Skip to main content

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 43))

  • 816 Accesses

Abstract

Biologics subjected to interfacial stress can generate a diverse assortment of aggregated species ranging in size from dimers and other soluble aggregates, through subvisible or micrometer-sized particles, to particles in the hundreds of micrometers that are visible to the unaided eye. The quantification and analysis of these aggregates are an important aspect in assessing, characterizing, and mitigating product changes due to interfacial stress. An analytical and characterization strategy needs to be developed that utilizes techniques that provide insight into the composition, morphology, mechanism of formation, and quantitation (e.g., mass, particle count) of the aggregated species. To date, no single analytical technique is capable of providing such a comprehensive assessment of the variety of aggregates that can be generated by interfacial stress. The subsequent section presents an overview of the analytical tools useful for characterizing aggregated species, including techniques that assess secondary/tertiary/higher-order structure, size, and morphology, and will discuss established techniques as well as emerging new technologies for extended characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF4:

Asymmetric flow FFF

ANS:

8-anilino-1-naphthalenesulfonate

AUC:

Analytical untracentrifugation

bis-ANS:

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonate

BMI:

Backgrounded membrane imaging

CCD:

Charge-couple device

CCVJ:

9-(2-carboxy-2-cyanovinyl)-julolidine

CD:

Circular dichroism

CE:

Capillary electrophoresis

DCVJ:

9-(2,2-dicyanovinyl)-julolidine

DLS:

Dynamic light scattering

DTT:

Dithiothreitol

DUVRR:

Deep UV-resonance Raman spectroscopy

EDX:

Energy dispersive X-ray

FFF:

Field flow fractionation

FTIR:

Fourier transform infrared spectroscopy

GMP:

Good manufacturing practice

H/D:

Hydrogen/deuterium

IR:

Infrared

JP:

Japanese pharmacopoeia

MALS:

Multiangle light scattering

MFI:

Micro-flow imaging

NIST:

National Institute of Standards and Technology

Ph. Eur:

European pharmacopoeia

PMMA:

Polymethyl methacrylate

RGD:

Rayleight-Gans-Debye

RMM:

Resonant mass measurement

ROA:

Raman optical activity

SDS-PAGE:

Sodium dodecylsulfater polyarylamide gel electrophoresis

SEC:

Sedimentation equilibrium

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

SLS:

Static light scattering

SV:

Sedimentation velocity

USP:

United States pharmacopoeia

UV:

Ultravoilet

𝜌:

Density

References

  1. Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, Hawe A. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci-Us. 2012;101(3):914–35. https://doi.org/10.1002/jps.23001.

    Article  CAS  Google Scholar 

  2. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32(7):372–80. https://doi.org/10.1016/j.tibtech.2014.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res-Dordr. 2011;28(4):920–33. https://doi.org/10.1007/s11095-010-0297-1.

    Article  CAS  Google Scholar 

  4. Sharon MK, Nicholas CP. The use of circular Dichroism in the investigation of protein structure and function. Current Protein & Peptide Science. 2000;1(4):349–84. https://doi.org/10.2174/1389203003381315.

    Article  Google Scholar 

  5. Johnson WC Jr. Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–14. https://doi.org/10.1002/prot.340070302.

    Article  CAS  PubMed  Google Scholar 

  6. Oberg KA, Ruysschaert J-M, Goormaghtigh E. The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur J Biochem. 2004;271(14):2937–48. https://doi.org/10.1111/j.1432-1033.2004.04220.x.

    Article  CAS  PubMed  Google Scholar 

  7. Joshi V, Shivach T, Yadav N, Rathore AS. Circular Dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics. Anal Chem. 2014;86(23):11606–13. https://doi.org/10.1021/ac503140j.

    Article  CAS  PubMed  Google Scholar 

  8. Benjwal S, Verma S, Röhm K-H, Gursky O. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci. 2006;15(3):635–9. https://doi.org/10.1110/ps.051917406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94(4):918–27.

    Article  CAS  Google Scholar 

  10. Singh BR. Infrared analysis of peptides and proteins: ACS Publications; 2000.

    Google Scholar 

  11. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. In: Anfinsen CB, Edsall JT, Richards FM, editors. Advances in protein chemistry, vol. 38: Academic press; 1986. p. 181–364. https://doi.org/10.1016/S0065-3233(08)60528-8.

  12. Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta Protein Struct Mol Enzymol. 1992;1120(2):123–43. https://doi.org/10.1016/0167-4838(92)90261-B.

    Article  CAS  Google Scholar 

  13. Shivu B, Seshadri S, Li J, Oberg KA, Uversky VN, Fink AL. Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry. 2013;52(31):5176–83. https://doi.org/10.1021/bi400625v.

    Article  CAS  PubMed  Google Scholar 

  14. Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the aggregation kinetics of a therapeutic antibody fragment. Mol Pharm. 2016;13(2):307–19. https://doi.org/10.1021/acs.molpharmaceut.5b00387.

    Article  CAS  PubMed  Google Scholar 

  15. Wen ZQ. Raman spectroscopy of protein pharmaceuticals. J Pharm Sci-Us. 2007;96(11):2861–78. https://doi.org/10.1002/jps.20895.

    Article  CAS  Google Scholar 

  16. Bunaciu AA, Aboul-Enein HY, Hoang VD. Raman spectroscopy for protein analysis. Appl Spectrosc Rev. 2015;50(5):377–86. https://doi.org/10.1080/05704928.2014.990463.

    Article  CAS  Google Scholar 

  17. Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure. Anal Biochem. 2000;277(2):167–76. https://doi.org/10.1006/abio.1999.4320.

    Article  CAS  PubMed  Google Scholar 

  18. Martial B, Lefèvre T, Auger M. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophys Rev. 2018;10(4):1133–49. https://doi.org/10.1007/s12551-018-0427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst. 2015;140(15):4967–80. https://doi.org/10.1039/C5AN00342C.

    Article  CAS  PubMed  Google Scholar 

  20. Ettah I, Ashton L. Engaging with Raman spectroscopy to investigate antibody aggregation. Antibodies. 2018;7(3) https://doi.org/10.3390/antib7030024.

  21. McCreery RL, Horn AJ, Spencer J, Jefferson E. Noninvasive identification of materials inside USP vials with Raman spectroscopy and a Raman spectral library. J Pharm Sci-Us. 1998;87(1):1–8. https://doi.org/10.1021/js970330q.

    Article  CAS  Google Scholar 

  22. Jiskoot W, Crommelin D. Methods for structural analysis of protein pharmaceuticals. In: Biotechnology: Pharmaceutical Aspects: American Assoc. of Pharm. Scientists; 2005.

    Google Scholar 

  23. Ladokhin AS. Fluorescence spectroscopy in peptide and protein analysis. Encyclopedia of. Analytical Chemistry. 2006; https://doi.org/10.1002/9780470027318.a1611.

  24. Mann TL, Krull UJ. Fluorescence polarization spectroscopy in protein analysis. Analyst. 2003;128(4):313–7. https://doi.org/10.1039/B300873H.

    Article  CAS  PubMed  Google Scholar 

  25. Stryer L. Fluorescence spectroscopy of proteins. Science. 1968;162(3853):526. https://doi.org/10.1126/science.162.3853.526.

    Article  CAS  PubMed  Google Scholar 

  26. Ghisaidoobe BTA, Chung JS. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci. 2014;15(12) https://doi.org/10.3390/ijms151222518.

  27. Lakowicz JR. Principles of fluorescence spectroscopy: Springer Science & Business Media; 2013.

    Google Scholar 

  28. Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res-Dordr. 2008;25(7):1487–99. https://doi.org/10.1007/s11095-007-9516-9.

    Article  CAS  Google Scholar 

  29. Filipe V, Poole R, Kutscher M, Forier K, Braeckmans K, Jiskoot W. Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res-Dordr. 2011;28(5):1112–20. https://doi.org/10.1007/s11095-011-0374-0.

    Article  CAS  Google Scholar 

  30. Lindgren M, Sörgjerd K, Hammarström P. Detection and characterization of aggregates, Prefibrillar Amyloidogenic oligomers, and Protofibrils using fluorescence spectroscopy. Biophys J. 2005;88(6):4200–12. https://doi.org/10.1529/biophysj.104.049700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hawe A, Filipe V, Jiskoot W. Fluorescent molecular rotors as dyes to characterize polysorbate-containing IgG formulations. Pharm Res-Dordr. 2010;27(2):314–26. https://doi.org/10.1007/s11095-009-0020-2.

    Article  CAS  Google Scholar 

  32. Eisinger J, Flores J. Front-face fluorometry of liquid samples. Anal Biochem. 1979;94(1):15–21. https://doi.org/10.1016/0003-2697(79)90783-8.

    Article  CAS  PubMed  Google Scholar 

  33. Konermann L, Pan J, Liu Y-H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev. 2011;40(3):1224–34. https://doi.org/10.1039/C0CS00113A.

    Article  CAS  PubMed  Google Scholar 

  34. Englander JJ, Del Mar C, Li W, Englander SW, Kim JS, Stranz DD, Hamuro Y, Woods VL. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc Natl Acad Sci. 2003;100(12):7057. https://doi.org/10.1073/pnas.1232301100.

    Article  CAS  PubMed  Google Scholar 

  35. Englander SW, Sosnick TR, Englander JJ, Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 1996;6(1):18–23. https://doi.org/10.1016/S0959-440X(96)80090-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fekete S, Beck A, Veuthey J-L, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014;101:161–73. https://doi.org/10.1016/j.jpba.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  37. Kiese S, Papppenberger A, Friess W, Mahler H-C. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci-Us. 2008;97(10):4347–66. https://doi.org/10.1002/jps.21328.

    Article  CAS  Google Scholar 

  38. Mehta SB, Lewus R, Bee JS, Randolph TW, Carpenter JF. Gelation of a monoclonal antibody at the silicone oil–water Interface and subsequent rupture of the interfacial gel results in aggregation and particle formation. J Pharm Sci-Us. 2015;104(4):1282–90. https://doi.org/10.1002/jps.24358.

    Article  CAS  Google Scholar 

  39. Kueltzo LA, Wang W, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci-Us. 2008;97(5):1801–12. https://doi.org/10.1002/jps.21110.

    Article  CAS  Google Scholar 

  40. Kolhe P, Amend E, K. Singh S (2010) Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog 26 (3):727–733. doi:https://doi.org/10.1002/btpr.377.

  41. Eppler A, Weigandt M, Hanefeld A, Bunjes H. Relevant shaking stress conditions for antibody preformulation development. Eur J Pharm Biopharm. 2010;74(2):139–47. https://doi.org/10.1016/j.ejpb.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  42. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci-Us. 2010;99(5):2200–8. https://doi.org/10.1002/jps.21989.

    Article  CAS  Google Scholar 

  43. Pathak M, Dutta D, Rathore A. Analytical QbD: development of a native gel electrophoresis method for measurement of monoclonal antibody aggregates. Electrophoresis. 2014;35(15):2163–71. https://doi.org/10.1002/elps.201400055.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu Z, Lu JJ, Liu S. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta. 2012;709:21–31. https://doi.org/10.1016/j.aca.2011.10.022.

    Article  CAS  PubMed  Google Scholar 

  45. Hapuarachchi S, Fodor S, Apostol I, Huang G. Use of capillary electrophoresis–sodium dodecyl sulfate to monitor disulfide scrambled forms of an fc fusion protein during purification process. Anal Biochem. 2011;414(2):187–95. https://doi.org/10.1016/j.ab.2011.03.017.

    Article  CAS  PubMed  Google Scholar 

  46. Lacher NA, Wang Q, Roberts RK, Holovics HJ, Aykent S, Schlittler MR, Thompson MR, Demarest CW. Development of a capillary gel electrophoresis method for monitoring disulfide isomer heterogeneity in IgG2 antibodies. Electrophoresis. 2010;31(3):448–58. https://doi.org/10.1002/elps.200900371.

