Skip to main content

Hepatobiliary Tumors: Immunopathology and Immunotherapy

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Liver neoplasms are a kind of digestive cancers, by which hepatocellular carcinoma is one of the main pathological types of liver cancer that are associated with chronic viral hepatitis and cirrhosis. Conventional treatments such as chemotherapy and radiotherapy are not efficient enough to eliminate residual cancer cells. In recent years, tumor immunotherapy has emerged as a perfect method, in terms of delaying the progression of advanced tumors and protecting postoperative patients against tumor relapse and metastasis, besides its noteworthy safety and efficacy. Immune induction in tumor microenvironments such as adoptive cell therapy, cancer vaccination, immune checkpoint inhibitors, and oncolytic viruses is one of the mechanisms initiating immunization in hepatocellular carcinoma. In this chapter we have reviewed the hepatobiliary tumors, the role of immunotherapy, and its relevant mechanisms to cancer therapy. In addition, some immunotherapeutic approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  3. Harris WP, Wong KM, Saha S, Dika IE, Abou-Alfa GK. Biomarker-driven and molecular targeted therapies for hepatobiliary cancers. Semin Oncol. 2018;45(3):116–23.

    Article  CAS  PubMed  Google Scholar 

  4. Kabbach G, Assi HA, Bolotin G, Schuster M, Lee HJ, Tadros M, et al. Hepatobiliary tumors: update on diagnosis and management. J Clin Transl Hepatol. 2015;3(3):169.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5):S35–50.

    Article  PubMed  Google Scholar 

  6. Nault J-C. Pathogenesis of hepatocellular carcinoma according to aetiology. Best Pract Res Clin Gastroenterol. 2014;28(5):937–47.

    Article  CAS  PubMed  Google Scholar 

  7. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  8. El-Serag HB, Davila JA. Surveillance for hepatocellular carcinoma: in whom and how? London: SAGE Publications; 2011.

    Google Scholar 

  9. El-Serag HB, Kanwal F. Obesity and hepatocellular carcinoma: hype and reality. Hepatology. 2014;60(3):779–81.

    Article  PubMed  Google Scholar 

  10. McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015;19(2):223–38.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E86.

    Article  CAS  PubMed  Google Scholar 

  13. Bosch FX, Ribes J, Borràs J, editors. Epidemiology of primary liver cancer, Seminars in liver disease. New York: Thieme Medical Publishers, Inc.; 1999.

    Google Scholar 

  14. Bruix J, Sherman M. Management of hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 2005;42(5):1208–36.

    Google Scholar 

  15. Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol. 2014;28(5):753–70.

    Article  PubMed  Google Scholar 

  16. Ikeda M, Mitsunaga S, Ohno I, Hashimoto Y, Takahashi H, Watanabe K, et al. Systemic chemotherapy for advanced hepatocellular carcinoma: past, present, and future. Diseases. 2015;3(4):360–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29.

    Article  CAS  PubMed  Google Scholar 

  18. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40(3):472–7.

    Article  PubMed  Google Scholar 

  19. Shaib Y, El-Serag HB, editors. The epidemiology of cholangiocarcinoma, Seminars in liver disease. New York: Thieme Medical Publishers, Inc.; 2004.

    Google Scholar 

  20. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology. 2005;128(3):620–6.

    Article  PubMed  Google Scholar 

  21. Bruix J, Castells A, Bosch J, Feu F, Fuster J, Garcia-Pagan JC, et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure. Gastroenterology. 1996;111(4):1018–22.

    Article  CAS  PubMed  Google Scholar 

  22. Qin L-X. Inflammatory immune responses in tumor microenvironment and metastasis of hepatocellular carcinoma. Cancer Microenviron. 2012;5(3):203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alberts SR, Gores GJ, Kim GP, Roberts LR, Kendrick ML, Rosen CB, et al., editors. Treatment options for hepatobiliary and pancreatic cancer, Mayo Clinic Proceedings. Amsterdam: Elsevier; 2007.

    Google Scholar 

  24. Frank A, Seitz HK, Bartsch H, Frank N, Nair J. Immunohistochemical detection of 1, N 6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to hepato-carcinogenesis. Carcinogenesis. 2004;25(6):1027–31.

    Article  CAS  PubMed  Google Scholar 

  25. Plentz RR, Caselitz M, Bleck JS, Gebel M, Flemming P, Kubicka S, et al. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology. 2004;40(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ahn SM, Jang SJ, Shim JH, Kim D, Hong SM, Sung CO, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014;60(6):1972–82.

    Article  CAS  PubMed  Google Scholar 

  27. Mohammed NA, Abd El-Aleem S, Appleton I, Maklouf MM, Said M, McMahon RF. Expression of nitric oxide synthase isoforms in human liver cirrhosis. J Pathol. 2003;200(5):647–55.

    Article  CAS  PubMed  Google Scholar 

  28. Yu D-C, Chen J, Ding Y-T. Hypoxic and highly angiogenic non-tumor tissues surrounding hepatocellular carcinoma: the ‘niche’ of endothelial progenitor cells. Int J Mol Sci. 2010;11(8):2901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Girón-González JA, Martínez-Sierra C, Rodriguez-Ramos C, Macías MA, Rendón P, Díaz F, et al. Implication of inflammation-related cytokines in the natural history of liver cirrhosis. Liver Int. 2004;24(5):437–45.

    Article  PubMed  CAS  Google Scholar 

  30. Park EJ, Lee JH, Yu G-Y, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maeda S, Hikiba Y, Sakamoto K, Nakagawa H, Hirata Y, Hayakawa Y, et al. Ikappa B kinaseβ/nuclear factor-κB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology. 2009;50(6):1851–60.

    Article  CAS  PubMed  Google Scholar 

  32. Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol. 2014;16(10):972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62(2):481–95.

    Article  CAS  PubMed  Google Scholar 

  34. Tang Y, Kitisin K, Jogunoori W, Li C, Deng C-X, Mueller SC, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci. 2008;105(7):2445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 2010;52(4):1322–33.

    Article  CAS  PubMed  Google Scholar 

  36. Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590(3):447–58.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H-L, Yu L-X, Yang W, Tang L, Lin Y, Wu H, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol. 2012;57(4):803–12.

    Article  PubMed  Google Scholar 

  38. Yu L-X, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47(9):e184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014;2014:864894.

    PubMed  PubMed Central  Google Scholar 

  41. Qu Z, Wu J, Wu J, Ji A, Qiang G, Jiang Y, et al. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget. 2017;8(46):80666.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112(3):532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, et al. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. Onco Targets Ther. 2017;10:3843.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arbelaiz A, Azkargorta M, Krawczyk M, Santos-Laso A, Lapitz A, Perugorria MJ, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–43.

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Li H, Zhou Y, Jie S. Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomark. 2013;13(5):351–7.

    Article  CAS  PubMed  Google Scholar 

  46. Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2017;67(2):282–92.

    Article  CAS  PubMed  Google Scholar 

  47. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461.

    Article  CAS  PubMed  Google Scholar 

  50. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16(4):295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014;26(3):331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maeda S, Kamata H, Luo J-L, Leffert H, Karin M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121(7):977–90.

    Article  CAS  PubMed  Google Scholar 

  53. Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci. 2006;103(28):10544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He G, Yu G-Y, Temkin V, Ogata H, Kuntzen C, Sakurai T, et al. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell. 2010;17(3):286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11(2):119–32.

    Article  CAS  PubMed  Google Scholar 

  56. Kondylis V, Polykratis A, Ehlken H, Ochoa-Callejero L, Straub BK, Krishna-Subramanian S, et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell. 2015;28(5):582–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell AL, et al. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 2014;49(2):116–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205(6):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakurai T, He G, Matsuzawa A, Yu G-Y, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14(2):156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He G, Karin M. NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res. 2011;21(1):159.

    Article  CAS  PubMed  Google Scholar 

  61. Lee TKW, Castilho A, Cheung VCH, Tang KH, Ma S, Ng IOL. CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  62. Trikha M, Corringham R, Klein B, Rossi J-F. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9(13):4653–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155(2):384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.

    Article  CAS  PubMed  Google Scholar 

  65. Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM, et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology. 2015;62(4):1160–73.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. 2011;54(3):900–9.

    Article  CAS  PubMed  Google Scholar 

  67. Park O, Wang H, Weng H, Feigenbaum L, Li H, Yin S, et al. In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology. 2011;54(1):252–61.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang JF, He ML, Fu WM, Wang H, Chen LZ, Zhu X, et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology. 2011;54(6):2137–48.

    Article  CAS  PubMed  Google Scholar 

  69. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147(6):1233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bollrath J, Greten FR. IKK/NF-κB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 2009;10(12):1314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee H, Herrmann A, Deng J-H, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell. 2009;15(4):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol. 2015;21(36):10314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fujiwara K, Higashi T, Nouso K, Nakatsukasa H, Kobayashi Y, Uemura M, et al. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2004;19(10):1121–7.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Z, Shen S, Peng B, Tao J. Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model. Int J Hyperth. 2009;25(5):374–82.

    Article  CAS  Google Scholar 

  75. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, et al. Increase in CD14+ HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62(8):1421–30.

    Article  CAS  PubMed  Google Scholar 

  76. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807.

    Article  CAS  PubMed  Google Scholar 

  77. Alisa A, Ives A, Pathan AA, Navarrete CV, Williams R, Bertoletti A, et al. Analysis of CD4+ T-cell responses to a novel α-fetoprotein-derived epitope in hepatocellular carcinoma patients. Clin Cancer Res. 2005;11(18):6686–94.

    Article  CAS  PubMed  Google Scholar 

  78. Crispe IN, Giannandrea M, Klein I, John B, Sampson B, Wuensch S. Cellular and molecular mechanisms of liver tolerance. Immunol Rev. 2006;213(1):101–18.

    Article  PubMed  Google Scholar 

  79. Chen K-J, Lin S-Z, Zhou L, Xie H-Y, Zhou W-H, Taki-Eldin A, et al. Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS One. 2011;6(9):e24671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2, 3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59(2):567–79.

    Article  CAS  PubMed  Google Scholar 

  81. Budhu A, Forgues M, Ye Q-H, Jia H-L, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99–111.

    Article  CAS  PubMed  Google Scholar 

  82. Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342(6165):1432–3.

    CAS  Google Scholar 

  83. Buonaguro FM, Buonaguro L. Cancer vaccines for hepatocellular carcinoma: future directions. Future Med. 2016;8:391–3.

    CAS  Google Scholar 

  84. Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J Hepatol. 2013;59(4):897–903.

    Article  CAS  PubMed  Google Scholar 

  85. Xie Y, Xiang Y, Sheng J, Zhang D, Yao X, Yang Y, et al. Immunotherapy for hepatocellular carcinoma: current advances and future expectations. J Immunol Res. 2018;2018:8740976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nemunaitis J, Barve M, Orr D, Kuhn J, Magee M, Lamont J, et al. Summary of bi-shRNAfurin/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver. Oncology. 2014;87(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  87. Sun T, Yan W, Yang C, Zhang L, Tang H, Chen Y, et al. Clinical research on dendritic cell vaccines to prevent postoperative recurrence and metastasis of liver cancer. Genet Mol Res. 2015;14(4):16222–32.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang W, Liu J, Wu Y, Xiao F, Wang Y, Wang R, et al. Immunotherapy of hepatocellular carcinoma with a vaccine based on xenogeneic homologous α fetoprotein in mice. Biochem Biophys Res Commun. 2008;376(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  89. Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Onco Targets Ther. 2016;5(5):e1129483.

    Google Scholar 

  90. Takakura K, Kajihara M, Ito Z, Ohkusa T, Gong J, Koido S. Dendritic-tumor fusion cells in cancer immunotherapy. Discov Med. 2015;19(104):169–74.

    PubMed  Google Scholar 

  91. Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren W, et al. Nifuroxazide prompts antitumor immune response of TCL-loaded DC in mice with orthotopically-implanted hepatocarcinoma. Oncol Rep. 2017;37(6):3405–14.

    Article  CAS  PubMed  Google Scholar 

  92. Lee J-H, Lee Y, Lee M, Heo MK, Song J-S, Kim K-H, et al. A phase I/IIa study of adjuvant immunotherapy with tumour antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Br J Cancer. 2015;113(12):1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. El Ansary M, Mogawer S, Elhamid SA, Alwakil S, Aboelkasem F, El Sabaawy H, et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J Cancer Res Clin Oncol. 2013;139(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  94. Jixia Z, Chengyan Z, Pingli W. Advances in application of adoptive T-cell therapy for cancer patients. Zhejiang da xue xue bao Yi xue ban. 2017;46(2):211–7.

    PubMed  Google Scholar 

  95. Baruch EN, Berg AL, Besser MJ, Schachter J, Markel G. Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer. 2017;123(S11):2154–62.

    Article  PubMed  Google Scholar 

  96. Longo V, Gnoni A, Gardini AC, Pisconti S, Licchetta A, Scartozzi M, et al. Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget. 2017;8(20):33897.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, et al. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front Immunol. 2017;8:774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wang F-S, Liu M-X, Zhang B, Shi M, Lei Z-Y, Sun W-B, et al. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol. 2002;8(3):464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu L, Wang J, Kim Y, Shuang Z-Y, Zhang Y-J, Lao X-M, et al. A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. Oncoimmunology. 2016;5(3):e1083671.

    Article  PubMed  Google Scholar 

  100. Lee DH, Nam JY, Chang Y, Cho H, Kang SH, Cho YY, et al. Synergistic effect of cytokine-induced killer cell with valproate inhibits growth of hepatocellular carcinoma cell in a mouse model. Cancer Biol Ther. 2017;18(1):67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang S, Wang Z. Efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cells immunotherapy for non-small-cell lung cancer. Int Immunopharmacol. 2015;28(1):22–8.

    Article  PubMed  CAS  Google Scholar 

  102. Toh U, Fujii T, Seki N, Niiya F, Shirouzu K, Yamana H. Characterization of IL-2-activated TILs and their use in intrapericardial immunotherapy in malignant pericardial effusion. Cancer Immunol Immunother. 2006;55(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  103. Yuan L, He S, Guan C, Pang Q. The preparation and study on hepatic targeting tendency of galactosyl-anti-CD3-McAb in mice. Hua xi yi ke da xue xue bao. 2001;32(3):424–6.

    CAS  PubMed  Google Scholar 

  104. Jiang S-S, Tang Y, Zhang Y-J, Weng D-S, Zhou Z-G, Pan K, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015;6(38):41339.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kamiya T, Chang Y-H, Campana D. Expanded and activated natural killer cells for immunotherapy of hepatocellular carcinoma. Cancer Immunol Res. 2016;4(7):574–81.

    Article  CAS  PubMed  Google Scholar 

  106. Abken H, Chmielewski M, Hombach AA. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013;4:371.

    PubMed  PubMed Central  Google Scholar 

  107. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36.

    Article  CAS  PubMed Central  Google Scholar 

  108. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54.

    Article  CAS  PubMed  Google Scholar 

  109. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2009;100(8):1403–7.

    Article  CAS  PubMed  Google Scholar 

  110. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 2014;20(24):6418–28.

    Article  CAS  PubMed  Google Scholar 

  111. Chen C, Li K, Jiang H, Song F, Gao H, Pan X, et al. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol Immunother. 2017;66(4):475–89.

    Article  CAS  PubMed  Google Scholar 

  112. Gross G, Eshhar Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol. 2016;56:59–83.

    Article  CAS  PubMed  Google Scholar 

  113. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu X-J, Tang Y-M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. 2014;343(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  115. Fedorov VD, Themeli M, Sadelain M. PD-1-and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71.

    Article  CAS  PubMed  Google Scholar 

  117. Rischer M, Pscherer S, Duwe S, Vormoor J, Jürgens H, Rossig C. Human γδ T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br J Haematol. 2004;126(4):583–92.

    Article  CAS  PubMed  Google Scholar 

  118. Ito A, Kondo S, Tada K, Kitano S. Clinical development of immune checkpoint inhibitors. Biomed Res Int. 2015;2015:1.

    Google Scholar 

  119. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.

    Article  CAS  PubMed  Google Scholar 

  120. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868–76.

    Article  CAS  PubMed  Google Scholar 

  121. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  PubMed  Google Scholar 

  122. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  123. Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  124. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66(3):545–51.

    Article  CAS  PubMed  Google Scholar 

  125. Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6(1):74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol. 2014;290(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  127. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhong F, Cheng X, Sun S, Zhou J. Transcriptional activation of PD-L1 by Sox2 contributes to the proliferation of hepatocellular carcinoma cells. Oncol Rep. 2017;37(5):3061–7.

