Skip to main content

Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases
  • 444 Accesses

Abstract

In the United States, a patient suffers from a myocardial infarction (MI) every 40 seconds, and heart disease remains the leading cause of death worldwide. Despite optimal medical and surgical care, one in every two patients who develops heart failure will die within 5 years. A series of pathological remodeling changes occur to compensate for the myocardium lost during an MI that lead to fibrosis, hypertrophy, and ventricular dilation, with the end-stage pathology often culminating in decreased ejection fraction (EF) and heart failure (HF). Post-MI myocardial recovery is worsened by the adult myocardium’s limited regenerative ability, particularly in an ischemic environment; accordingly, there is great interest in stem cell therapy to treat post-MI injury, and the field is rapidly evolving. Several endogenous and exogenous cellular sources have already been evaluated in clinical trials, with varied results and modest efficacy. Limitations surrounding stem cell treatment include lack of standardization across clinical trials, poor cellular retention and differentiation rates, suboptimal delivery methods, and limited source of candidate cells. In order to optimize stem cell efficacy, future work should focus on efficient generation of the optimal cellular source, development of delivery carriers capable of noninvasive delivery methods that improve cellular survival, and standardization of clinical trials to allow for meaningful comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

ADSC:

Adipose-derived stem cell

AMI:

Acute myocardial infarction

Ang-1α:

Angiopoietin-1α

BM:

Bone marrow

BM-MNC:

Bone marrow-derived mononuclear cell

BM-SC:

Bone marrow stem cells

CABG:

Coronary artery bypass grafting

CDC:

Cardiosphere-derived cells

CSC:

Cardiac stem cell

CVD:

Cardiovascular disease

ECM:

Extracellular matrix

EDV:

End-diastolic volume

EF:

Ejection fraction

EHT:

Engineered heart tissue

EPC:

Endothelial progenitor cell

ESC:

Embryonic stem cell

ESV:

End-systolic volume

FGF:

Fibroblast growth factor

Flk1:

Fetal liver kinase 1

GCP:

Glycolytic cardiac progenitor

GCSF:

Granulocyte colony-stimulating factor

HF:

Heart failure

HGF:

Hepatocyte growth factor

IC:

Intracoronary

IGF:

Insulin-like growth factor

ILK:

Integrin-linked kinase

IM:

Intramyocardial

iPSC:

Induced pluripotent stem cell

Isl1:

Insulin gene enhancer protein-1

IV:

Intravenous injection

LV:

Left ventricular

LVEDV:

Left ventricular end-diastolic volume

LVEF:

Left ventricular ejection fraction

LVESV:

Left ventricular end-systolic volume

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

NSTEMI:

Non-ST segment elevation myocardial infarction

PCI:

Percutaneous coronary intervention

PEU:

Polyester urethane

PEUU:

Polyester urethane urea

PGS:

Polyglycerol sebacate

PU:

Polyurethane

SC:

Stem cell

Sca1:

Stem cell antigen-1

SDF1:

Stromal cell-derived factor 1

SMC:

Skeletal myoblast cell

SP:

Side population

SSEA:

Stage-specific embryonic antigen 1

STEMI:

ST-segment elevation myocardial infarction

VEGF:

Vascular endothelial growth factor

References

  1. Smit M, Coetzee AR, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2019. https://doi.org/10.1053/j.jvca.2019.10.005.

  2. Benjamin Emelia J, Virani Salim S, Callaway Clifton W, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.

    CAS  PubMed  Google Scholar 

  3. Dalys GBD, Collaborators H, Murray CJL, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet (London, England). 2015;386(10009):2145–91.

    Article  Google Scholar 

  4. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham heart study and the epidemiology of cardiovascular disease: a historical perspective. Lancet (London, England). 2014;383(9921):999–1008.

    Article  Google Scholar 

  5. White H, Thygesen K, Alpert JS, Jaffe A. Universal MI definition update for cardiovascular disease. Curr Cardiol Rep. 2014;16(6):492.

    Article  PubMed  Google Scholar 

  6. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    Article  CAS  PubMed  Google Scholar 

  7. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Catheter Cardiovasc Interv. 2013;82(1):E1–E27.

    Google Scholar 

  8. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the Management of Patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;64(24):e139–228.

    Article  PubMed  Google Scholar 

  9. Stephens NR, Restrepo CS, Saboo SS, Baxi AJ. Overview of complications of acute and chronic myocardial infarctions: revisiting pathogenesis and cross-sectional imaging. Postgrad Med J. 2019;95(1126):439.

