Skip to main content

Ensemble Learning, Social Choice and Collective Intelligence

An Experimental Comparison of Aggregation Techniques

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12256))

Abstract

Ensemble learning provides a theoretically well-founded approach to address the bias-variance trade-off by combining many learners to obtain an aggregated model with reduced bias or variance. This same idea of extracting knowledge from the predictions or choices of individuals has been also studied under different perspectives in the domains of social choice theory and collective intelligence. Despite this similarity, there has been little research comparing and relating the aggregation strategies proposed in these different domains. In this article, we aim to bridge the gap between these disciplines by means of an experimental evaluation, done on a set of standard datasets, of different aggregation criteria in the context of the training of ensembles of decision trees. We show that a social-science method known as surprisingly popular decision and the three-way reduction, achieve the best performance, while both bagging and boosting outperform social choice-based Borda and Copeland methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)

    MATH  Google Scholar 

  2. Awasthi, P., Blum, A., Haghtalab, N., Mansour, Y.: Efficient PAC learning from the crowd. arXiv preprint arXiv:1703.07432 (2017)

  3. Brams, S., Fishburn, P.C.: Approval Voting. Springer, New York (2007). https://doi.org/10.1007/978-0-387-49896-6

    Book  MATH  Google Scholar 

  4. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    MATH  Google Scholar 

  7. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends® Mach. Learn. 5(1), 1–122 (2012)

    MATH  Google Scholar 

  8. Cabitza, F., Campagner, A., Ciucci, D.: New frontiers in explainable AI: understanding the GI to interpret the GO. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 27–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_3

    Chapter  MATH  Google Scholar 

  9. Campagner, A., Ciucci, D., Svensson, C.M., Figge, T., Cabitza, F.: Ground truthing from multi-rater labelling with three-way decisions and possibility theory. Inf. Sci. (2020, submitted)

    Google Scholar 

  10. Chourasia, R., Singla, A.: Unifying ensemble methods for q-learning via social choice theory. CoRR abs/1902.10646 (2019)

    Google Scholar 

  11. Colomer, J.M.: Ramon Llull: from ‘Ars electionis’ to social choice theory. Soc. Choice Welf. 40(2), 317–328 (2013). https://doi.org/10.1007/s00355-011-0598-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornelio, C., Donini, M., Loreggia, A., Pini, M.S., Rossi, F.: Voting with random classifiers (VORACE). arXiv preprint arXiv:1909.08996 (2019)

  13. de Condorcet, J.: Essai sur l’application de l’analyse à la probabilité des decisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)

    Google Scholar 

  14. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  15. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Springer, Boston (2012). https://doi.org/10.1007/978-1-4684-5287-7

    Book  Google Scholar 

  16. Emerson, P.: The original Borda count and partial voting. Soc. Choice Welf. 40(2), 353–358 (2013). https://doi.org/10.1007/s00355-011-0603-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Endriss, U.: Trends in Computational Social Choice. Lulu.com, Morrisville (2017)

    Google Scholar 

  18. Fraenkel, J., Grofman, B.: The Borda count and its real-world alternatives: comparing scoring rules in Nauru and Slovenia. Aust. J. Polit. Sci. 49(2), 186–205 (2014)

    Google Scholar 

  19. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  20. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    MathSciNet  MATH  Google Scholar 

  21. Görzen, T., Laux, F.: Extracting the wisdom from the crowd: a comparison of approaches to aggregating collective intelligence. Paderborn University, Faculty of Business Administration and Economics, Technical report (2019)

    Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  23. Heinecke, S., Reyzin, L.: Crowdsourced PAC learning under classification noise. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 7, pp. 41–49 (2019)

    Google Scholar 

  24. Hertwig, R.: Tapping into the wisdom of the crowd-with confidence. Science 336(6079), 303–304 (2012)

    Google Scholar 

  25. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol. 751. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  26. Kearns, M.: Thoughts on hypothesis boosting. Unpublished manuscript 45, 105 (1988)

    Google Scholar 

  27. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM (JACM) 41(1), 67–95 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Lee, M.D., Steyvers, M., De Young, M., Miller, B.: Inferring expertise in knowledge and prediction ranking tasks. Top. Cogn. Sci. 4(1), 151–163 (2012)

    Google Scholar 

  29. Leon, F., Floria, S.A., Bădică, C.: Evaluating the effect of voting methods on ensemble-based classification. In: IEEE INISTA, vol. 2017, pp. 1–6 (2017)

    Google Scholar 

  30. Leung, K.T., Parker, D.S.: Empirical comparisons of various voting methods in bagging. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 595–600 (2003)

    Google Scholar 

  31. Luo, T., Liu, Y.: Machine truth serum. arXiv preprint arXiv:1909.13004 (2019)

  32. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: Advances in Neural Information Processing Systems, pp. 512–518 (2000)

    Google Scholar 

  33. Pennock, D.M., Maynard-Reid II, P., Giles, C.L., Horvitz, E.: A normative examination of ensemble learning algorithms. In: ICML, pp. 735–742 (2000)

    Google Scholar 

  34. Prelec, D.: A Bayesian truth serum for subjective data. Science 306(5695), 462–466 (2004)

    Google Scholar 

  35. Prelec, D., Seung, H.S., McCoy, J.: A solution to the single-question crowd wisdom problem. Nature 541(7638), 532–535 (2017)

    Google Scholar 

  36. Rangi, A., Franceschetti, M.: Multi-armed bandit algorithms for crowdsourcing systems with online estimation of workers’ ability. In: Proceedings of ICAAMAS, vol. 2018, pp. 1345–1352 (2018)

    Google Scholar 

  37. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  38. Simmons, J.P., Nelson, L.D., Galak, J., Frederick, S.: Intuitive biases in choice versus estimation: implications for the wisdom of crowds. J. Consum. Res. 38(1), 1–15 (2011)

    Google Scholar 

  39. Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)

    Google Scholar 

  40. Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., et al. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32115-3_1

    Chapter  Google Scholar 

  41. Zadeh, L.: Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, H., Conitzer, V.: A PAC framework for aggregating agents’ judgments. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2237–2244 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Campagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campagner, A., Ciucci, D., Cabitza, F. (2020). Ensemble Learning, Social Choice and Collective Intelligence. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57524-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57523-6

  • Online ISBN: 978-3-030-57524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics