Skip to main content

Snow Cover and Glaciers

  • Chapter
  • First Online:
Water Resources of Chile

Part of the book series: World Water Resources ((WWR,volume 8))

Abstract

The Andes Cordillera strongly determines Chile’s biophysical conditions. Spanning the entire length of the country, this mountain range’s interaction with the atmosphere dominates regional hydroclimates, from the high-plateau fed groundwater systems in the country’s arid north, through the snow-dominated catchments in the Mediterranean central region, to the temperate rain-forests and glacial environments of Chile’s Patagonia and Tierra del Fuego. This chapter offers an overview of the cryosphere (that is, pertaining to snow and ice) conditions in the country and their influence on hydrological systems. We cover aspects of the Chilean cryosphere’s spatial distribution and temporal variability, physical characteristics and dynamics, and provide an overview of the most recent estimates of projected future conditions under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenson LU, Jakob M (2010) The significance of rock glaciers in the dry Andes–a discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010). Permafr Periglac Process 21(3):282–285

    Google Scholar 

  • Ayala A, Pellicciotti F, MacDonell S, McPhee J, Burlando P (2017) Patterns of glacier ablation across north-central chile: identifying the limits of empirical melt models under sublimation-favorable conditions: glacier ablation in the semiarid andes. Water Resour Res 53(7):5601–5625. https://doi.org/10.1002/2016WR020126

    Article  Google Scholar 

  • Azócar GF, Brenning A (2010) Hydrological and Geomorphological Significance of Rock Glaciers in the Dry Andes, Chile (27–33 S). Permafr Periglac Process 21(1):42–53

    Article  Google Scholar 

  • Barcaza G, Nussbaumer SU, Tapia G, Valdés J, García J-L, Videla Y, Albornoz A, Arias V (2017) Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann Glaciol 58(75pt2):166–180

    Article  Google Scholar 

  • Bodin X, Rojas F, Brenning A (2010) Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5 S.). Geomorphology 118(3–4):453–464

    Google Scholar 

  • Bown F, Rivera A, Acuña C (2008) Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann Glaciol 48:43–48

    Google Scholar 

  • Braun MH, Malz P, Sommer C, Farías-Barahona D, Sauter T, Casassa G, Soruco A, Skvarca P, Seehaus TC (2019) Constraining glacier elevation and mass changes in South America. Nat Clim Chang 9:130

    Article  Google Scholar 

  • Brenning A (2005) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35 S). Permafr Periglac Process 16(3):231–240

    Article  Google Scholar 

  • Brock B, Rivera A, Casassa G, Bown F, Acuña C (2007) The surface energy balance of an active ice-covered volcano: villarrica volcano, Southern Chile. Ann Glaciol 45:104–114

    Article  Google Scholar 

  • Burger F, Brock B, Montecinos A (2018) Seasonal and elevation contrasts in temperature trends in Central Chile between 1979 and 2015. Glob Planet Chang 162:136–147

    Article  Google Scholar 

  • Carrasco JF, Casassa G, Quintana J (2005) Changes of the 0 C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century/Changements de l’isotherme 0 C et de la ligne d’équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrol Sci J 50(6)

    Google Scholar 

  • Carrasco JF, Osorio R, Casassa G (2008) Secular trend of the equilibrium line altitude in the western side of the southern Andes derived from radiosonde and surface observations. J Glaciol 54:538–550. https://doi.org/10.3189/002214308785837002

    Article  Google Scholar 

  • Casassa G (1987) Ice thickness deduced from gravity anomalies on Soler Glacier, Nef Glacier and the Northern Patagonia Icefield. Bull Glacier Res (Japanese Society of Snow and Ice) 4:43–57

    Google Scholar 

  • Casassa G, Marangunic C (1993) The 1987 Río Colorado rockslide and debris flow, Central Andes, Chile. Bull Assoc Eng Geol XXX:321–330

    Google Scholar 

  • Casassa G, Rivera A, Escobar F, Acuña C, Carrasco J, Quintana J (2003) Snow line rise in Central Chile in recent decades and its correlation with climate. EAEJA 14395