    Article  PubMed  Google Scholar 

  10. Mozaffarian D, Benjamin Emelia J, Go Alan S, et al. Executive summary: heart disease and stroke statistics—2015 update. Circulation. 2015;131(4):434–41.

    Article  Google Scholar 

  11. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    Article  CAS  PubMed  Google Scholar 

  13. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27(6):1281–92.

    Article  CAS  PubMed  Google Scholar 

  14. Warren SE, Royal HD, Markis JE, Grossman W, Mckay RG. Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and success of coronary thrombolysis. J Am Coll Cardiol. 1988;11(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mckay RG, Pfeffer MA, Pasternak RC, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74(4):693–702.

    Article  CAS  PubMed  Google Scholar 

  16. Qasim M, Arunkumar P, Powell HM, Khan M. Current research trends and challenges in tissue engineering for mending broken hearts. Life Sci. 2019;229:233–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart. Circ Res. 2010;107(2):305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  CAS  PubMed  Google Scholar 

  19. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kajstura J, Rota M, Cappetta D, et al. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012;126(15):1869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arbatlı S, Aslan GS, Kocabaş F. Stem cells in regenerative cardiology. In: Turksen K, editor. Cell biology and translational medicine, Volume 1: Stem cells in regenerative medicine: advances and challenges. Cham: Springer International Publishing; 2018. p. 37–53.

    Google Scholar 

  22. Menasché P. Cell therapy trials for heart regeneration — lessons learned and future directions. Nat Rev Cardiol. 2018;15(11):659–71.

    Article  PubMed  Google Scholar 

  23. Wang WE, Chen X, Houser SR, Zeng C. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clinical science (London, England : 1979). 2013;125(7):319–27.

    Article  CAS  Google Scholar 

  24. Carvalho E, Verma P, Hourigan K, Banerjee R. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med. 2015;10(8):1025–43.

    Article  CAS  PubMed  Google Scholar 

  25. Henning RJ. Current status of stem cells in cardiac repair. Futur Cardiol. 2018;14(2):181–92.

    Article  CAS  Google Scholar 

  26. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Armiñán A, Gandía C, García-Verdugo JM, et al. Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. J Am Coll Cardiol. 2010;55(20):2244–53.

    Article  PubMed  Google Scholar 

  28. Sun Q, Zhang Z, Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis. 2014;1(1):113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  30. Ye L, Chang Y-H, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 2014;15(6):750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci. 2007;104(35):14068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosoda T, D’amario D, Cabral-Da-Silva MC, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A. 2009;106(40):17169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castaldo C, Di Meglio F, Nurzynska D, et al. CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with Laminin-1 and α6 integrin expression. Stem Cells. 2008;26(7):1723–31.

    Article  CAS  PubMed  Google Scholar 

  34. Oskouei BN, Lamirault G, Joseph C, et al. Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Transl Med. 2012;1(2):116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Sivakumaran P, Newcomb AE, et al. Cardiac repair with a novel population of mesenchymal stem cells resident in the human heart. Stem Cells. 2015;33(10):3100–13.

    Article  CAS  PubMed  Google Scholar 

  36. Liang SX, Tan TYL, Gaudry L, Chong B. Differentiation and migration of Sca1+/CD31− cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol. 2010;138(1):40–9.

    Article  PubMed  Google Scholar 

  37. Kattman SJ, Huber TL, Gordon m K. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.

    Article  CAS  PubMed  Google Scholar 

  38. Suresh R, Chiriac A, Goel K, et al. CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res. 2013;6(5):787–97.

    Article  PubMed  Google Scholar 

  39. Laugwitz K-L, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kazakov A, Meier T, Werner C, et al. C-kit+ resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Res. 2015;15(3):700–11.

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan KE, Burns LJ, Black LD. An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of c-kit+ cardiac progenitor cells’ therapeutic potential. J Mol Cell Cardiol. 2015;88:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bailey B, Fransioli J, Gude NA, et al. Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res. 2012;111(6):750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Linke A, Müller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A. 2005;102(25):8966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uchida S, De Gaspari P, Kostin S, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Rep. 2013;1(5):397–410.