    Article  CAS  PubMed  Google Scholar 

  129. Liu J, Liu Y, Meng L, Liu K, Ji B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep. 2017;38(2):899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hammill AM, Conner J, Cripe TP. Oncolytic virotherapy reaches adolescence. Pediatr Blood Cancer. 2010;55(7):1253–63.

    Article  PubMed  Google Scholar 

  131. Bourke M, Salwa S, Harrington K, Kucharczyk M, Forde P, de Kruijf M, et al. The emerging role of viruses in the treatment of solid tumours. Cancer Treat Rev. 2011;37(8):618–32.

    Article  CAS  PubMed  Google Scholar 

  132. Platanias LC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375.

    Article  CAS  PubMed  Google Scholar 

  133. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stanford MM, Bell JC, Vähä-Koskela MJ. Novel oncolytic viruses: riding high on the next wave? Cytokine Growth Factor Rev. 2010;21(2–3):177–83.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang W, Ge K, Zhao Q, Zhuang X, Deng Z, Liu L, et al. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget. 2015;6(24):20345.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73(4):1265–75.

    Article  CAS  PubMed  Google Scholar 

  138. Yoo SY, Jeong S-N, Kang DH, Heo J. Evolutionary cancer-favoring engineered vaccinia virus for metastatic hepatocellular carcinoma. Oncotarget. 2017;8(42):71489.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749–58.

    Article  CAS  PubMed  Google Scholar 

  140. Breitbach CJ, Moon A, Burke J, Hwang T-H, Kirn DH. A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. In: Gene therapy of solid cancers. New York: Springer; 2015. p. 343–57.

    Chapter  Google Scholar 

  141. Xie Y, Xiang Y, Sheng J, Zhang D, Yao X, Yang Y, et al. Immunotherapy for hepatocellular carcinoma: current advances and future expectations. J Immunol Res. 2018;2018:1.

    Article  CAS  Google Scholar 

  142. Chen JL, Lao XM, Lin XJ, Xu L, Cui BK, Wang J, et al. Adjuvant cytokine-induced killer cell therapy improves disease-free and overall survival in solitary and nonmicrovascular invasive hepatocellular carcinoma after curative resection. Medicine (Baltimore). 2016;95(5):e2665.

    Article  CAS  Google Scholar 

  143. Ding M, Wang Y, Chi J, Wang T, Tang X, Cui D, et al. Is adjuvant cellular immunotherapy essential after TACE-predominant minimally-invasive treatment for hepatocellular carcinoma? A systematic meta-analysis of studies including 1774 patients. PLoS One. 2016;11(12):e0168798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hui D, Qiang L, Jian W, Ti Z, Da-Lu K. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig Liver Dis. 2009;41(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  145. Pan QZ, Wang QJ, Dan JQ, Pan K, Li YQ, Zhang YJ, et al. A nomogram for predicting the benefit of adjuvant cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma. Sci Rep. 2015;5:9202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Toso C, Merani S, Bigam DL, Shapiro AM, Kneteman NM. Sirolimus-based immunosuppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology. 2010;51(4):1237–43.

    Article  CAS  PubMed  Google Scholar 

  147. Wang Y, Yang X, Yu Y, Xu Z, Sun Y, Liu H, et al. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J Cancer. 2018;9(2):275–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Zhang Y, Zhang X, Zhang A, Li K, Qu K. Clinical applications of dendritic cells-cytokine-induced killer cells mediated immunotherapy for pancreatic cancer: an up-to-date meta-analysis. Onco Targets Ther. 2017;10:4173–92.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hong YK, Li Y, Pandit H, Li S, Pulliam Z, Zheng Q, et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. Cell Immunol. 2019;336:66–74.

    Article  CAS  PubMed  Google Scholar 

  150. Li X, Zhang Z, Lin G, Gao Y, Yan Z, Yin H, et al. Antigen-specific T cell response from dendritic cell vaccination using side population cell-associated antigens targets hepatocellular carcinoma. Tumour Biol. 2016;37(8):11267–78.

    Article  CAS  PubMed  Google Scholar 

  151. Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res. 2018;37(1):110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Momeni Roudsari, N., Lashgari, NA., Momtaz, S., Abdolghaffari, A.H. (2020). Hepatobiliary Tumors: Immunopathology and Immunotherapy. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-57949-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57949-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57948-7

  • Online ISBN: 978-3-030-57949-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics