Skip to main content

Advertisement

Log in

Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes

  • Review
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Rock glaciers likely play an important hydrological role in the semiarid Andes (SA; 27°–35°S). They supplement streamflow when water is needed most, especially during dry years in the late summer months. Despite their assumed importance, there are no publications that quantify their hydrological contribution to streamflow in the SA of Chile, based on measurements of rock glacier ice loss or discharge. In this study, we assess the available information on the hydrological importance of rock glaciers in the SA and provide suggestions on how future research can address knowledge gaps. We conclude that there is insufficient data available to quantify the hydrological contribution of rock glaciers in the SA. Measurements of glacier discharge are limited to unpublished data sets from which only very limited conclusions can be drawn. There are no ice volume change measurements or proxies available for individual rock glaciers. Approximations of rock glacier ice volume, calculated from areal extent, thickness, and percentage of ice content are available, and these data provide an initial baseline for calculating ice volume change in the future. While these baseline data are very valuable, they represent rough estimates due to a scarcity of studies, especially on glacier thickness and percentage of ice content. With increased temperatures and a decrease in precipitation expected in the future, rock glaciers could become an increasingly critical water resource in this region, especially in the Elqui and Juncal catchments. Improved estimates of rock glacier discharge, water content, processes, and hydrology are required to model their future evolution and evaluate their contribution to water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arenson LU, Springman SM (2005) Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0°C. Can Geotech J 42:431–442. https://doi.org/10.1139/t04-109

    Article  Google Scholar 

  • Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr Periglac Process 13:117–135. https://doi.org/10.1002/ppp.414

    Article  Google Scholar 

  • Atwood DK, Meyer F, Arendt A (2010) Using L-band SAR coherence to delineate glacier extent. Can J Remote Sens 36(s1):S186–S195. https://doi.org/10.5589/m10-014

    Article  Google Scholar 

  • Ayala A, Pellicciotti F, Macdonell S, Mcphee J, Vivero S, Campos C, Egli P (2016) Modelling the hydrological response of debris-free and debris-covered glaciers to present climatic conditions in the semiarid Andes of central Chile. Hydrol Process 30:4036–4058. https://doi.org/10.1002/hyp.10971

    Article  Google Scholar 

  • Ayala A, Pellicciotti F, Peleg N, Burlando P (2017) Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile. J Glaciol 63(241):803–822. https://doi.org/10.1017/jog.2017.46

    Article  Google Scholar 

  • Azócar GF, Brenning A (2010) Hydrological and geomorphological significance of rock glaciers in the Dry Andes, Chile (27-33°S). Permafr Periglac Process 21(1):42–53. https://doi.org/10.1002/ppp.669

    Article  Google Scholar 

  • Azócar GF, Brenning A, Bodin X (2017) Permafrost distribution modelling in the semi-arid Chilean Andes. Cryosphere 11:877–890. https://doi.org/10.5194/tc-11-877-2017

    Article  Google Scholar 

  • Bajewsky I, Gardner JS (1989) Discharge and sediment-load characteristics of the Hilda rock-glacier stream, Canadian Rocky Mountains, Alberta. Phys Geogr 10(4):295–306. https://doi.org/10.1080/02723646.1989.10642384

    Article  Google Scholar 

  • Barcaza G, Nussbaumer SU, Tapia G, Valdés J, García J, Videla Y et al (2017) Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann Glaciol 58:166–180. https://doi.org/10.1017/aog.2017.28

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309. https://doi.org/10.1038/nature04141

    Article  CAS  Google Scholar 

  • Barsch D (1989) Origin and geoelectrical resistivity of rock glaciers in semiarid subtropical mountains (Andes of Mendoza, Argentina). Z Geomorphol 33(2):151–163

    Google Scholar 

  • Barsch D (1996) Rockglaciers. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Climate Change 59:5–31. https://doi.org/10.1023/A:1024458411589

    Article  Google Scholar 

  • Berger J, Krainer K, Mostler W (2004) Dynamics of an active rock glacier (Ötztal Alps, Austria). Quat Res 62:233–242. https://doi.org/10.1016/j.yqres.2004.07.002

    Article  Google Scholar 

  • Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131:98–106. https://doi.org/10.1016/j.geomorph.2011.05.002

    Article  Google Scholar 

  • Bodin X, Thibert E, Febre D, Ribolini A, Schoeneich P, Francou B et al (2009) Two decades of response (1986-2006) to climate by the Laurichard Rock Glacier, French Alps. Permafr Periglac Process 20:331–344. https://doi.org/10.1002/ppp.665

    Article  Google Scholar 

  • Bodin X, Rojas F, Brenning A (2010) Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5oS). Geomorphology 118:453–464. https://doi.org/10.1016/j.geomorph.2010.02.016

    Article  Google Scholar 

  • Bown F, Rivera A, Acuña C (2008) Recent glaciers variations at the Aconcagua basin, central Chilean Andes. Ann Glaciol 48:43–48. https://doi.org/10.3189/172756408784700572

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312(5781):1755–1756. https://doi.org/10.1126/science.1128087

    Article  CAS  Google Scholar 

  • Brenning A (2003) La importancia de los glaciares de escombros en los sistemas geomorfológico e hidrológico de la Cordillera de Santiago—fundamentos y primeros resultados. Revista de Geografía Norte Grande 30:7–22

    Google Scholar 

  • Brenning A (2005a) Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: combining statistical modelling and field mapping. PhD Thesis, Humboldt University, Berlin, Germany

  • Brenning A (2005b) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33-35°S). Permafr Periglac Process 16(3):231–240. https://doi.org/10.1002/ppp.528

    Article  Google Scholar 

  • Brenning A, Long S, Fieguth P (2012) Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sens Environ 125:227–237. https://doi.org/10.1016/j.rse.2012.07.005

    Article  Google Scholar 

  • Burger KC, Degenhardt JJ, Giardino JR (1999) Engineering geomorphology of rock glaciers. Geomorphology 31:93–132. https://doi.org/10.1016/S0169-555X(99)00074-4

    Article  Google Scholar 

  • CAZALAC (2013) Estudio para elaborar la estrategia regional de recursos hídricos por cuenca 2014–2030, region de Coquimbo. Centro Regional del Agua para Zonas Áridas y Semiáridas de América Latina y el Caribe.

  • CEAZA (2012) Caracterización y monitoreo de glaciares rocosos en la cuenca del río Elqui, y balance de masa del Glaciar Tapado. Dirección General De Aguas (DGA), realizado por Centro De Estudios Avanzados en Zonas Áridas

  • CEAZA (2015) Modelación del balance de masa y descarga de agua en glaciares del Norte Chico y Chile Central. Dirección General De Aguas (DGA), realizado por Centro De Estudios Avanzados en Zonas Áridas

  • CECS (2009) Estrategia nacional de glaciares fundamentos, S.I.T. N°205. Dirección General de Aguas (DGA), Ministerio de Obras Publicos.

  • Chen J, and Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in Mauntainous Regions. I-Hydrological Measurements; the Water Cycle. IAHS, Lausanne, pp 127–135

  • CNID (2016) Ciencia e innovacion para los desafios del agua en Chile: estrategia nacional de investigación, desarrollo e inovación para la sostenibilidad de los recursos hídricos. Consejo Nacional de Innovación para el Desarollo

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, et al (2011) Glossary of glacier mass balance and related terms. Paris: IHP-VII technical documents in hydrology no. 86, IACS contribution no. 2, UNESCO-IHP

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, pp. 1031: [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, SK. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press.

  • Corte A (1976) The hydrological significance of rock glaciers. J Glaciol 17(75):157–158

    Article  Google Scholar 

  • Croce FA, Milana JP (2002) Internal structure and behaviour of a rock glacier in the arid Andes of Argentina. Permafr Periglac Process 13:289–299. https://doi.org/10.1002/ppp.431

    Article  Google Scholar 

  • Degenhardt JJ, Giardino JR, Junck MB (2003) GPR survey of a lobate rock glacier in Yankee Boy Basin, Colorado, USA. Geol Soc Lond, Spec Publ 211:167–179. https://doi.org/10.1144/GSL.SP.2001.211.01.14

    Article  Google Scholar 

  • Dewayne CL, Green JR, Vogt S, Michel R, Cottrell G (1998) Isotopic composition of ice cores and meltwater from upper Fremont Glacier and Galena Creek rock glacier, Wyoming. Geogr Ann Ser A Phys Geogr 80:287–292. https://doi.org/10.1111/j.0435-3676.1998.00044.x

    Article  Google Scholar 

  • DGA (2010) Dinámica de glaciares rocosos en el Chile semiárido. Dirección General de Aguas (DGA), Ministerio de Obras Publicos

  • DGA (2016) Atlas del Agua, Chile 2016. Santiago, Chile: Dirección General de Aguas (DGA), Ministerio de Obras Publicos. Retrieved from http://www.dga.cl/atlasdelagua/Paginas/default.aspx (Accessed 1 Nov 2017)

  • Escobar F, Aceituno P (1998) Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile Central durante el invierno. Bulletin de l’Institute Français d’Études Andines

  • Favier V, Falvey M, Rabatel A, Praderio E, Lopez D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte Chico region (26-32°S). Water Resour Res 45(2):1–20. https://doi.org/10.1029/2008WR006802

    Article  Google Scholar 

  • Fields S (2006) The price of gold in Chile. Environ Health Perspect 114(9):A536–A539

    Article  Google Scholar 

  • Francou B, Fabre D, Pouyaud B, Jomelli V, Arnaud Y (1999) Symptoms of degradation in a tropical rock glacier, Bolivian Andes. Permafr Periglac Process 10:91–100. https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:1<91::AID-PPP304>3.0.CO;2-B

    Article  Google Scholar 

  • Frey H, Paul F, Strozzi T (2012) Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens Environ 124:832–843. https://doi.org/10.1016/j.rse.2012.06.020

    Article  Google Scholar 

  • García A, Ulloa C, Amigo G, Milana JP, Medina C (2017) An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile). Quat Int 438:4–19. https://doi.org/10.1016/j.quaint.2017.04.033

    Article  Google Scholar 

  • Gascoin S, Kinnard C, Ponce R, Lhermitte S, Macdonell S, Rabatel A (2011) Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 5:1099–1113. https://doi.org/10.5194/tc-5-1099-2011

    Article  Google Scholar 

  • Gascoin S, Lhermitte S, Kinnard C, Borstel K, Liston GE (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv Water Resour 55 Elsevier

  • Geiger ST, Daniels JM, Miller SN, Nicholas JW (2014) Influence of rock glaciers on stream hydrology in the La Sal Mountains, Utah. Arct Antarct Alp Res 46(3):645–658. https://doi.org/10.1657/1938-4246-46.3.645

    Article  Google Scholar 

  • Geostudios (1998) Glaciares de roca en el area mina

  • Geostudios (2008) Identificación de Glaciares de Roca, S.I.T. N°167. Dirección General de Aguas (DGA), Ministerio de Obras Publicos.

  • Giardino JR, Vitek JD, DeMorett JL (1992) A model of water movement in rock glaciers and associated water characteristics. In Periglacial Geomorphology, Dixon JC, Abrahams AD (Eds.). John Wiley & Sons, Chichester, pp 159–184

  • Ginot P, Kull C, Schotterer U, Schwikowski M, Gäggeler HW (2006) Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes). Clim Past 2:21–30. https://doi.org/10.5194/cp-2-21-2006

    Article  Google Scholar 

  • GORECoquimbo (2013) Diagnóstico plan maestro para la gestión de recursos hídricos, Región de Coquimbo. Gobierno Regional de la Región de Coquimbo

  • GORECoquimbo (2015) Plan estratégico para enfrentar la escasez hídrica. Gobierno Regional de la Región de Coquimbo

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A et al (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214. https://doi.org/10.1002/ppp.561

    Article  Google Scholar 

  • Harrington JS (2017) The hydrogeology of a rock glacier and its effect on stream temperature. MSc Thesis, University of Calgary, Calgary, Canada

  • Harrington JS, Mozil A, Hayashi M, Bentley LR (2018) Groundwater flow and storage processes in an inactive rock glacier. Hydrol Process 32(20):3070–3088.https://doi.org/10.1002/hyp.13248

  • Hauck C, Isaksen K, Mühll DV, Sollid JL (2004) Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafr Periglac Process 15:191–205. https://doi.org/10.1002/ppp.493

    Article  Google Scholar 

  • Hausmann H, Krainer K, Brückl E, Mostler W (2007) Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafr Periglac Process 18:351–367. https://doi.org/10.1002/ppp.601

    Article  Google Scholar 

  • Hausmann, H., Krainer, K., Bruckl, E., & Ullrich, C. (2012). Internal structure, ice content and dynamics of Ölgrube and kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Aust J Earth Sci 105:12–31

  • Humlum O (1998) The climatic significance of rock glaciers. Perma 9:375–395

    Google Scholar 

  • Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ et al (2017) Toward mountains without permanent snow and ice. Earth’s Future 5:418–435. https://doi.org/10.1002/2016EF000514

    Article  Google Scholar 

  • Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121. https://doi.org/10.1016/j.geomorph.2015.03.034

    Article  Google Scholar 

  • Janke JR, Ng S, Bellisario A (2017) An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology 296:142–152. https://doi.org/10.1016/j.geomorph.2017.09.002

    Article  Google Scholar 

  • Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129. https://doi.org/10.1016/S0022-1694(03)00258-0

    Article  Google Scholar 

  • Kääb A, Vollmer M (2000) Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafr Periglac Process 11:315–326

    Article  Google Scholar 

  • Kääb A, Kaufmann V, Ladstädter R, Eiken T (2003) Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields. Permafrost 1:501–506

    Google Scholar 

  • Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I et al (2005) Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Nat Hazards Earth Syst Sci 5:527–554

    Article  Google Scholar 

  • Kääb A, Frauenfelder R, Roer I (2007) On the response of rockglacier creep to surface temperature increase. Glob Planet Chang 56:172–187. https://doi.org/10.1016/j.gloplacha.2006.07.005

    Article  Google Scholar 

  • Krainer K, Mostler W (2002) Hydrology of active rock glaciers: examples from the Austrian Alps. Arct Antarct Alp Res 34(2):142–149

    Article  Google Scholar 

  • Krainer K, Mostler W, Spötl C (2007) Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Aust J Earth Sci 100:102–112

    Google Scholar 

  • La Frenierre J, Mark BG (2014) A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog Phys Geogr 38(2):173–200. https://doi.org/10.1177/0309133313516161

    Article  Google Scholar 

  • Le Quesne C, Stahle DW, Cleaveland MK, Therrell MD, Aravena JC, Barichivich J (2006) Ancient Austrocedrus tree-ring chronologies used to reconstruct central Chile precipitation variability from A.D. 1200 to 2000. J Clim 19(22):5731–5744. https://doi.org/10.1175/JCLI3935.1

    Article  Google Scholar 

  • Lecomte KL, Milana JP, Formica SM, Depetris PJ (2008) Hydrochemical appraisal of ice- and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina. Hydrol Process 22:2180–2195. https://doi.org/10.1002/hyp.6816

    Article  CAS  Google Scholar 

  • Leopold M, Williams MW, Caine N, Völkel J, Dethier D (2011) Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafr Periglac Process 22(2):107–119. https://doi.org/10.1002/ppp.706

    Article  Google Scholar 

  • MacDonell S, Kinnard C, Mölg T, Nicholson L, Abermann J (2013) Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile. Cryosphere 7:1513–1526. https://doi.org/10.5194/tc-7-1513-2013

    Article  Google Scholar 

  • Maurer H, Hauck C (2007) Instruments and methods: geophysical imaging of alpine rock glaciers. J Glaciol 53(180):110–120. https://doi.org/10.3189/172756507781833893

    Article  CAS  Google Scholar 

  • Meza FJ, Vicuna S, Gironás J, Poblete D, Suárez F, Oertel M (2015) Water–food–energy nexus in Chile: the challenges due to global change in different regional contexts. Water Int. https://doi.org/10.1080/02508060.2015.1087797

  • Milana JP, Güell A (2008) Diferencias mecánicas e hídricas del permafrost en glaciares de rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en el Tapado, Chile. Revista de La Asociacion Geologica Argentina 63(3):310–325

    Google Scholar 

  • Monnier S, Kinnard C (2013) Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Ann Glaciol 54(64):61–72. https://doi.org/10.3189/2013AoG64A107

    Article  Google Scholar 

  • Monnier S, Kinnard C (2015a) Internal structure and composition of a rock glacier in the Dry Andes, inferred from ground-penetrating radar data and its artefacts. Permafr Periglac Process 26:335–346. https://doi.org/10.1002/ppp.1846

    Article  Google Scholar 

  • Monnier S, Kinnard C (2015b) Reconsidering the glacier to rock glacier transformation problem: new insights from the central Andes of Chile. Geomorphology 238:47–55. https://doi.org/10.1016/j.geomorph.2015.02.025

    Article  Google Scholar 

  • Monnier S, Kinnard C (2016) Interrogating the time and processes of development of the Las Liebres rock glacier, central Chilean Andes, using a numerical flow model. Earth Surf Process Landf 41(13):1884–1893. https://doi.org/10.1002/esp.3956

    Article  Google Scholar 

  • Monnier S, Kinnard C (2017) Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S). Earth Surf Dyn 5:493–509

    Article  Google Scholar 

  • Monnier S, Camerlynck C, Rejiba F, Kinnard C, Feuillet T, Dhemaied A (2011) Structure and genesis of the Thabor rock glacier (Northern French Alps) determined from morphological and ground-penetrating radar surveys. Geomorphology 134:269–279. https://doi.org/10.1016/j.geomorph.2011.07.004

    Article  Google Scholar 

  • Monnier S, Kinnard C, Surazakov A, Bossy W (2014) Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30o08’S, 69o55'W). Geomorphology 207:126–140. https://doi.org/10.1016/j.geomorph.2013.10.031

    Article  Google Scholar 

  • Moore PL (2014) Deformation of debris-ice mixtures. Rev Geophys 52:435–467. https://doi.org/10.1002/2014RG000453

    Article  Google Scholar 

  • MRI Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  • Müller SW (1947) Permafrost or permanently frozen ground and related engineering problems. United States Engineers Office, Strategic Engineering Study. Spec Rep 62:136

  • Müller J, Vieli A, Gärtner-Roer I (2016) Rock glaciers on the run—understanding rock glacier landform evolution and recent changes from numerical flow modeling. Cryosphere 10:2865–2886. https://doi.org/10.5194/tc-10-2865-2016

    Article  Google Scholar 

  • Musil M, Maurer H, Hollinger K, Green AG (2006) Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes. Geophys Prospect 54:273–285. https://doi.org/10.1111/j.1365-2478.2006.00534.x

    Article  Google Scholar 

  • Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2009) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50(53):111–118. https://doi.org/10.3189/172756410790595787

    Article  Google Scholar 

  • Pellicciotti F, Burlando P, Van Vliet K (2007) Recent trends in precipitation and streamflow in the Aconcagua River Basin, central Chile. In Glaciar mass balance and meltwater discharge, IAHS assembly 2005, Publ. 318. Foz do Iguacu, Brazil. https://doi.org/10.1175/1520-0442(2001)014<2317:RTIPAS>2.0.CO;2

  • Pellicciotti F, Ragettli S, Carenzo M, McPhee J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci Total Environ 493:1197–1210. https://doi.org/10.1016/j.scitotenv.2013.10.055

    Article  CAS  Google Scholar 

  • Peña H, Nazarala B (1987) Snowmelt-runoff simulation model of a central Chile Andean basin with relevant orographic effects. In IAHS publ. 166 (Symposium at Vancouver, Canada - Large Scale Effects of Seasonal Snow Cover) (pp. 161–172).

  • Potter N Jr, Steig EJ, Clark DH, Speece MA, Clark GM, Updike AB (1998) Galena creek rock glacier revisited—new observations on an old controversy. Geografiska Annaler: Series A, Physical Geography 80A(3–4):251–265. https://doi.org/10.1111/j.0435-3676.1998.00041.x

    Article  Google Scholar 

  • Pourrier J, Jourde H, Kinnard C, Gascoin S, Monnier S (2014) Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30°S). J Hydrol 519:1068–1083. https://doi.org/10.1016/j.jhydrol.2014.08.023

    Article  Google Scholar 

  • Putman AE, Putman DE (2009) Inactive and relict rock glaciers of the Deboullie Lakes Ecological Reserve, northern Maine, USA. J Quat Sci 24(7):773–784. https://doi.org/10.1002/jqs.1252

    Article  Google Scholar 

  • Ragettli S, Pellicciotti F (2012) Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour Res 48(W03509):1–20. https://doi.org/10.1029/2011WR010559

    Article  Google Scholar 

  • Rangecroft S, Harrison S, Anderson K (2015) Rock glaciers as water wtores in the Bolivian Andes: an assessment of their hydrological importance. Arct Antarct Alp Res 47(1):89–98. https://doi.org/10.1657/AAAR0014-029

    Article  Google Scholar 

  • Rangecroft S, Suggitt AJ, Anderson K, Harrison S (2016) Future climate warming and changes to mountain permafrost in the Bolivian Andes. Clim Chang 137:231–243. https://doi.org/10.1007/s10584-016-1655-8

    Article  Google Scholar 

  • Rignot, E. (2002). Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophys Res Lett, 29(12), 48–1 to 48–4. https://doi.org/10.1029/2001GL013494

  • Rivera A, Acuna C, Casassa G, Bown F (2002) Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann Glaciol 34:367–372. https://doi.org/10.3189/172756402781817734

    Article  Google Scholar 

  • Robson BA, Nuth C, Dahl SO, Hölbling D, Strozzi T, Nielsen PR (2015) Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens Environ 170:372–387. https://doi.org/10.1016/j.rse.2015.10.001