    Article  CAS  Google Scholar 

  45. Ott HC, Matthiesen TS, Brechtken J, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med. 2007;4(1):S27–39.

    Article  CAS  PubMed  Google Scholar 

  46. Kocabas F, Mahmoud AI, Sosic D, et al. The hypoxic Epicardial and Subepicardial microenvironment. J Cardiovasc Transl Res. 2012;5(5):654–65.

    Article  PubMed  Google Scholar 

  47. Sadahiro T. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming. Regenerat Therap. 2019;11:95–100.

    Article  Google Scholar 

  48. Moghaddam AS, Afshari JT, Esmaeili S-A, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Vagnozzi RJ, Maillet M, Sargent MA, et al. An acute immune response underlies the benefit of cardiac stem-cell therapy. Nature. 2019; https://doi.org/10.1038/s41586-019-1802-2.

  50. Burchfield JS, Dimmeler S. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair. 2008;1(1):4–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22.

    Article  CAS  PubMed  Google Scholar 

  52. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12.

    Article  CAS  PubMed  Google Scholar 

  53. Fu X, Khalil H, Kanisicak O, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128(5):2127–43.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ieda M, Fu J-D, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell. 2018;22(1):91–103.e105.

    Google Scholar 

  57. Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, et al. Stem cell therapy: a novel approach for myocardial infarction. J Cell Physiol. 2019;234(10):16904–12.

    Article  CAS  PubMed  Google Scholar 

  58. Lev S, Kehat I, Gepstein L. Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Ann N Y Acad Sci. 2005;1047(1):50–65.

    Article  CAS  PubMed  Google Scholar 

  59. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  60. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  61. Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther. 2019;10(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abbott JD, Giordano FJ. Stem cells and cardiovascular disease. J Nucl Cardiol. 2003;10(4):403–12.

    Article  PubMed  Google Scholar 

  63. Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16(7):323.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217(2):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krause K, Schneider C, Kuck K-H, Jaquet K. REVIEW: stem cell therapy in cardiovascular disorders. Cardiovasc Ther. 2010;28(5):e101–10.

    Article  PubMed  Google Scholar 

  66. Asahara T, Kalka C, Isner JM. Stem cell therapy and gene transfer for regeneration. Gene Ther. 2000;7(6):451–7.

    Article  CAS  PubMed  Google Scholar 

  67. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  68. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103(23):2776–9.

    Article  CAS  PubMed  Google Scholar 

  69. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107(7):1024–32.

    Article  PubMed  Google Scholar 

  70. Perin EC, López J. Methods of stem cell delivery in cardiac diseases. Nat Clin Pract Cardiovasc Med. 2006;3(1):S110–3.

    Article  PubMed  Google Scholar 

  71. Hofmann M, Wollert Kai C, Meyer Gerd P, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    Article  PubMed  Google Scholar 

  72. Campbell NG, Suzuki K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J Cardiovasc Transl Res. 2012;5(5):713–26.

    Article  PubMed  Google Scholar 

  73. Moreira RDC, Haddad AF, Silva SA, et al. Injeção intracoronariana de células tronco após infarto do miocárdio: subestudo da microcirculação. Arq Bras Cardiol. 2011;97:420–6.

    Article  Google Scholar 

  74. Vulliet PR, Greeley M, Halloran SM, Macdonald KA, Kittleson MD. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet. 2004;363(9411):783–4.

    Article  PubMed  Google Scholar 

  75. Fukushima S, Varela-Carver A, Coppen Steven R, et al. Direct Intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation. 2007;115(17):2254–61.

    Article  PubMed  Google Scholar 

  76. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces Neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.

    Article  CAS  PubMed  Google Scholar 

  77. Suuronen Erik J, Veinot John P, Wong S, et al. Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation. 2006;114(1_supplement):I-138-I-144.

    Google Scholar 

  78. Pozzobon M, Bollini S, Iop L, et al. Human bone marrow-derived CD133+ cells delivered to a collagen patch on Cryoinjured rat heart promote angiogenesis and Arteriogenesis. Cell Transplant. 2010;19(10):1247–60.

    Article  CAS  PubMed  Google Scholar 

  79. Fujimoto KL, Tobita K, Merryman WD, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol. 2007;49(23):2292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Duan Y, Liu Z, O'neill J, Wan LQ, Freytes DO, Vunjak-Novakovic G. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res. 2011;4(5):605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts. Circulation. 2000;102(suppl_3):Iii-56-Iii-61.

    Google Scholar 

  82. Naito H, Melnychenko I, Didié M, et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation. 2006;114(1_supplement):I-72-I-78.