    Article  CAS  PubMed  Google Scholar 

  47. Salas-Solano O, Tomlinson B, Du S, Parker M, Strahan A, Ma S. Optimization and validation of a quantitative capillary electrophoresis sodium dodecyl sulfate method for quality control and stability monitoring of monoclonal antibodies. Anal Chem. 2006;78(18):6583–94. https://doi.org/10.1021/ac060828p.

    Article  CAS  PubMed  Google Scholar 

  48. Michels DA, Brady LJ, Guo A, Balland A. Fluorescent Derivatization method of proteins for characterization by capillary electrophoresis- sodium dodecyl sulfate with laser-induced fluorescence detection. Anal Chem. 2007;79(15):5963–71. https://doi.org/10.1021/ac0705521.

    Article  CAS  PubMed  Google Scholar 

  49. Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem. 2016;501:4–22. https://doi.org/10.1016/j.ab.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wyatt PJ. Light scattering and the absolute characterization of macromolecules. Anal Chim Acta. 1993;272(1):1–40. https://doi.org/10.1016/0003-2670(93)80373-S.

    Article  CAS  Google Scholar 

  51. Zimm BH. The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys. 1948;16(12):1093–9. https://doi.org/10.1063/1.1746738.

    Article  CAS  Google Scholar 

  52. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–27. https://doi.org/10.1007/s12551-016-0218-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze–thawing and thermal stress. Eur J Pharm Sci. 2009;38(2):79–87. https://doi.org/10.1016/j.ejps.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  54. Mahler H-C, Müller R, Frieβ W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17. https://doi.org/10.1016/j.ejpb.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  55. Karow AR, Götzl J, Garidel P. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles. Pharm Dev Technol. 2015;20(1):84–9. https://doi.org/10.3109/10837450.2014.910808.

    Article  CAS  PubMed  Google Scholar 

  56. Cole JL, Lary JW, Moody T, Laue TM. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium. In: Methods in Cell Biology, vol. 84: Academic Press; 2008. p. 143–79. https://doi.org/10.1016/S0091-679X(07)84006-4.

  57. Zhao H, Brautigam CA, Ghirlando R, Schuck P. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Curr Protoc Protein Sci. 2013;71(1):20.12.21–49. https://doi.org/10.1002/0471140864.ps2012s71.

    Article  Google Scholar 

  58. Varley PG, Brown AJ, Dawkes HC, Burns NR. A case study and use of sedimentation equilibrium analytical ultracentrifugation as a tool for biopharmaceutical development. Eur Biophys J. 1997;25(5):437–43. https://doi.org/10.1007/s002490050058.

    Article  CAS  PubMed  Google Scholar 

  59. Berkowitz SA. Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J. 2006;8(3):E590–605. https://doi.org/10.1208/aapsj080368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gandhi AV, Pothecary MR, Bain DL, Carpenter JF. Some lessons learned from a comparison between sedimentation velocity analytical ultracentrifugation and size exclusion chromatography to characterize and quantify protein aggregates. J Pharm Sci-Us. 2017;106(8):2178–86. https://doi.org/10.1016/j.xphs.2017.04.048.

    Article  CAS  Google Scholar 

  61. Lu Y, Harding SE, Rowe AJ, Davis KG, Fish B, Varley P, Gee C, Mulot S. The effect of a point mutation on the stability of IgG4 as monitored by analytical ultracentrifugation. J Pharm Sci-Us. 2008;97(2):960–9. https://doi.org/10.1002/jps.21016.

    Article  CAS  Google Scholar 

  62. Arthur KK, Kendrick BS, Gabrielson JP. Chapter twenty - guidance to achieve accurate aggregate quantitation in biopharmaceuticals by SV-AUC. In: Cole JL, editor. Methods in enzymology, vol. 562: Academic press; 2015. p. 477–500. https://doi.org/10.1016/bs.mie.2015.06.011.

  63. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR. An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci. 2009;34(4):351–68. https://doi.org/10.1016/j.progpolymsci.2008.11.001.

    Article  CAS  Google Scholar 

  64. Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW. Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci-Us. 2007;96(2):268–79. https://doi.org/10.1002/jps.20760.

    Article  CAS  Google Scholar 

  65. Fraunhofer W, Winter G. The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2004;58(2):369–83. https://doi.org/10.1016/j.ejpb.2004.03.034.

    Article  CAS  PubMed  Google Scholar 

  66. Yohannes G, Jussila M, Hartonen K, Riekkola ML. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A. 2011;1218(27):4104–16. https://doi.org/10.1016/j.chroma.2010.12.110.

    Article  CAS  PubMed  Google Scholar 

  67. Hawe A, Romeijn S, Filipe V, Jiskoot W. Asymmetrical flow field-flow fractionation method for the analysis of submicron protein aggregates. J Pharm Sci-Us. 2012;101(11):4129–39. https://doi.org/10.1002/jps.23298.

    Article  CAS  Google Scholar 

  68. Boll B, Josse L, Heubach A, Hochenauer S, Finkler C, Huwyler J, Koulov AV. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation. J Sep Sci. 2018;41(13):2854–64. https://doi.org/10.1002/jssc.201701457.

    Article  CAS  PubMed  Google Scholar 

  69. Werk T, Volkin DB, Mahler HC. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharma Sci. 2014;53:95–108. https://doi.org/10.1016/j.ejps.2013.12.014.

    Article  CAS  Google Scholar 

  70. Ripple DC, Wayment JR, Carrier MJ. Particle sizing-standards for the optical detection of protein particles. Am Pharma Review. 2011;14(5):90.

    CAS  Google Scholar 

  71. Ripple D, Hu Z. Correcting the relative Bias of light obscuration and flow imaging particle counters. Pharm Res-Dordr. 2015:1–20. https://doi.org/10.1007/s11095-015-1817-9.

  72. Sharma DK, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 2010;12(3):455–64. https://doi.org/10.1208/s12248-010-9205-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barnard JG, Rhyner MN, Carpenter JF. Critical evaluation and guidance for using the coulter method for counting subvisible particles in protein solutions. J Pharm Sci-Us. 2012;101(1):140–53. https://doi.org/10.1002/Jps.22732.

    Article  CAS  Google Scholar 

  74. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–15. https://doi.org/10.1208/s12248-010-9233-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malloy A, Carr B. Nanoparticle tracking analysis - the halo™ system. Part Part Syst Charact. 2006;23(2):197–204. https://doi.org/10.1002/ppsc.200601031.

    Article  Google Scholar 

  76. Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res-Dordr. 2010;27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2.

    Article  CAS  Google Scholar 

  77. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40. https://doi.org/10.1016/j.joca.2016.06.022.

    Article  CAS  Google Scholar 

  78. Pardeshi NN, Zhou C, Randolph TW, Carpenter JF. Protein nanoparticles promote microparticle formation in intravenous immunoglobulin solutions during freeze-thawing and agitation stresses. J Pharm Sci-Us. 2018;107(7):1852–7. https://doi.org/10.1016/j.xphs.2018.03.016.

    Article  CAS  Google Scholar 

  79. Kotarek J, Stuart C, De Paoli SH, Simak J, Lin T-L, Gao Y, Ovanesov M, Liang Y, Scott D, Brown J, Bai Y, Metcalfe DD, Marszal E, Ragheb JA. Subvisible particle content, formulation, and dose of an erythropoietin peptide mimetic product are associated with severe adverse Postmarketing events. J Pharm Sci-Us. 2016;105(3):1023–7. https://doi.org/10.1016/S0022-3549(15)00180-X.

    Article  CAS  Google Scholar 

  80. Patel AR, Lau D, Liu J. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator. Anal Chem. 2012;84(15):6833–40. https://doi.org/10.1021/Ac300976g.

    Article  CAS  PubMed  Google Scholar 

  81. Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, Hawe A. Micro–flow imaging and resonant mass measurement (archimedes) – complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci-Us. 2013;102(7):2152–65. https://doi.org/10.1002/jps.23552.

    Article  CAS  Google Scholar 

  82. Folzer E, Khan TA, Schmidt R, Finkler C, Huwyler J, Mahler H-C, Koulov AV. Determination of the density of protein particles using a suspended microchannel resonator. J Pharm Sci-Us. 2015;104(12):4034–40. https://doi.org/10.1002/jps.24635.

    Article  CAS  Google Scholar 

  83. Garidel P, Herre A, Kliche W. Microscopic methods for particle characterization in protein pharmaceuticals. In: Analysis of aggregates and particles in protein pharmaceuticals; 2012. p. 269–302. https://doi.org/10.1002/9781118150573.ch12.

    Chapter  Google Scholar 

  84. Cao X, Matthew Fesinmeyer R, Pierini CJ, Siska CC, Litowski JR, Brych S, Wen Z-Q, Kleemann GR. Free fatty acid particles in protein formulations, part 1: microspectroscopic identification. J Pharm Sci-Us. 2015;104(2):433–46. https://doi.org/10.1002/jps.24126.

    Article  CAS  Google Scholar 

  85. Cao X, Masatani P, Torraca G, Wen Z-Q. Identification of a mixed microparticle by combined microspectroscopic techniques: a real forensic case study in the biopharmaceutical industry. Appl Spectrosc. 2010;64(8):895–900. https://doi.org/10.1366/000370210792080957.

    Article  CAS  PubMed  Google Scholar 

  86. Lankers M, Munhall J, Valet O. Differentiation between foreign particulate matter and silicone oil induced protein aggregation in drug solutions by automated raman spectroscopy. Microsc Microanal. 2008;14(S2):1612–3. https://doi.org/10.1017/S1431927608086807.

    Article  Google Scholar 

  87. Lankers M, Valet O, Laskina O. Subvisible particle identification in protein-based formulations by Raman spectroscopy. Eur Pharma Review. 2017;22(3):22–4.

    Google Scholar 

  88. Saggu M, Liu J, Patel A. Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into Polysorbate 20 degradation pathway. Pharm Res-Dordr. 2015;32(9):2877–88. https://doi.org/10.1007/s11095-015-1670-x.

    Article  CAS  Google Scholar 

  89. Vernon-Parry KD. Scanning electron microscopy: an introduction. III-Vs Review. 2000;13(4):40–4. https://doi.org/10.1016/S0961-1290(00)80006-X.

    Article  Google Scholar 

  90. Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018;62(1):2841. https://doi.org/10.4081/ejh.2018.2841.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Helbig C, Ammann G, Menzen T, Friess W, Wuchner K, Hawe A. Backgrounded membrane imaging (BMI) for high-throughput characterization of subvisible particles during biopharmaceutical drug product development. J Pharm Sci-Us. 2019; https://doi.org/10.1016/j.xphs.2019.03.024.

  92. Cheong FC, Rémi Dreyfus BS, Amato-Grill J, Xiao K, Dixon L, Grier DG. Flow visualization and flow cytometry with holographic video microscopy. Opt Express. 2009;17(15):13071–9. https://doi.org/10.1364/OE.17.013071.

    Article  CAS  PubMed  Google Scholar 

  93. Kasimbeg PNO, Cheong FC, Ruffner DB, Blusewicz JM, Philips LA. Holographic characterization of protein aggregates in the presence of silicone oil and surfactants. J Pharm Sci-Us. 2019;108(1):155–61. https://doi.org/10.1016/j.xphs.2018.10.002.

    Article  CAS  Google Scholar 

  94. Wang C, Zhong X, Ruffner DB, Stutt A, Philips LA, Ward MD, Grier DG. Holographic characterization of protein aggregates. J Pharm Sci-Us. 2016;105(3):1074–85. https://doi.org/10.1016/j.xphs.2015.12.018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Saggu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Y., Saggu, M., Thomas, J.C. (2021). Analysis of Aggregates and Particles. In: Li, J., Krause, M.E., Tu, R. (eds) Protein Instability at Interfaces During Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-57177-1_8

Download citation

Publish with us

Policies and ethics