    Article  Google Scholar 

  • Rodriguez M, Ohlanders N, Pellicciotti F, Williams MW, McPhee J (2016) Estimating runoff from a glacierized catchment using natural tracers in the semi-arid Andes cordillera. Hydrol Process 30:3609–3626. https://doi.org/10.1002/hyp.10973

    Article  Google Scholar 

  • Santibañez F (1997) Tendencias seculares de la precipitación en Chile. In: Soto G, Ulloa F (eds) Diagnóstico Climatico de la desertificación en Chile. CONAF, La Serena

    Google Scholar 

  • Schrott L (1996) Some geomorphological-hydrological aspects of rock glaciers in the Andes (San Juan, Argentina). Zeitschrift Fur Geomorphologie NF 104:161–173

    Google Scholar 

  • Schrott, L. (2002). Mountain permafrot hyrology and its relation to solar radiation. A case study in the Agua Negra Catchment, High Andes of San Juan, Argentina. Geocrology, 83–87

  • Souvignet M, Gaese H, Ribbe L, Kretschmer N, Oyarzún R (2010) Statistical downscaling of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrol Sci J 55(1):41–57. https://doi.org/10.1080/02626660903526045

    Article  CAS  Google Scholar 

  • Strozzi T, Delaloye R, Kääb A, Ambrosi C, Perruchoud E, Wegmüller U (2010) Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res Earth Surf 115(F01014):1–11. https://doi.org/10.1029/2009JF001311

    Article  Google Scholar 

  • Topp C, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582. https://doi.org/10.1029/WR016i003p00574

    Article  Google Scholar 

  • Trombotto D, Borzotta E (2009) Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Reg Sci Technol 55(3):321–330. https://doi.org/10.1016/j.coldregions.2008.08.009

    Article  Google Scholar 

  • Trombotto D, Buk E, Hernandez J (1997) Monitoring of mountain permafrost in the central Andes, Cordon del Plata, Mendoza, Argentina. Permafr Periglac Process 8:123–129. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.0.CO;2-M

    Article  Google Scholar 

  • UNCCD (1994) United Nations convention to combat desertification in those countries experiencing serious drought and/or desertification, particularily in Africa. In United Nations Treaty Collection. Retrieved from https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-10&chapter=27&clang=_en (Acessed Oct. 2017)

  • Vicuña S, Garreaud RD, McPhee J (2011) Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Clim Chang 105(3):469–488. https://doi.org/10.1007/s10584-010-9888-4

    Article  Google Scholar 

  • Vuille M, Milana J-P (2007) High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys Res Lett 34(23):1–6. https://doi.org/10.1029/2007GL031899

    Article  Google Scholar 

  • Williams MW, Knauf M, Caine N, Liu F, Verplanck PL (2006) Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr Periglac Process 17(1):13–33. https://doi.org/10.1002/ppp.535

    Article  Google Scholar 

  • Winkler G, Wagner T, Pauritsch M, Birk S, Kellerer-Pirklbauer A, Benischke R et al (2016) Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol J 24(4):937–953. https://doi.org/10.1007/s10040-015-1348-9

    Article  Google Scholar 

  • World Bank (2010) World development report 2010: development and climate change. The World Bank, Washington Retrieved from www.worldbank.org/en/publication/wdr/wdr-archive (Accessed 1 Nov 2017)

    Book  Google Scholar 

  • World Bank (2013) Estudio para el mejoramiento del marco institucional para la gestión del agua. Washington, U.S.A. Retrieved from http://reformacodigodeaguas.carey.cl/wp-content/uploads/2014/09/Informe-Banco-Mundial-Estudio-para-el-mejoramiento-del-marco-institucional.pdf

Download references

Acknowledgments

We thank Cristián Campos, Sebastián Vivero, Sébastien Monnier, and Rodrigo Ponce for their helpful discussions and/or assistance with this manuscript.

Funding

This work was supported by CONICYT + Programa Regional + Fortalecimiento (R16A10003) and FIC-R (2016) Coquimbo (BIP: 40000343). Nicole Schaffer was supported by CONICYT + FONDECYT + Postdoctorado (3180417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Schaffer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaffer, N., MacDonell, S., Réveillet, M. et al. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg Environ Change 19, 1263–1279 (2019). https://doi.org/10.1007/s10113-018-01459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-018-01459-3

Keywords

Navigation