    Google Scholar 

  83. Zimmermann W-H, Didié M, Wasmeier Gerald H, et al. Cardiac grafting of engineered heart tissue in Syngenic rats. Circulation. 2002;106(12_suppl_1):I-151-I-157.

    Google Scholar 

  84. Soong PL, Tiburcy M, Zimmermann W-H. Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. Curr Protoc Cell Biol. 2012;55(1):–23.28.21.

    Google Scholar 

  85. Davis ME, Motion JPM, Narmoneva DA, et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005;111(4):442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11(11–12):1860–6.

    Article  CAS  PubMed  Google Scholar 

  87. Davis ME, Hsieh PCH, Takahashi T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(21):8155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet (London, England). 2012;379(9819):895–904.

    Article  Google Scholar 

  89. Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308(22):2380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Traverse JH, Mckenna DH, Harvey K, et al. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160(3):428–34.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sürder D, Manka R, Lo Cicero V, et al. Intracoronary injection of bone marrow–derived mononuclear cells early or late after acute myocardial infarction. Circulation. 2013;127(19):1968–79.

    Article  PubMed  Google Scholar 

  92. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113–21.

    Article  PubMed  Google Scholar 

  94. Gyöngyösi M, Lang I, Dettke M, et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med. 2009;6(1):70–81.

    Article  PubMed  Google Scholar 

  95. Schächinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004;44(8):1690–9.

    Article  PubMed  Google Scholar 

  96. Schächinger V, Erbs S, Elsässer A, et al. Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–21.

    Article  PubMed  Google Scholar 

  97. Schächinger V, Erbs S, Elsässer A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27(23):2775–83.

    Article  PubMed  Google Scholar 

  98. Lee J-W, Lee S-H, Youn Y-J, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29(1):23–31.

    Article  PubMed  Google Scholar 

  99. Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wöhrle J, Von Scheidt F, Schauwecker P, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary stem cell therapy in patients with acute myocardial infarction (SCAMI) trial. Clin Res Cardiol. 2013;102(10):765–70.

    Article  PubMed  CAS  Google Scholar 

  101. Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur Heart J. 2016;37(3):256–63.

    Article  PubMed  Google Scholar 

  102. Naseri MH, Madani H, Ahmadi Tafti SH, et al. COMPARE CPM-RMI trial: Intramyocardial transplantation of autologous bone marrow-derived CD133+ cells and MNCs during CABG in patients with recent MI: a phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial. Cell J. 2018;20(2):267–77.

    PubMed  PubMed Central  Google Scholar 

  103. Nair V, Madan H, Sofat S, et al. Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction--MI3 trial. Indian J Med Res. 2015;142(2):165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  104. San Roman JA, Sánchez PL, Villa A, et al. Comparison of different bone marrow–derived stem cell approaches in Reperfused STEMI: a multicenter, prospective, randomized, open-labeled TECAM trial. J Am Coll Cardiol. 2015;65(22):2372–82.

    Article  PubMed  Google Scholar 

  105. Quyyumi AA, Waller EK, Murrow J, et al. CD34+ cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J. 2011;161(1):98–105.

    Article  PubMed  Google Scholar 

  106. Huikuri HV, Kervinen K, Niemelä M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29(22):2723–32.

    Article  PubMed  Google Scholar 

  107. Chullikana A, Majumdar AS, Gottipamula S, et al. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy. 2015;17(3):250–61.

    Article  CAS  PubMed  Google Scholar 

  108. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141–8.

    Article  PubMed  Google Scholar 

  109. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199–209.

    Article  CAS  PubMed  Google Scholar 

  110. Kang H-J, Kim H-S, Zhang S-Y, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363(9411):751–6.

    Article  CAS  PubMed  Google Scholar 

  111. Quyyumi AA, Vasquez A, Kereiakes DJ, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120(2):324–31.

    Article  CAS  PubMed  Google Scholar 

  112. Miettinen JA, Ylitalo K, Hedberg P, et al. Determinants of functional recovery after myocardial infarction of patients treated with bone marrow-derived stem cells after thrombolytic therapy. Heart. 2010;96(5):362.

    Article  PubMed  Google Scholar 

  113. Miettinen JA, Salonen RJ, Niemelä M, et al. Effects of intracoronary infusion of bone marrow-derived stem cells on pulmonary artery pressure and diastolic function after myocardial infarction. Int J Cardiol. 2010;145(3):631–3.