    Google Scholar 

  • Casassa G, Apey A, Bustamante M, Marangunic C, Salazar C, Soza D (2015) Contribución hídrica de glaciares en el estero Yerba Loca y su extrapolación a la cuenca del río Maipo. Área TemÁtica 3: Geología del Cuaternario y Cambio ClimÁtico. Sesión TemÁtica 10: Efectos Directos e Indirectos del Cambio ClimÁtico. XIV Congreso Geológico Chileno, La Serena, Chile, 4 al 8 de octubre de 2015

    Google Scholar 

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L (2011) Glossary of glacier mass balance and related terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2. UNESCO-IHP, Paris

    Google Scholar 

  • Cornwell E, Molotch NP, McPhee J (2016) Spatio-temporal variability of snow water equivalent in the extra-tropical andes cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrol Earth Syst Sci 20(1):411–430. https://doi.org/10.5194/hess-20-411-2016

    Article  Google Scholar 

  • Corripio JG, Purves RS (2005) Surface energy balance of high altitude glaciers in the central andes: the effect of snow penitentes. Clim Hydrol Mt Areas:15–27

    Google Scholar 

  • Cortés G, Vargas X, McPhee J (2011) Climatic sensitivity of streamflow timing in the extratropical Western Andes Cordillera. J Hydrol 405(1–2):93–109. https://doi.org/10.1016/j.jhydrol.2011.05.013

    Article  Google Scholar 

  • Escobar F, Casassa G, Pozo V (1995) Variaciones de Un Glaciar de Montaña En Los Andes de Chile Central En Las Últimas Dos Décadas. Bull Inst Fr Études Andines 24(3):683–695

    Google Scholar 

  • Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102

    Google Scholar 

  • Favier V, Falvey M, Rabatel A, Praderio E, López D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte Chico Region (26–32°S). Water Resour Res 45(2):W02424. https://doi.org/10.1029/2008WR006802

    Article  Google Scholar 

  • Gascoin S, Kinnard C, Ponce R, Macdonell S, Lhermitte S, Rabatel A (2011) Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 5:1099–1113

    Google Scholar 

  • Gascoin S, Lhermitte S, Kinnard C, Bortels K, Liston GE (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv Water Resour 55:25–39. https://doi.org/10.1016/j.advwatres.2012.11.013

    Article  Google Scholar 

  • Giardino JR, Regmi NR, Vitek JD (2011) In: Singh VP, Singh PH, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Dordrecht, pp 943–948

    Chapter  Google Scholar 

  • Gillet NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett. https://doi.org/10.1002/grl.50249

  • González-Reyes Á, McPhee J, Christie DA, Le Quesne C, Szejner P, Masiokas MH, Villalba R, Muñoz AA, Crespo S (2017) Spatiotemporal variations in hydroclimate across the Mediterranean Andes (30–37 S) since the Early Twentieth Century. J Hydrometeorol 18(7):1929–1942

    Article  Google Scholar 

  • Hervé F, Pankhurst RJ, Fanning CM, Calderón M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97(3–4):373–394

    Google Scholar 

  • Huerta ML, Molotch NP, McPhee J (2019) Snowfall interception in a deciduous Nothofagus forest and implications for spatial snowpack distribution. Hydrol Process 33(13):1818–1834

    Google Scholar 

  • Iribarren P, Norton KP, Mackintosh A (2014) Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin. Nat Hazards Earth Syst Sci 14(12):3243

    Google Scholar 

  • Iribarren P, Mackintosh A, Norton KP (2015) Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surf Process Landf 40(1):2–21

    Google Scholar 

  • Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the andes of Central Chile. Geomorphology 241:98–121. https://doi.org/10.1016/j.geomorph.2015.03.034

    Article  Google Scholar 

  • Jones D, Harrison S, Anderson K, Whalley B (2019) Rock glaciers and mountain hydrology: a review. Earth Sci Rev 193:66–90. https://doi.org/10.1016/j.earscirev.2019.04.001

    Article  Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci 107(47):20223–20227

    Google Scholar 

  • Krogh SA, Pomeroy JW, McPhee J (2015) Physically based mountain hydrological modeling using reanalysis data in patagonia. J Hydrometeorol 16(1):172–193

    Article  Google Scholar 

  • Lhermitte S, Abermann J, Kinnard C (2014) Albedo over rough snow and ice surfaces. Cryosphere 8(3):1069–1086

    Article  Google Scholar 

  • Lliboutry L (1958) Studies of the shrinkage after a sudden advance, blue bands and wave ogives on Glaciar Universidad (central Chilean Andes). J Glaciol 3(24):261–270

    Article  Google Scholar 

  • Lliboutry L (1998) Glaciers of South America. In: Jr Williams RS, Ferrigno JG (eds) Satellite image atlas of glaciers of the world. US Geological Survey Professional Paper, 1386-I-6, pp 109–206

    Google Scholar 

  • López-Moreno JI, Gascoin S, Herrero J, Sproles EA, Pons M, Alonso-González E, Hanich L, Boudhar A, Musselman KN, Molotch NP, Sickman J, Pomeroy J (2017) Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ Res Lett 12(7):074006

    Google Scholar 

  • MacDonell S, Kinnard C, Mölg T, Nicholson L, Abermann J (2013) Meteorological drivers of ablation processes on a cold glacier in the Semi-Arid Andes of Chile. Cryosphere 7(5):1513–1526

    Article  Google Scholar 

  • Malmros JK, Mernild SH, Wilson R, Yde JC, Fensholt R (2016) Glacier area changes in the central Chilean and Argentinean Andes 1955–2013/14. J Glaciol 62(232):391–401

    Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-Century glacier recession and regional hydroclimatic changes in Northwestern Patagonia. Glob Planet Chang 60(1):85–100

    Article  Google Scholar 

  • Masiokas MH, Christie DA, Le Quesne C, Pitte P, Ruiz L, Villalba R, Luckman BH et al (2016) Reconstructing the annual mass balance of the Echaurren Norte Glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data. Cryosphere 10(2):927–940

    Article  Google Scholar 

  • McPhee J, Mengual S, MacDonell S (2017) A modelling study of the seasonal snowpack energy balance at three sites along the Andes Cordillera. Regional climate and local effects. In: EGU general assembly conference abstracts, vol 19, p 11019. http://adsabs.harvard.edu/abs/2017EGUGA..1911019M

  • Mendoza PA, Rajagopalan B, Clark MP, Cortés G, McPhee J (2014) A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resour Res 50(7):6030–6052. https://doi.org/10.1002/2014WR015426

    Article  Google Scholar 

  • Mernild SH, Liston GE, Hiemstra CA, Malmros JK, Yde JC, McPhee J (2017) The Andes Cordillera. Part I: snow distribution, properties, and trends (1979–2014). Int J Climatol 37(4):1680–1698

    Article  Google Scholar 

  • Millan R, Rignot E, River A, Martineau V, Mougino J, Zamora R, Uribe J, Lenzano G, De Fleurian B, L X, Gim Y, Kirchner D (2019) Ice thickness and bed elevation of the Northern and Southern Patagonian Icefields. Geophys Res Lett. https://doi.org/10.1029/2019GL082485

  • Monnier S, Kinnard C (2013) Internal structure and composition of a rock glacier in the Andes (Upper Choapa Valley, Chile) Using borehole information and ground-penetrating radar. Ann Glaciol 54(64):61–72. https://doi.org/10.3189/2013AoG64A107

    Article  Google Scholar 

  • Mouginot J, Rignot E (2015) Ice motion of the Patagonian Icefields of South America: 1984–2014. Geophys Res Lett 42(5):1441–1449. https://doi.org/10.1002/2014GL062661

    Article  Google Scholar 

  • Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2009) Glacier inventory of the upper huasco valley, norte chico, Chile: glacier characteristics, glacier change and comparison with Central Chile. Ann Glaciol 50(53):111–118

    Article  Google Scholar 

  • Nicholson LI, Petlicki M\l, Partan B, MacDonell S (2016) 3D surface properties of glacier penitentes over an ablation season, measured using a microsoft xbox kinect. Cryosphere 10(5):1897–1913

    Article  Google Scholar 

  • Ohlanders N, Rodriguez M, McPhee J (2013) Stable water isotope variation in a central andean watershed dominated by glacier and snowmelt. http://www.hydrol-earth-syst-sci.net/17/1035/2013/hess-17-1035-2013.pdf

  • Pankhurst and Hervé (2007) Introduction and overview. In: Moreno T, Gibbons W (eds) The Geology of Chile. Bath: Geological Society of London, London, viii + 414 pp

    Google Scholar 

  • Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart J-E, Carenzo M (2008) A study of the energy balance and melt regime on juncal norte glacier, semi-arid Andes of Central Chile, using melt models of different complexity. Hydrol Process 22(19):3980–3997. https://doi.org/10.1002/hyp.7085

    Article  Google Scholar 

  • Pellicciotti F, Ragettli S, Carenzo M, McPhee J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci Total Environ 493:1197–1210. https://doi.org/10.1016/j.scitotenv.2013.10.055.

    Article  Google Scholar 

  • Peña H, Nazarala B (1987) Snowmelt-runoff simulation model of a central chile andean basin with relevant orographic effect. In: Goodison BE, Barry RG, Dozier J (eds) Large scale effects of seasonal snow cover, vol 166. IAHS Publ, Vancouver, pp 161–172

    Google Scholar 

  • Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2017) Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci Rep 7(1):10783. https://doi.org/10.1038/s41598-017-11285-y

    Article  Google Scholar 

  • Quintana JP, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43° S. Atmosfera 25(1):1–22

    Google Scholar 

  • Rabatel A, Castebrunet H, Favier V, Nicholson L, Kinnard C (2011) Glacier changes in the Pascua-Lama region, Chilean Andes (29 S): recent mass balance and 50 yr surface area variations

    Google Scholar 

  • Ragettli S, Pellicciotti F (2012) Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour Res 48(3) http://onlinelibrary.wiley.com/doi/10.1029/2011WR010559/full

  • Ragettli S, Cortés G, McPhee J, Pellicciotti F (2014) An evaluation of approaches for modelling hydrological processes in high-elevation, Glacierized Andean Watersheds. Hydrol Process 28(23):5674–5695. https://doi.org/10.1002/hyp.10055

    Article  Google Scholar 

  • Rasmussen LA, Conway H, Raymond CF (2007) Influence of upper air conditions on the Patagonia icefields. Glob Planet Chang 59:203–216

    Article  Google Scholar 

  • Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science 302(5644):434–437

    Article  Google Scholar 

  • Rivera A, Acuña C, Casassa G, Bown F (2002) Use of remotely sensed and field data to estimate the contribution of chilean glaciers to eustatic sea-level rise. Ann Glaciol 34:367–372

    Article  Google Scholar 

  • Rivera A, Bown F, Casassa G, Acuña C, Clavero J (2005) Glacier shrinkage and negative mass balance in the chilean lake district (40 S)/Rétrécissement Glaciaire et Bilan Massique Négatif Dans La Région Des Lacs Du Chili (40 S). Hydrol Sci J 50(6)

    Google Scholar 

  • Rivera A, Bown F, Casassa G, Acuña C, Clavero J (2006) Glacier shrinkage and negative mass balance in the chilean lake district (40 ° S)” 50 (Dec 2005)

    Google Scholar 

  • Rivera A, Benham T, Casassa G, Bamber J, Dowdeswell JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob Planet Chang 59(1–4):126–137

    Article  Google Scholar 

  • Rodriguez M, Ohlanders N, Pellicciotti F, Williams MW, McPhee J (2016) Estimating runoff from a glacierized catchment using natural tracers in the semi-arid andes cordillera. Hydrol Process 30(20):3609–3626. https://doi.org/10.1002/hyp.10973

    Article  Google Scholar 

  • Saavedra FA, Kampf SK, Fassnacht SR, Sibold JS (2017) A snow climatology of the andes mountains from MODIS snow cover data: a snow climatology of the andes mountains. Int J Climatol 37(3):1526–1539. https://doi.org/10.1002/joc.4795

    Article  Google Scholar 

  • Saavedra FA, Kampf SK, Fassnacht SR, Sibold JS (2018) Changes in andes snow cover from MODIS Data, 2000–2016. Cryosphere 12(3):1027–1046

    Article  Google Scholar 

  • Sagredo EA, Lowell TV (2012) Climatology of Andean Glaciers: a framework to understand glacier response to climate change. Glob Planet Chang 86:101–109

    Article  Google Scholar 

  • Sakakibara D, Sugiyama S (2014) Ice-front variations and speed changes of calving glaciers in the Southern Patagonia icefield from 1984 to 2011. J Geophys Res 119:2541–2554

    Article  Google Scholar 

  • Schaefer M, Machguth H, Falvey M, Casassa G (2013) Modeling past and future surface mass balance of the Northern Patagonia Icefield. J Geophys Res Earth Surf 118(2):571–588

    Google Scholar 

  • Schaefer M, Machguth H, Falvey M, Casassa G, Rignot E (2015) Quantifying mass balance processes on the southern patagonia icefield

    Google Scholar 

  • Schaffer N, MacDonell S, Réveillet M, Yáñez E, Valois R (2019) Rock glaciers as a water resource in a changing climate in the semiarid chilean andes. Reg Environ Chang 19:1–17

    Article  Google Scholar 

  • Schulz N, Boisier JP, Aceituno P (2011) Climate change along the arid coast of northern Chile. Int J Climatol. https://doi.org/10.1002/joc.2395

  • Segovia A, Videla Y (2017) Caracterización glaciológica de Chile. Investigaciones Geográficas Chile 53:3–24. https://doi.org/10.5354/0719-5370.2017.41739

  • Shiraiwa T, Kohshima S, Uemura R, Yoshida N, Matoba S, Uetake J, Godoi M (2002) High net accumulation rates at Campo de Hielo Patagonico Sur, South America, revealed by analysis of a 45.97 m long ice core. Ann Glaciol 35:84–90. https://doi.org/10.3189/172756402781816942

    Article  Google Scholar 

  • Sinclair KE, MacDonell S (2016) Seasonal evolution of penitente glaciochemistry at Tapado Glacier, Northern Chile. Hydrol Process 30(2):176–186

    Article  Google Scholar 

  • Stewart IT, Cayan DR, Dettinger MD (2004) Changes in snowmelt runoff timing in Western North America under abusiness as usual’climate change scenario. Clim Chang 62(1–3):217–232

    Article  Google Scholar 

  • Stewart IT, Cayan DR, Dettinger MD (2005) Changes toward earlier streamflow timing across Western North America. J Clim 18(8):1136–1155

    Article  Google Scholar 

  • Ugalde F, Casassa G, Marangunic C, Mujica R, Peralta C (2015) El deslizamiento catastrófico del glaciar Aparejo: 35 años después. In: XiV Congresso Geologico Chileno. Geological Society of Chile, La Serena

    Google Scholar 

  • Weidemann SS, Sauter T, Kilian R, Steger D, Butorovic N, Schneider C (2018a) A 17-year record of meteorological observations across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, related to synoptic weather types and climate modes. Front Earth Sci 6:53. https://doi.org/10.3389/feart.2018.00053

    Article  Google Scholar 

  • Weidemann SS, Sauter T, Malz P, Jaña R, Arigony-Neto J, Casassa G, Schneider C (2018b) Glacier mass changes of lake-terminating grey and tyndall glaciers at the Southern Patagonia icefield derived from geodetic observations and energy and mass balance modeling. Front Earth Sci 6:81. https://doi.org/10.3389/feart.2018.00081

    Article  Google Scholar 

  • Willis MJ, Melkonian AK, Pritchard ME, Rivera A (2012) Ice loss from the Southern Patagonian ice field, South America, between 2000 and 2012. Geophys Res Lett 39(17):1–6

    Google Scholar 

  • Wilson R, Mernild SH, Malmros JK, Bravo C, Carrión D (2016) Surface velocity fluctuations for Glaciar Universidad, central Chile, between 1967 and 2015. J Glaciol 62(235):847–860

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James McPhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McPhee, J., MacDonell, S., Casassa, G. (2021). Snow Cover and Glaciers. In: Fernández, B., Gironás, J. (eds) Water Resources of Chile. World Water Resources, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-56901-3_6

Download citation

Publish with us

Policies and ethics