Skip to main content

Charge Transport Mechanisms in the Silver-Modified Zeolite Porous Microstructure

  • Chapter
  • First Online:
Advances in Optoelectronic Materials

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 365 Accesses

Abstract

The interaction between microdischarge and microporous zeolite electronic material (ρ~106–1011 Ω cm) modified by silver (Ag0) nanoparticles cold plasma generated at the atmospheric pressure is investigated experimentally as a function of pressure p (8–760 Torr), electrode gap d (50–250 μm), and diameters D (9–22 mm) of the cathode areas in the gas discharge electronic device (GDED) with nanoporous zeolite cathode (ZC). The role of charge carriers in mixed conductivity processes, electrical and dielectric features of zeolite, is analyzed in air microplasmas . The results obtained from experiments indicate that Ag0 nanoparticles play a significant role in reducing the breakdown voltage (UB) in GDED with ZC. It was found that with increasing silver concentration , resistance of zeolite plate monotonically decreases and at the same time the capacitance is increased. The observed frequency dependence (1–200 MHz) of the capacitance and resistance of ZC on the silver concentrations may be explained on the basis of an electrode–dielectric interface gap model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Koseoglu, M. Ozer, B.G. Salamov, Plasma Process. Polym. 11, 1018 (2014)

    Article  CAS  Google Scholar 

  2. T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, J. Phys. D: Appl. Phys. 23, 1125 (1990)

    Article  CAS  Google Scholar 

  3. F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Segur, C. Mayoux, J. Appl. Phys. 83, 2950 (1998)

    Article  CAS  Google Scholar 

  4. B.G. Salamov, Y. Çiftci, K. Çolakoglu, IEEE Trans. Plasma Sci. 32, 2093 (2004)

    Article  CAS  Google Scholar 

  5. O. Sakai, Y. Kishimoto, K. Tachibana, J. Phys. D 38, 431 (2005)

    Article  CAS  Google Scholar 

  6. A.V. Phelps, Z. Petrovic, Plasma Sources Sci. Technol. 8, R21 (1999)

    Article  CAS  Google Scholar 

  7. A.A. Kudryavtsev, L.D. Tsendin, Tech. Phys. Lett. 28, 621 (2002)

    Article  CAS  Google Scholar 

  8. H. Willebrand, Y. Astrov, L. Portsel, S. Teperick, T. Gauselmann, Infrared Phys. Technol. 36, 809 (1995)

    Article  CAS  Google Scholar 

  9. B.G. Salamov, K. Colakoglu, S. Altindal, M. Ozer, J. Phys. III. 7, 927 (1997)

    CAS  Google Scholar 

  10. B.G. Salamov, S. Altindal, M. Ozer, K. Colakoglu, E. Bulur, Eur. Phys. J. Appl. Phys. 2, 26 (1998)

    Google Scholar 

  11. B.G. Salamov, S. Ellialtioglu, B.G. Akinoglu, N.N. Lebedeva, L.G. Paritskii, J. Phys. D: Appl. Phys. 29, 628 (1996)

    Article  CAS  Google Scholar 

  12. B.G. Salamov, M. Özer, M. Kasap, S. Altındal, J. Phys. D. 32, 682 (1999)

    Article  CAS  Google Scholar 

  13. V. Soghomonian, J.J. Heremans, Appl. Phys. Lett. 95, 152112 (2009)

    Article  CAS  Google Scholar 

  14. A.V. Eletskii, Phys. Usp. 40, 899 (1997)

    Article  Google Scholar 

  15. Y.V. Gulyaev, L.A. Chernozatonskii, Z.J. Kosakovskaja, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, J. Vac. Sci. Technol. B 13, 435 (1995)

    Google Scholar 

  16. N.N. Lebedeva, V.I. Orbukh, Ch.A. Sultanov, Tech. Phys. 55, 565 (2010)

    Article  CAS  Google Scholar 

  17. J.T.H. Tsai, H.C. Ko, Appl. Phys. Lett. 88, 013104 (2006)

    Article  CAS  Google Scholar 

  18. G. Gottardi, E. Galli, Natural Zeolites (Springer, Berlin, 1985).

    Book  Google Scholar 

  19. C. Senaratne, J. Zhang, M.D. Baker, C.A. Bessel, D.R. Rolison, J. Phys. Chem. 100, 5849 (1996)

    Article  CAS  Google Scholar 

  20. A. Giaya, R.W. Thompson, R. Denkewicz, Microporous Mesoporous Mater. 40, 205 (2000)

    Article  CAS  Google Scholar 

  21. K. Koseoglu, M. Ozer, S. Ozturk, B.G. Salamov, Jpn. J. Appl. Phys. 53, 086203 (2014)

    Article  CAS  Google Scholar 

  22. H.Y. Kurt, B.G. Salamov, J. Electron. Mater. (2019) doi https://doi.org/10.1007/s11837-019-03956-0

  23. B.G. Salamov, K. Colakoglu, S. Altındal, Infrared Phys. Technol. 36, 661 (1995)

    Article  CAS  Google Scholar 

  24. A. Mizuno, IEEE Trans. Dielec. Electr. Insul. 7, 615 (2000)

    Article  CAS  Google Scholar 

  25. A. Jaworek, A. Krupa, T. Czech, J. Phys. D 29, 2439 (1996)

    Article  CAS  Google Scholar 

  26. K. Hensel, V. Martisovits, Z. Machala, M. Janda, M. Lestinsky, P. Tardiveau, A. Mizuno, Plasma Process. Polym. 4, 682 (2007)

    Article  CAS  Google Scholar 

  27. J. Pawlat, P. Terebun, M. Kwiatkowski, B. Tarabova, K. Kucerova, Z. Machala, M. Janda, K. Hensel, Plasma Chem. Plasma Process. 39, 627 (2019)

    Article  CAS  Google Scholar 

  28. J.F. Roman-Zamorano, M. Flores-Acosta, H. Arizpe-Chavez, F.F. Castillon- Barraza, M.H. Farias, R. Ramirez-Bon, J. Mater. Sci. 44, 4781 (2009)

    Google Scholar 

  29. A. Fred Mumpton, Mineralogy and Geology of Natural Zeolites (Fairford, GLOS, United Kingdom 2018)

    Google Scholar 

  30. A. Khataee, S. Bozorg, S. Khorram, M. Fathinia, Y. Hanifehpour, S.W. Joo, Ind. Eng. Chem. Res. 52, 18225 (2013)

    Article  CAS  Google Scholar 

  31. E. Chmielewska, E. Samajova, J. Kozac, Turk. J. Chem. 26, 281 (2002)

    CAS  Google Scholar 

  32. T. Armbruster, Am. Mineral. 78, 260 (1993)

    CAS  Google Scholar 

  33. S.V. Lankin, V.V. Yurkov, Пepcпeктивныe Maтepиaлы. 5, 59 (2006)

    Google Scholar 

  34. U. Simon, M.E. Franke, Micropor. Mesopor. Mater. 41, 1 (2000)

    Article  CAS  Google Scholar 

  35. H. Kabashima, H. Einaga, S. Futamura, IEEE Trans. Indust. Appl. 39, 340 (2003)

    Article  CAS  Google Scholar 

  36. R. Burlica, K.Y. Shih, B.R. Locke, Indust. Eng. Chem. Res. 49, 6342 (2010)

    Article  CAS  Google Scholar 

  37. M.A. Malik, K.H. Schoenbach, J. Phys. D: Appl. Phys. 45, 132001 (2012)

    Article  CAS  Google Scholar 

  38. A. Kumada, S. Okabe, K. Hidaka, J. Phys. D: Appl. Phys. 42, 095209 (2009)

    Article  CAS  Google Scholar 

  39. V. Bloshchitsyn, Review of surface discharge experiments (2010). https://arxiv.org/abs/1005.5044v1

  40. M.A. Malik, S. Xiao, K.H. Schoenbach, J. Hazard. Mater. 209, 293 (2012)

    Article  CAS  Google Scholar 

  41. G.N. Tsikrikas, A.A. Serafetinides, J. Phys. D: Appl. Phys. 29, 2806 (1996)

    Article  CAS  Google Scholar 

  42. S.S. Yang, S.M. Lee, F. Iza, J.K. Lee, J. Phys. D: Appl. Phys. 39, 2775 (2006)

    Article  CAS  Google Scholar 

  43. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  44. A. Bulletti, L. Capineri, M. Materassi, B.D. Dunn, IEEE Trans. Electron. Packag. Manuf. 30, 115 (2007)

    Google Scholar 

  45. N. De Geyter, R. Morent, C. Leys, L. Gengembre, E. Payen, Surf. Coat. Technol. 201, 7066 (2007)

    Article  CAS  Google Scholar 

  46. Y. Sadiq, M. Ozer, B.G. Salamov, J. Phys. D: Appl. Phys. 41, 045204 (2008)

    Article  CAS  Google Scholar 

  47. G.J.M. Hagelaar, M.H. Klein, R.J.M. Snijkers, G.M.W. Kroesen, J. Appl. Phys. 89, 2033 (2001)

    Article  CAS  Google Scholar 

  48. V.I. Orbukh, N.N. Lebedeva, S. Ozturk, Ş. Uğur, B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 6, 947 (2012)

    Google Scholar 

  49. K. Koseoglu, B.G. Salamov, Plasma Process. Polym. (2015). doi https://doi.org/10.1002/ppap.201500066

  50. V.I. Orbukh, N.N. Lebedeva, S. Ozturk, B.G. Salamov, Superlattice Microstruct. 54, 16 (2013)

    Article  CAS  Google Scholar 

  51. E. Krogh Anderson, J.G. Krogh Anderson, E. Skou, in Chemistry of Solid State Materials, vol. 2 edited by P. Colomban (Cambridge University Press, Cambridge 1992)

    Google Scholar 

  52. R.A. Secco, M. Rütter, Y. Huang, Tech. Phys. 45, 1447 (2000)

    Article  CAS  Google Scholar 

  53. D.A. Faux, W. Smith, T.R. Forester, J. Phys. Chem. 101, 1762 (1997)

    Article  CAS  Google Scholar 

  54. S.V. Goryainov, R.A. Secco, Y. Huang, H. Liu, Phys. B 390, 356 (2007)

    Article  CAS  Google Scholar 

  55. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Gonzalvo, C. Leys, D.C. Schram, Plasma Sourc. Sci. Technol. 19, 015016 (2010)

    Article  CAS  Google Scholar 

  56. M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)

    Article  CAS  Google Scholar 

  57. I. Fridovitch, Annu. Rev. Biochem. 64, 97 (1995)

    Article  Google Scholar 

  58. J. Shen, Q. Sun, Z. Zhang, C. Cheng, Y. Lan, H. Zhang, Z. Xu, Y. Zhao, W. Xia, P.K. Chu, Plasma Process. Polym. 12, 252 (2015)

    Article  CAS  Google Scholar 

  59. I. Amber, R.O. Odekhe, Y.S. Sanusi, J. Mech. Eng. Res. 4, 142 (2012)

    Google Scholar 

  60. M. Ramos, R.L. Espinoza, M.J. Horn, A. P. F. Leite, ISES Solar World Congress. Göteborg Sweden, 14–19 June 2003

    Google Scholar 

  61. A. Arbuznikov, V. Vasilyev, A. Goursot, Surf. Sci. 397, 395 (1998)

    Article  CAS  Google Scholar 

  62. D.W. Breck, Zeolites Molecular Sieves (Malabar, R.E. Krieger Pub., 1984), pp. 392–410

    Google Scholar 

  63. D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Plasma Sourc. Sci. Technol. 19, 025018 (2010)

    Article  CAS  Google Scholar 

  64. Y.S. Akishev, A.A. Deryugin, V.B. Karalnik, I.V. Kochetov, A.P. Napartovich, N.I. Trushkin, Plasma Phys. Rep. 20, 511 (1994)

    Google Scholar 

  65. A. Van Deynse, N. De Geyter, C. Leys, R. Morent, Plasma Process. Polym. 11, 117 (2014)

    Article  CAS  Google Scholar 

  66. R.H. Perry, D. Green, Perry’s Chemical Engineers’ Handbook (McGraw-Hill, New York, 1997).

    Google Scholar 

  67. J.J. Thomson, Conduction of Electricity Through Gases (Cambridge University Press, Cambridge, 1933).

    Google Scholar 

  68. M.J. Druyvesteyn, F.M. Penning, Rev. Mod. Phys. 12, 267 (1940)

    Article  Google Scholar 

  69. J. Meek, J. Craggs, Electrical Breakdown of Gases (Wiley, New York, 1978).

    Google Scholar 

  70. D. Carvalho, S. Ghosh, R. Banerjee, P. Ayyub, Nanotechnology 19, 445713 (2008)

    Article  CAS  Google Scholar 

  71. K. Koseoglu, M. Özer, S. Ozturk, B.G. Salamov, Jpn. J. Appl. Phys. 53, 086203 (2014)

    Article  CAS  Google Scholar 

  72. H. Jacobs, J. Freely, F.A. Brandt, Phys. Rev. 88, 492 (1952)

    Article  CAS  Google Scholar 

  73. J.M. Millet, J.J. Lafon, Phys. Rev. A. 52, 433 (1995)

    Article  CAS  Google Scholar 

  74. S. Watanabe, T. Watanabe, K. Ito, N. Miyakawa, S. Ito, H. Hosono, S. Mikoshiba, Sci. Technol. Adv. Mater. 12, 034410 (2011)

    Article  CAS  Google Scholar 

  75. N.L. Yasnopol’skii, A.E. Shabel’nikova, Fiz. Tverd. Tela. (Leningrad) 10, 103 (1968) (Sov. Phys. Solid State 10, 75) (1968)

    Google Scholar 

  76. N.L. Yasnopol’skii, A.E. Shabel’nikova, A.P. Balashov, N.S. Lozhkina, in Research in Radio Engineering and Electronics (in Russian), Part 2 (Moscow, 1975), p. 67

    Google Scholar 

  77. P.M. Shikhaliev, Tech. Phys. Lett. 24, 752 (1998)

    Article  CAS  Google Scholar 

  78. I.M. Bronshtein, B.S. Fraiman, Secondary Electron Emission (in Russian) (Nauka, Moscow, 1969), p. 408

    Google Scholar 

  79. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim. Acta B. 57, 609 (2002)

    Article  Google Scholar 

  80. V.I. Orbukh, N.N. Lebedeva, S. Ozturk, Ş Uğur, B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 6, 947 (2012)

    CAS  Google Scholar 

  81. V.A. Lisovskiy, S.D. Yakovin, V.D. Yegorenkov, J. Phys. D: Appl. Phys. 33, 2722 (2000)

    Article  CAS  Google Scholar 

  82. B. Soltabayev, H. Kurt, S. Acar, B.G. Salamov, J. Electronic Materials, 47 (2019). doi https://doi.org/10.1007/s11664-019-07210-w

  83. M.D. Rutter, R.A. Secco, Y. Huang, Chem. Phys. Lett. 331, 189 (2000)

    Google Scholar 

  84. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Interscience Publication, Wiley, 2005).

    Book  Google Scholar 

  85. A. Semnani, A. Venkattraman, A. Alexeenko, D. Peroulis, Appl. Phys. Lett. 102, 174102 (2013)

    Article  CAS  Google Scholar 

  86. M. Klas, S. Matejcik, B. Radjenovic, M. Radmilovic-Radjenovic, Phys. Scr. 83, 045503 (2011)

    Article  CAS  Google Scholar 

  87. F. Iza, J.A. Hopwood, IEEE Trans. Plasma Sci. 31, 782 (2003)

    Article  Google Scholar 

  88. A. Semnani, A. Venkattraman, A. Alexeenko, D. Peroulis, Appl. Phys. Lett. 103, 063102 (2013)

    Article  CAS  Google Scholar 

  89. A. Semnani, D. Peroulis, Appl. Phys. Lett. 105, 253105 (2014)

    Article  CAS  Google Scholar 

  90. B.G. Salamov, B.G. Akinoglu, N.N. Lebedeva, J. Phys. D: Appl. Phys. 32, 2068 (1999)

    Article  CAS  Google Scholar 

  91. H. Lee, P.K. Dutta, J. Phys. Chem. B. 106, 11898 (2002)

    Article  CAS  Google Scholar 

  92. J. Dzubiella, R.J. Allen, J.-P. Hansen, J. Chem. Phys. 120, 5001 (2004)

    Article  CAS  Google Scholar 

  93. K. Koseoglu, I. Karaduman, M. Demir, M. Ozer, S. Acar, B.G. Salamov, Superlattice Microstruct. 81, 97 (2015)

    Article  CAS  Google Scholar 

  94. I.M. Kalogeras, A. Vassilikou-Dova, Defect Diffus. Forum 164, 1–36 (1998)

    CAS  Google Scholar 

  95. H.Y. Kurt, B.G. Salamov, JOM The Minerals, Metals & Materials Society (2019). doi https://doi.org/10.1007/s11837-019-03955-1

  96. E. Krogh Anderson, I.G. Krogh Anderson, E. Skou, in: P. Colomban (Ed.), Chemistry of Solid State Materials Series (Cambridge University Press, Great Britain, 1992), p. 210

    Google Scholar 

  97. K. Praveena, S.R. Murthy, Int. J. Emerg. Technol. Adv. Eng. 3, 363 (2013)

    Google Scholar 

  98. S. Ozturk Koç, S. Galioglu, B. Akata Kurç, E. Koç and B.G. Salamov, J. Electron. Mater. 47(5), 2791 (2018)

    Google Scholar 

  99. P. Tabourier, J.C. Carru, J.M. Wacrenier, Zeolites 3, 50 (1983)

    Article  CAS  Google Scholar 

  100. P. Tabourier, J.C. Carru, J.M. Wacrenier, J. Chim. Phys. 87, 43 (1990)

    Article  CAS  Google Scholar 

  101. J.C. Carru, P. Tabourier, J.M. Wacrenier, J. Chim. Phys. 88, 307 (1991)

    Article  CAS  Google Scholar 

  102. S.V. Baryshnikov, S.V. Lankin, E.V. Stukova, V.V. Yurkov, Sovremenniye Naukoemkiye Tehnologii (2004), pp. 26–27

    Google Scholar 

  103. L.I. Gafarova, D.V. Sheds, I.V. Lunev, Y. Gusev, Struktura I Dinamika Molekularnih Syst. 10(1), 354 (2003)

    Google Scholar 

  104. S.V. Lankin, Physica N2, 90854 (2011)

    Google Scholar 

  105. S. Ozturk, K. Koseoglu, V.I. Orbukh, G.M. Eyvazova, A.H. Muradov, N.N. Lebedeva, B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 8, 733 (2014)

    Google Scholar 

  106. V.I. Orbukh, G.M. Eyvazova, A.H. Muradov, N.N. Lebedeva, B.G. Salamov, Transaction of ANAS of sci. Phys. and Astron. 33(5) 49 (2013)

    Google Scholar 

  107. A.H. Muradov, V.I. Orbukh, G.M. Eyvazova, N.N. Lebedeva, Ch.G. Akhundov, A.M. Mamedov, Int. J. Scient. Techn. Res. 1 (9) 55 (2015). ISSN 2422-8702

    Google Scholar 

  108. S. Ozturk Koc, V.I. Orbukh, G.M. Eyvazova, N.N. Lebedeva, B.G. Salamov, Superlattices Microstruct. 9, 269 (2016)

    Google Scholar 

  109. M. Kalogeras, A. Vassilikou-Dova, Defect Diffus. Forum 164, 1–36 (1998)

    Google Scholar 

  110. F.J. Jansen, R.A. Schoonheydt, in Advances in Chemistry Series. ed. by W.M. Meier, J.B. Uytterhoeven (American Chemical Society, Washington, 1973), p. 96

    Google Scholar 

  111. M. Alvaro, J.F. Cabeza, D. Fabuel, H. Garcia, E. Guijarro, J.L.M. de Juan, Chem. Mater. 18, 26 (2006)

    Article  CAS  Google Scholar 

  112. K. Sahner, G. Hagen, D. Schonauer, S. Reib, R. Moos, Solid State Ionics 179, 2416 (2008)

    Article  CAS  Google Scholar 

  113. P. Alienzar, S. Valeneia, A. Kozma, H. Garcia, Chem. Phys. Chem. 8, 1115 (2007)

    Article  CAS  Google Scholar 

  114. K. Suresh, B.V. Siddaramaiah. M.B. Shagan, K.S. Manjula, C. Banganatbaiah, G.V. Narasimha Rao, B. Basavalingu, K. Byrappa, J. Polym. Res. 17, 135 (2010)

    Google Scholar 

  115. S. Ozturk, M. Ozer, E. Bulur, B.G. Salamov, IEEE Trans. Plazma Sci. 43, 1330 (2015)

    Google Scholar 

  116. S. Galioglu, M. Isler, Z. Demircioglu, M. Koc, E. Vocanson, N. Dectouches, R. Turan, B. Akata, Micropor. Mezopor. Mater. 159, 1–8 (2012)

    Article  CAS  Google Scholar 

  117. I. Tiscornia, S. Irusta, P. Pradanos, C. Teller, I. Coronos, J. Santamaria, J. Phys. Chem. C 111, 4702 (2007)

    Article  CAS  Google Scholar 

  118. Z. Cai, T.L. Coordrich, K.S. Ziemer, J. Warrywocla, A. Jr, Sacco. Appl. Catal. B: Environ. 102, 323 (2011)

    Google Scholar 

  119. J.R. Macdonald, Ann. Biomed. Eng. 20, 289 (1992)

    Article  CAS  Google Scholar 

  120. U. Bunyatova, S. Ozturk Koc, V.I.Orbukh, G.M.Eyvazova, Z.A.Agamaliev, N.N. Lebedeva, I.C. Koçum, B.G. Salamov, M. Ozer, Superlattice. Microstruct. 98, 295 (2017)

    Google Scholar 

  121. V.I. Orbukh, G.M.Eyvazova, N.N.Lebedeva, M.B.Muradov, B.G. Salamov, Trans. Azerb. Nat. Acad. Sci. Phys. Astron. 35(5) 51 (2015)

    Google Scholar 

  122. M. Majdan, S. Pikus, M. Kowalska-Ternes, A. Gladysz-Plaska, H. Skrzypek, W. Kazimierczak, J. Molec. Struct. 657, 47 (2003)

    Article  CAS  Google Scholar 

  123. E. Torracca, P. Gali, M. Pansini, C. Colella, Micropor. Mesopor. Mater. 20, 119 (1998)

    Article  CAS  Google Scholar 

  124. S. Ozturk Koc, K. Koseoglu, S. Galioglu, B. Akata, B.G. Salamov, Micropor. Mesopor. Mater. 223, 18 (2016)

    Google Scholar 

  125. E. Erdem, N. Karapınar, R. Donat, J. Colloid. Interface. Sci. 280(2), 309 (2004)

    Article  CAS  Google Scholar 

  126. V. Sály, S. Kocálka, Chem. Papers. 50(6), 328 (1996)

    Google Scholar 

  127. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969)

    Article  CAS  Google Scholar 

  128. B.G. Salamov, G.M. Eyvazova, V.I. Orbukh, N.N. Lebedeva, Z.A. Agamalıev, J. Low Dimensional Syst. 1(1), 19 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Salamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salamov, B.G. (2021). Charge Transport Mechanisms in the Silver-Modified Zeolite Porous Microstructure. In: Ikhmayies, S.J., Kurt, H.H. (eds) Advances in Optoelectronic Materials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57737-7_7

Download citation

Publish with us

Policies and ethics