    Article  PubMed  Google Scholar 

  114. Roncalli J, Mouquet F, Piot C, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32(14):1748–57.

    Article  PubMed  Google Scholar 

  115. Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, et al. Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with ST-segment elevation myocardial infarction and left ventricular dysfunction. Circ Res. 2018;123(5):579–89.

    Article  PubMed  CAS  Google Scholar 

  116. Kim SH, Cho JH, Lee YH, et al. Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with Anterior Wall ST-segment elevation myocardial infarction. Cardiovasc Drugs Ther. 2018;32(4):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Herbots L, D’hooge J, Eroglu E, et al. Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur Heart J. 2008;30(6):662–70.

    Article  PubMed  Google Scholar 

  118. Tendera M, Wojakowski W, Rużyłło W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J. 2009;30(11):1313–21.

    Article  PubMed  Google Scholar 

  119. Traverse JH, Henry TD, Vaughan DE, et al. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J. 2010;37(4):412–20.

    PubMed  PubMed Central  Google Scholar 

  120. Menasché P, Alfieri O, Janssens S, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Circulation. 2008;117(9):1189–200.

    Article  PubMed  Google Scholar 

  121. Hendrikx M, Hensen K, Clijsters C, et al. Recovery of regional but not global contractile function by the direct Intramyocardial autologous bone marrow transplantation. Circulation. 2006;114(1_supplement):I-101-I-107.

    Google Scholar 

  122. Ang K-L, Chin D, Leyva F, et al. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med. 2008;5(10):663–70.

    Article  PubMed  Google Scholar 

  123. Pätilä T, Lehtinen M, Vento A, et al. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: a prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Heart Lung Transplant. 2014;33(6):567–74.

    Article  PubMed  Google Scholar 

  124. Perin EC, Willerson JT, Pepine CJ, et al. Effect of Transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307(16)

    Google Scholar 

  125. Heldman AW, Difede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311(1):62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Povsic TJ, Henry TD, Traverse JH, et al. The RENEW trial: efficacy and safety of Intramyocardial autologous CD34+ cell administration in patients with refractory angina. J Am Coll Cardiol Intv. 2016;9(15):1576–85.

    Article  Google Scholar 

  127. Stamm C, Kleine H-D, Choi Y-H, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg. 2007;133(3):717–25.e715.

    Google Scholar 

  128. Nasseri BA, Ebell W, Dandel M, et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35(19):1263–74.

    Article  CAS  PubMed  Google Scholar 

  129. Noiseux N, Mansour S, Weisel R et al., The IMPACT-CABG trial: a multicenter, randomized clinical trial of CD133+ stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2016;152(6):1582–8.e1582.

    Google Scholar 

  130. Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J. 2015;36(27):1744–53.

    Article  CAS  PubMed  Google Scholar 

  131. Bartunek J, Terzic A, Davison BA, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J. 2017;38(9):648–60.

    CAS  PubMed  Google Scholar 

  132. Butler J, Epstein Stephen E, Greene Stephen J, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy. Circ Res. 2017;120(2):332–40.

    Article  CAS  PubMed  Google Scholar 

  133. Perin Emerson C, Borow Kenneth M, Silva Guilherme V, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res. 2015;117(6):576–84.

    Article  CAS  PubMed  Google Scholar 

  134. Chugh AR, Beache GM, Loughran JH, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):S54–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Malliaras K, Makkar RR, Smith RR, et al. Intracoronary Cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110–22.

    Article  PubMed  Google Scholar 

  136. Menasché P, Vanneaux V, Hagège A, et al. Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71(4):429–38.

    Article  PubMed  Google Scholar 

  137. Der Sarkissian S, Lévesque T, Noiseux N. Optimizing stem cells for cardiac repair: current status and new frontiers in regenerative cardiology. World J Stem Cells. 2017;9(1):9–25.

    Article  Google Scholar 

  138. Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD. Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or NK1.1+ cells. Cell Transplant. 2000;9(4):489–502.

    Article  CAS  PubMed  Google Scholar 

  139. Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76(11):1352–64.

    Article  CAS  PubMed  Google Scholar 

  140. Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shiba Y, Filice D, Fernandes S, et al. Electrical integration of human embryonic stem cell-derived cardiomyocytes in a Guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther. 2014;19(4):368–81.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Leri A, Kajstura J, Anversa P, Frishman WH. Myocardial regeneration and stem cell repair. Curr Probl Cardiol. 2008;33(3):91–153.

    Article  PubMed  Google Scholar 

  143. Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther. 2016;7(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104(10):1209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Theus MH, Wei L, Cui L, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang J, Chen G-H, Wang Y-W, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125(19):3472–8.

    CAS  PubMed  Google Scholar 

  147. Su C-Y, Chong K-Y, Chen J, Ryter S, Khardori R, Lai C-C. A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection. J Mol Cell Cardiol. 1999;31(4):845–55.

    Article  CAS  PubMed  Google Scholar 

  148. Haider KH, Ashraf M. Chapter 15 – preconditioning approach in stem cell therapy for the treatment of infarcted heart. In: Tang Y, editor. Progress in molecular biology and translational science. Cambridge, MA: Academic Press. 2012. p. 323–56.

    Google Scholar 

  149. Sato T, Li Y, Saito T, Nakaya H. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection. Br J Pharmacol. 2004;141(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  150. Niagara Muhammad I, Haider Husnain K, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote Angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100(4):545–55.

    Article  PubMed  CAS  Google Scholar 

  151. Yang Y-J, Qian H-Y, Huang J, et al. Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts. Eur Heart J. 2008;29(12):1578–90.

    Article  PubMed  Google Scholar 

  152. Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92(9):1049–55.

    Article  CAS  PubMed  Google Scholar 

  153. Szeto A, Nation DA, Mendez AJ, et al. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am J Physiol Endocrinol Metab. 2008;295(6):E1495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cattaneo MG, Lucci G, Vicentini LM. Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism. Exp Cell Res. 2009;315(18):3210–9.

    Article  PubMed  CAS  Google Scholar 

  155. Wisel S, Khan M, Kuppusamy ML, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 2009;329(2):543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Čížková D, Rosocha J, Vanický I, Radonák J, Gálik J, Čížek M. Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress. Neurochem Res. 2006;31(8):1011–20.

    Article  PubMed  CAS  Google Scholar 

  157. Imai Y, Adachi Y, Shi M, et al. Caspase inhibitor ZVAD-fmk facilitates engraftment of donor hematopoietic stem cells in intra–bone marrow–bone marrow transplantation. Stem Cells Dev. 2009;19(4):461–8.

    Article  Google Scholar 

  158. Kanemitsu N, Tambara K, Premaratne GU, et al. Insulin-like growth Factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model. J Heart Lung Transplant. 2006;25(10):1253–62.

    Article  PubMed  Google Scholar 

  159. Duan H-F, Wu C-T, Wu D-L, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther. 2003;8(3):467–74.

    Article  CAS  PubMed  Google Scholar 

  160. Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest. 1996;98(10):2209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Payne TR, Oshima H, Okada M, et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol. 2007;50(17):1677–84.

    Article  CAS  PubMed  Google Scholar 

  162. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661–9.

    Article  CAS  PubMed  Google Scholar 

  163. Song H, Chang W, Lim S, et al. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells. 2007;25(6):1431–8.

    Article  CAS  PubMed  Google Scholar 

  164. Cho H-J, Youn S-W, Cheon S-I, et al. Regulation of endothelial cell and endothelial progenitor cell survival and vasculogenesis by integrin-linked kinase. Arterioscler Thromb Vasc Biol. 2005;25(6):1154–60.

    Article  CAS  PubMed  Google Scholar 

  165. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760–4.

    Article  CAS  PubMed  Google Scholar 

  166. Chimenti C, Kajstura J, Torella D, et al. Senescence and death of primitive cells and myocytes Lead to premature cardiac aging and heart failure. Circ Res. 2003;93(7):604–13.

    Article  CAS  PubMed  Google Scholar 

  167. Fan M, Chen W, Liu W, et al. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res. 2010;13(4):429–38.

    Article  PubMed  Google Scholar 

  168. Muraski JA, Rota M, Misao Y, et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med. 2007;13(12):1467–75.

    Article  CAS  PubMed  Google Scholar 

  169. Brunt KR, Zhang Y, Mihic A, et al. Role of WNT/β-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. Am J Pathol. 2012;181(6):2067–78.

    Article  CAS  PubMed  Google Scholar 

  170. Cameron CM, Hu W-S, Kaufman DS. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng. 2006;94(5):938–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Dardik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorecka, J., Dardik, A. (2021). Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics