of structural steels intended for long-term operation. Mater. Sci. 52(4), 588–594 (2017b)

    Article  Google Scholar 

  20. Nykyforchyn, H., Zvirko, O., Tsyrulnyk, O.: Non-destructive diagnostics of hydrogen-induced degradation of pipelines steels by electrochemical method. In: Gdoutos, E.E. (ed.) Proceedings of 14th International Conference on Fracture ICF 2017, vol. 1, pp. 596–597. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  21. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O.: Electrochemical fracture analysis of in-service natural gas pipeline steels. Proc. Struct. Integr. 13, 1215–1220 (2018)

    Article  Google Scholar 

  22. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Krechkovska, H.: Non-destructive evaluation of brittle fracture resistance of operated gas pipeline steel using electrochemical fracture surface analysis. Eng. Fail. Anal. 104, 617–625 (2019)

    Article  Google Scholar 

  23. Zvirko, O., Nykyforchyn, H., Tsyrulnyk, O.: Evaluation of impact toughness of gas pipeline steels under operation using electrochemical method. Proc. Struct. Integr. 22, 299–304 (2019)

    Article  Google Scholar 

  24. Joo, M.S., Suh, D.W., Bhadeshia, H.K.D.H.: Mechanical anisotropy in steels for pipelines. ISIJ Int. 53, 1305–1314 (2013)

    Article  Google Scholar 

  25. Yang, X.L., Xu, Y.B., Tan, X.D., Wu, D.: Influences of crystallography and delamination on anisotropy of Charpy impact toughness in API X100 pipeline steel. Mater. Sci. Eng. A 607(23), 53–62 (2014)

    Article  Google Scholar 

  26. DSTU EN ISO 3183:2017 (ISO 3183:2012, IDT): Petroleum and natural gas industries. Steel pipe for pipeline transportation systems, Geneva/American Petroleum Institute (API), API 5L, 2013. Specifications for line pipe, 45th edition, Washington DC (2012)

    Google Scholar 

  27. Zvirko, O.I., Nykyforchyn, H.M., Tsyrulnyk, O.T., Krechkovska, H.V., Hredil, M.I.: Electrochemical method of operational degradation diagnostics of mechanical properties of structural steels. UA Patent 127309. Published 07/25/2018 (In Ukrainian)

    Google Scholar 

  28. Bolzon, G., Zvirko, O.: An indentation based investigation on the characteristics of artificially aged pipeline steels. Proc. Struct. Integr. 3, 172–175 (2017)

    Article  Google Scholar 

  29. Bolzon, G., Rivolta, B., Nykyforchyn, H., Zvirko, O.: Micro and macro mechanical analysis of gas pipeline steels. Proc. Struct. Integr. 5, 627–632 (2017)

    Article  Google Scholar 

  30. Bolzon, G., Rivolta, B., Nykyforchyn, H., Zvirko, O.: Mechanical analysis at different scales of gas pipelines. Eng. Fail. Anal. 90, 434–439 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research has been supported by the NATO in the Science for Peace and Security Programme under the Project G5055 “Development of Novel Methods for the Prevention of Pipeline Failures with Security Implications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olha Zvirko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zvirko, O., Tsyrulnyk, O. (2021). Non-destructive Electrochemical Evaluation of Pipeline Degradation. In: Bolzon, G., Gabetta, G., Nykyforchyn, H. (eds) Degradation Assessment and Failure Prevention of Pipeline Systems. Lecture Notes in Civil Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-58073-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58073-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58072-8

  • Online ISBN: 978-3-030-58073-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics