Skip to main content

Groundwater Resources

  • Chapter
  • First Online:
Water Resources of Chile

Part of the book series: World Water Resources ((WWR,volume 8))

Abstract

This chapter presents the status of groundwater resources in Chile focusing on two relevant aspects. First, the geological and climatic aspects that shape the country’s hydrogeological configuration. These, in turn, provide the context for the hydrogeological configuration within the country. Then, based on the official information provided by the Dirección General de Aguas, DGA, a quantification of groundwater resources in the different hydrogeological administrative units is presented. To illustrate the different typologies of aquifer encountered in the country, some examples of relevant hydrogeological basins are described. Through these examples, we also display different problems that are foreseen in terms of groundwater knowledge, overexploitation, restricted areas, water quality, and climate change, among other factors. Finally, based on the information found, future challenges related to groundwater resources are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken D, Rivera D, Godoy-Faúndez A, Holzapfel E (2016) Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 8:128. https://doi.org/10.3390/su8020128

    Article  Google Scholar 

  • Amphos 21 (2018) Estudio de modelos hidrogeológicos conceptuales integrados, para los salares de Atacama, Maricunga y Pedernales. Etapa III: Informe final. Modelo Hidrogeológico Consolidado Cuenca Salar de Atacama

    Google Scholar 

  • Arancibia G, Cembrano J, Lavenu A (1999) Transpresión dextral y partición de la deformación en la Zona de Falla Liquiñe-Ofqui, Aisén, Chile (44-45ºS). Rev Geol Chile 26(1):03–22

    Google Scholar 

  • Aravena R, Suzuki O, Pollastri A (1989) Coastal fog and its relation to groundwater in the IV region of northern Chile. Chem Geol Isotope Geosci Sect 79:83–91. https://doi.org/10.1016/0168-9622(89)90008-0

    Article  Google Scholar 

  • Arriagada C, Roperch P, Mpodozis C (2000) Clockwise block rotations along the eastern border of the Cordillera de Domeyko, northern Chile (22 45′–23 30′ S). Tectonophysics 326(1–2):153–171

    Google Scholar 

  • Arumí JL, Maureira H, Souvignet M, Pérez C, Rivera D, Oyarzún R (2016) Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-Central Chile. Hydrol Sci J 61:844–855. https://doi.org/10.1080/02626667.2014.934250

    Article  Google Scholar 

  • Alvarez-Marrón J, McClay KR, Harambour S, Rojas L, Skarmeta J (1993) Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuña Area), Tierra del Fuego, Southern Chile. AAPG Bull 77(11):1904–1921

    Google Scholar 

  • Alvarez-Garreton C, Mendoza PA, Boisier JP, Addor N, Galleguillos M, Zambrano-Bigiarini M, Lara A, Puelma C, Cortes G, Garreaud R et al (2018) The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset. Hydrol Earth Syst Sci 22:5817–5846. https://doi.org/10.5194/hess-22-5817-2018

  • Bhaskar AS, Beesley L, Burns MJ, Fletcher TD, Hamel P, Oldham CE, Roy AH (2016) Will it rise or will it fall? Managing the complex effects of urbanization on base flow. Freshwater Sci 35:293–310. https://doi.org/10.1086/685084

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4. https://doi.org/10.1029/2001GC000252

  • Boyd BL, Anderson JB, Wellner JS, Fernandez RA (2008) The sedimentary record of glacial retreat, Marinelli Fjord, Patagonia: regional correlations and climate ties. Mar Geol 255(3–4):165–178

    Google Scholar 

  • Bonilla Valverde JP, Stefan C, Palma Nava A, Bernardo da Silva E, Pivaral Vivar HL (2018) Inventory of managed aquifer recharge schemes in Latin America and the Caribbean. Sustain Water Resour Manag 4:163–178. https://doi.org/10.1007/s40899-018-0231-y

    Article  Google Scholar 

  • Budds J (2018) Securing the market: water security and the internal contradictions of Chile’s water code. Geoforum. https://doi.org/10.1016/j.geoforum.2018.09.027

  • Calderón M, Fildani A, Hervé F, Fanning CM, Weislogel A, Cordani U (2007) Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes. J Geol Soc 164:1011–1022. https://doi.org/10.1144/0016-76492006-102

  • Casanova M, Salazar O, Seguel O, Luzio W (2013) Main features of Chilean soils. In: The Soils of Chile. Springer, Dordrecht, pp 25–97

    Google Scholar 

  • Castilla-Rho JC (2017) Groundwater modeling with stakeholders: finding the complexity that matters. Groundwater 55:620–625. https://doi.org/10.1111/gwat.12569

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259(1–3):55–66

    Google Scholar 

  • Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: The geology of Chile, pp 21–114

    Google Scholar 

  • Charrier R, Ramos VA, Tapia F, Sagripanti L (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37 S (Chile and Western Argentina). Geological Society, London, Special Publications, 399(1):13–61

    Google Scholar 

  • Chavez-Crooker P, Obreque-Contreras J, Pérez-Flores D, Contreras-Vera A (2015) Desalination plants: technology to supply water to mining processes and local populations, opportunities and environmental impact [WWW document]. Curr Biotechnol. http://www.eurekaselect.com/138136/article. Accessed 2 Jan 19

  • Corenthal LG, Boutt DF, Hynek SA, Munk LA (2016) Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys Res Lett 43:8017–8025. https://doi.org/10.1002/2016GL070076

    Article  Google Scholar 

  • Cortez Salvo CJ (2012) Recarga artificial de acuíferos mediante pozos de infiltración

    Google Scholar 

  • Dalziel IWD, Caminos R, Palmer KF, Nullo F, Casanova R (1974) South extremity of Andes: geology of Isla de los Estados, Argentine Tierra del Fuego. AAPG Bulletin 58(12):2502–2512

    Google Scholar 

  • del Rey A, Deckart K, Arriagada C, Martínez F (2016) Resolving the paradigm of the late Paleozoic–Triassic Chilean magmatism: Isotopic approach. Gondwana Res 37:172–181

    Google Scholar 

  • DGA (1986) Mapa Hidrogeológico de Chile

    Google Scholar 

  • DGA (2000) Modelo de simulación hidrogeológico operacional, cuencas de los ríos Maipo y Mapocho. SIT N° 62 – By Ayala Cabrera y Asociados Ltda. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago, Chile

    Google Scholar 

  • DGA (2005) Evaluación de los recursos hídricos subterráneos de la VIa region. SDT N°209. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago, Chile

    Google Scholar 

  • DGA (2009) Levantamiento hidrogeológico para el desarrollo de nuevas fuentes de agua en áreas prioritarias de la zona norte de Chile, regiones XV, I, II y III. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago, Chile

    Google Scholar 

  • DGA (2012) Estudio Hidrogeológico Cuenca Bí Bío. SIT N°297- By Aquaterra Ingenieros Limitada. Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación, Santiago, Chile

    Google Scholar 

  • DGA (2014) Estimación preliminar de las recargas de agua subterránea y determinación de los sectores hidrogeológicos de aprovechamiento común en las cuencas de las regiones del Maule, BioBío, La Araucanía, Los Ríos y Los Lagos. SDT N°359. Ministerio de Obras Públicas, Dirección General de Aguas, Departamento de Administración de Recursos Hídricos, Santiago, Chile

    Google Scholar 

  • DGA (2015) Determinación de la Disponibilidad de Aguas Subterráneas en el Valle del Río Aconcagua. SDT N°372. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago, Chile

    Google Scholar 

  • DGA (2016) Atlas del Agua – Chile 2016. Ministerio de Obras Públicas, Dirección General de Aguas, Santiago

    Google Scholar 

  • DGA (2018) Sectorización y determinación de la oferta hídrica del acuífero del río Laja, región del Bío Bío. SIT N°414. Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación, Santiago, Chile

    Google Scholar 

  • Díaz D, Maksymowicz A, Vargas G, Vera E, Contreras-Reyes E, Rebolledo S (2014) Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~ 33.5 S), using active seismic and electric methods. Solid Earth 5(2):837

    Google Scholar 

  • Ehlers TA, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281(3–4):238–248

    Google Scholar 

  • Farías M, Comte D, Charrier R, Martinod J, David C, Tassara A, Tapia F, Fock A (2010) Crustal-scale structural architecture in central Chile based on seismicity and surface geology: Implications for Andean mountain building. Tectonics 29(3)

    Google Scholar 

  • Foster SSD, Chilton PJ (2004) Downstream of downtown: urban wastewater as groundwater recharge. Hydrogeol J 12:115–120. https://doi.org/10.1007/s10040-003-0296-y

    Article  Google Scholar 

  • Foster SSD, Morris BL, Lawrence AR (1994) 3. Effects of urbanization on groundwater recharge, in: groundwater problems in urban areas. Thomas Telford Publishing, pp 43–63. https://doi.org/10.1680/gpiua.19744.0005

  • Gansser A (1973) Facts and theories on the Andes: twenty-sixth William Smith Lecture. J Geol Soc 129(2):93–131

    Google Scholar 

  • Garcia-Fresca B, Sharp JM (2005) Hydrogeologic consideration of urban development: urban-induced recharge. In: Ehleh J, Haneberg WC, Larson RA (eds) Humans as geologic agents, Reviews in engineering geology, vol XVI. Geological Society of America, Boulder, pp 123–136

    Google Scholar 

  • Gardner RC, Davidson NC (2011) The Ramsar convention. In: LePage BA (ed) Wetlands: integrating multidisciplinary concepts. Springer, Dordrecht, pp 189–203. https://doi.org/10.1007/978-94-007-0551-7_11

    Chapter  Google Scholar 

  • Garreaud RD, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, LeQuesne C, McPhee J, Zambrano-Bigiarini M (2017) The 2010–2015 megadrought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21:6307–6327

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195

    Google Scholar 

  • González FA, Maksymowicz A, Díaz D, Villegas L, Leiva M, Blanco B, Vera E, Contreras S, Cabrera D, Bonvalot S (2018) Characterization of the depocenters and the basement structure, below the Central Chile Andean Forearc: a 3D geophysical modelling in Santiago Basin area. Basin Res 30:799–815. https://doi.org/10.1111/bre.12281

    Article  Google Scholar 

  • Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra S, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol 511:320–334. https://doi.org/10.1016/j.jhydrol.2014.01.061

    Article  Google Scholar 

  • Harbaugh AW, Langevin CD, Hughes JD, Niswonger RG, Konikow LF (2017) MODFLOW-2005: USGS three-dimensional finite-difference groundwater model. https://doi.org/10.5066/F7RF5S7G

  • HARZA (1978) Desarrollo de los recursos de agua en el norte grande, Chile. HARZA, Chile

    Google Scholar 

  • Hernández-López MF, Gironás J, Braud I, Suárez F, Muñoz JF (2014) Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels. Hydrol Process 28:3655–3669. https://doi.org/10.1002/hyp.9912

    Article  Google Scholar 

  • Hernández-López MF, Braud I, Gironás J, Suárez F, Muñoz JF (2016) Modelling evaporation processes in soils from the Huasco salt flat basin, Chile. Hydrol Process 30:4704–4719. https://doi.org/10.1002/hyp.10987

    Article  Google Scholar 

  • Herrera C, Gamboa C, Custodio E, Jordan T, Godfrey L, Jódar J, Luque JA, Vargas J, Sáez A (2018) Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Sci Total Environ 624:114–132. https://doi.org/10.1016/j.scitotenv.2017.12.134

    Article  Google Scholar 

  • Hervé F, Pankhurst R J, Fanning CM, Calderón M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97(3–4):373–394

    Google Scholar 

  • Hervé F, Calderón M, Faúndez V (2008) The metamorphic complexes of the Patagonian and Fuegian Andes. Geol Acta Int Earth Sci J 6(1):43–53

    Google Scholar 

  • Hervé F, Calderón M, Fanning CM, Pankhurst RJ, Godoy E (2013) Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondw Res 23(3):1122–1135

    Google Scholar 

  • Hulton NR, Purves RS, McCulloch RD, Sugden DE, Bentley MJ (2002) The last glacial maximum and deglaciation in southern South America. Quat Sci Rev 21(1–3):233–241

    Google Scholar 

  • Hunter C, Gironás J, Bolster D, Karavitis CA (2015) A dynamic, multivariate sustainability measure for robust analysis of water management under climate and demand uncertainty in an arid environment. Water 7:5928–5958. https://doi.org/10.3390/w7115928

    Article  Google Scholar 

  • Hutchinson AS, Woodside GD (2002) The Santa Ana River: the challenge of maximizing the use of an urban river. In: Management of aquifer recharge for sustainability. Presented at the 4th international symposium on artificial recharge of groundwater. P.J. Dillon, Adelaide, pp 509–514

    Google Scholar 

  • Iniciativa Escenarios Hídricos 2030 (2018) Radiografía del agua. Brecha y Riesgo hídrico en Chile. Fundación Chile, Fundación Avina, Futuro Latinoamericano

    Google Scholar 

  • Iriarte S, Atenas M, Aguirre E, Tore C (2009) Aquifer recharge and contamination determination using environmental isotopes: Santiago basin, Chile: a study case. In: Presented at the studies of isotopic hydrology in Latin America 2006, International Atomic Energy Agency, Isotope Hydrology Section, Vienna, pp 97–112

    Google Scholar 

  • Johnson E, Yáñez J, Ortiz C, Muñoz J (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol Sci J 55:624–635. https://doi.org/10.1080/02626661003780458

    Article  Google Scholar 

  • Jordán TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361

    Google Scholar 

  • Jordan T, Lameli CH, Kirk-Lawlor N, Godfrey L (2015) Architecture of the aquifers of the Calama Basin, Loa catchment basin, northern Chile. Geosphere 11:1438–1474. https://doi.org/10.1130/GES01176.1

    Article  Google Scholar 

  • Kley J, Monaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301(1–2):75–94

    Google Scholar 

  • Klepeis KA (1994) Relationship between uplift of the metamorphic core of the southernmost Andes and shortening in the Magallanes foreland fold and thrust belt, Tierra del Fuego, Chile. Tectonics 13(4):882–904

    Google Scholar 

  • Lachassagne P (2008) Overview of the hydrogeology of hard rock aquifers: applications for their survey, management, modelling and protection. In: Ahmed S, Jayakumar R, Salih A (eds) Groundwater dynamics in hard rock aquifers. Springer, Dordrecht, pp 40–63

    Chapter  Google Scholar 

  • Latorre C, Betancourt JL, Rylander KA, Quade J, Matthei O (2003) A vegetation history from the arid prepuna of northern Chile (22–23 S) over the last 13 500 years. Palaeogeogr Palaeoclimatol Palaeoecol 194(1–3):223–246

    Google Scholar 

  • Latorre C, Moreno P, Vargas G, Maldonado A, Villa-Martínez R, Armesto J, Villagrán C, Pino M, Núñez L, Grosjean M (2007) Quaternary Environments and Landscape Evolution (Chapter 12)

    Google Scholar 

  • Leray S, de Dreuzy J-R, Bour O, Bresciani E (2013) Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks. J Hydrol 481:64–75. https://doi.org/10.1016/j.jhydrol.2012.12.014

    Article  Google Scholar 

  • Marazuela MA, Vázquez-Suñé E, Ayora C, García-Gil A, Palma T (2019) Hydrodynamics of salt flat basins: the Salar de Atacama example. Sci Total Environ 651:668–683. https://doi.org/10.1016/j.scitotenv.2018.09.190

    Article  Google Scholar 

  • Mernild SH, Liston GE, Hiemstra C, Wilson R (2017) The Andes Cordillera. Part III: glacier surface mass balance and contribution to sea level rise (1979–2014). Int J Climatol 37:3154–3174. https://doi.org/10.1002/joc.4907

  • Meza FJ, Vicuna S, Gironás J, Poblete D, Suárez F, Oertel M (2015) Water–food–energy nexus in Chile: the challenges due to global change in different regional contexts. Water Int 40:839–855. https://doi.org/10.1080/02508060.2015.1087797

    Article  Google Scholar 

  • Migliavacca F, Confortola G, Soncini A, Senese A, Diolaiuti GA, Smiraglia C, Barcaza G, Bocchiola D (2015) Hydrology and potential climate changes in the Rio Maipo (Chile). Geogr Fis Din Quat 38:155–168

    Google Scholar 

  • Moreno T, Gibbons W (eds) (2007) The geology of Chile, 1st edn. The Geological Society of London, London. https://doi.org/10.1144/GOCH

    Book  Google Scholar 

  • Mpodozis C, Ramos VA, Ericksen GE, Canas Pinochet MT, Reinemund JA (1989) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, vol 11, pp 59–90

    Google Scholar 

  • Murray-Wallace CV, Woodroffe CD (2014) Quaternary sea-level changes: a global perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Muñoz JF, Fernández B, Escauriaza C (2003) Evaluation of groundwater availability and sustainable extraction rate for the Upper Santiago Valley Aquifer, Chile. Hydrogeol J 11:687–700. https://doi.org/10.1007/s10040-003-0292-2

    Article  Google Scholar 

  • Muñoz E, Arumí JL, Wagener T, Oyarzún R, Parra V (2016) Unraveling complex hydrogeological processes in Andean basins in south-Central Chile: an integrated assessment to understand hydrological dissimilarity. Hydrol Process 30:4934–4943. https://doi.org/10.1002/hyp.11032

    Article  Google Scholar 

  • Ortiz C, Aravena R, Briones E, Suárez F, Tore C, Muñoz JF (2014) Sources of surface water for the Soncor ecosystem, Salar de Atacama basin, northern Chile. Hydrol Sci J 59:336–350. https://doi.org/10.1080/02626667.2013.829231

    Article  Google Scholar 

  • Oyarzún R, Barrera F, Salazar P, Maturana H, Oyarzún J, Aguirre E, Alvarez P, Jourde H, Kretschmer N (2014) Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-Central Chile. Hydrogeol J 22:1857–1873. https://doi.org/10.1007/s10040-014-1170-9

    Article  Google Scholar 

  • Pankhurst RJ, Hervé F (2007) Introduction and overview. In: The geology of Chile, pp 21–114

    Google Scholar 

  • Poblete F, Roperch P, Hervé F, Diraison M, Espinoza M, Arriagada C (2014) The curved Magallanes fold and thrust belt: Tectonic insights from a paleomagnetic and anisotropy of magnetic susceptibility study. Tectonics 33(12):2526–2551

    Google Scholar 

  • Poblete F, Roperch P, Arriagada C, Ruffet G, Ramírez de Arellano C Hervé F, Poujol M (2016) Late Cretaceous–early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia–Antarctic Peninsula system. Tectonophysics 668–669:15–34. https://doi.org/10.1016/j.tecto.2015.11.025

  • Renner S, Aguirre I (2015) Groundwater in the Chilean north: a brief synopsis. In: Presented at the agreeing on solutions for more sustainable mine water management. Proceedings of the 10th ICARD & IMWA annual conference. Paper

    Google Scholar 

  • Rojas R, Dassargues A (2007) Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeol J 15:537–551. https://doi.org/10.1007/s10040-006-0084-6

    Article  Google Scholar 

  • Rojas R, Batelaan O, Feyen L, Dassargues A (2010) Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile. Hydrol Earth Syst Sci 14:171–192. https://doi.org/10.5194/hess-14-171-2010

    Article  Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra‐arc shear and strain partitioning in the southern Andes between 38 S and 42 S latitude. Tectonics 25(4)

    Google Scholar 

  • Ruelleu S, Moreau F, Bour O, Gapais D, Martelet G (2010) Impact of gently dipping discontinuities on basement aquifer recharge: an example from Ploemeur (Brittany, France). J Appl Geophys 70:161–168. https://doi.org/10.1016/j.jappgeo.2009.12.007

    Article  Google Scholar 

  • Samuel A, Blin N, Muñoz JF, Suárez F (2020) An unsaturated/saturated coupled hydrogeological model for the Llamara salt flat, Chile, to investigate Prosopis tamarugo survival. Geosciences 10:1. https://doi.org/10.3390/geosciences10010001

    Article  Google Scholar 

  • Sanzana P, Gironás J, Braud I, Muñoz J-F, Vicuña S, Reyes-Paecke S, de la Barrera F, Branger F, Rodríguez F, Vargas X, Hitschfeld N, Hormazábal S (2019) Impact of urban growth and high residential irrigation on streamflow and groundwater levels in a Peri-urban semiarid catchment. JAWRA J Am Water Resour Assoc 55:720–739. https://doi.org/10.1111/1752-1688.12743

    Article  Google Scholar 

  • Scheuber E, Andriessen PA (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J Struct Geol 12(2):243–257

    Google Scholar 

  • Scibek J, Gleeson T, McKenzie JM (2016) The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis. Geofluids 16:782–798. https://doi.org/10.1111/gfl.12188

    Article  Google Scholar 

  • Sernageomin (2003) Mapa Geológico de Chile (1:1.000.000)

    Google Scholar 

  • SISS (2009) Estudio tarifario empresa Aguas Andinas S.A. – Estudio de Intercambio. Anexo: Modelamiento de la infraestructura sanitaria

    Google Scholar 

  • Steinbrügge G, Muñoz JF, Fernández B (2005) Análisis probabilístico y optimización de los recursos de agua subterránea: el caso del acuífero Maipo-Machopo, Chile. Tecnología y Ciencias del Agua 20:85–97

    Google Scholar 

  • Strauch G, Oyarzún R, Reinstorf F, Oyarzún J, Schirmer M, Knöller K (2009) Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile. Adv Geosci 22:51–57. https://doi.org/10.5194/adgeo-22-51-2009

    Article  Google Scholar 

  • Suárez F, Muñoz JF, Fernández B, Dorsaz J-M, Hunter CK, Karavitis CA, Gironás J (2014) Integrated water resource management and energy requirements for water supply in the Copiapó River Basin, Chile. Water 6:2590–2613. https://doi.org/10.3390/w6092590

    Article  Google Scholar 

  • Suárez F, Lobos F, de la Fuente A, Vilà-Guerau de Arellano J, Prieto A, Meruane C, Hartogensis O (2020) E-DATA: a comprehensive field campaign to investigate evaporation enhanced by advection in the hyper-arid Altiplano. Water 12:745. https://doi.org/10.3390/w12030745

    Article  Google Scholar 

  • Tapia J, González R, Townley B, Oliveros V, Álvarez F, Aguilar G, Menzies A, Calderón M (2018) Geology and geochemistry of the Atacama Desert. Antonie Van Leeuwenhoek 111:1273–1291. https://doi.org/10.1007/s10482-018-1024-x

    Article  Google Scholar 

  • Taucare M, Moya CE, Lictevout E, Amaro S (2015) Hydrogeological conceptual model of the Camiña aquifer. In: Presented at the XIV Chilean geological congress, La Serena, Chile

    Google Scholar 

  • UNEP (2009) Hydropolitical vulnerability and resilience along international waters [WWW document]. https://wedocs.unep.org/handle/20.500.11822/7809

  • Unesco-IHP, UNEP (2016) Transboundary aquifers and groundwater systems of small island developing states: status and trends, summary for policy makers. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • Vargas J (2017) Oferta hídrica referencial. Informe elaborado por la Universidad de Concepción, Escenarios Hidricos 2030. Concepción, Chile

    Google Scholar 

  • Vásquez C, Ortiz C, Suárez F, Muñoz JF (2013) Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. J Hydrol 490:114–125. https://doi.org/10.1016/j.jhydrol.2013.03.028

    Article  Google Scholar 

  • Vicuña S, Gil M, Melo O, Donoso G, Merino P (2018) Water option contracts for climate change adaptation in Santiago, Chile. Water Int 43:237–256. https://doi.org/10.1080/02508060.2017.1416444

    Article  Google Scholar 

  • Viguier B, Jourde H, Yáñez G, Lira ES, Leonardi V, Moya CE, García-Pérez T, Maringue J, Lictevout E (2018) Multidisciplinary study for the assessment of the geometry, boundaries and preferential recharge zones of an overexploited aquifer in the Atacama Desert (Pampa del Tamarugal, Northern Chile). J S Am Earth Sci 86:366–383. https://doi.org/10.1016/j.jsames.2018.05.018

  • Viguier B, Daniele L, Jourde H, Leonardi V, Yáñez G (2019a) Changes in the conceptual model of the Pampa del Tamarugal aquifer: implications for central depression water resources. J S Am Earth Sci 94:102217. https://doi.org/10.1016/j.jsames.2019.102217

    Article  Google Scholar 

  • Viguier B, Jourde H, Leonardi V, Daniele L, Batiot-Guilhe C, Favreau G, De Montety V (2019b) Water table variations in the hyperarid Atacama Desert: role of the increasing groundwater extraction in the pampa del tamarugal (Northern Chile). J Arid Environ 168:9–16. https://doi.org/10.1016/j.jaridenv.2019.05.007

    Article  Google Scholar 

  • Waldron B, Larsen D (2015) Pre-development groundwater conditions surrounding Memphis, Tennessee: controversy and unexpected outcomes. JAWRA J Am Water Resour Assoc 51:133–153. https://doi.org/10.1111/jawr.12240

    Article  Google Scholar 

  • WMO (2008) Urban flood risk management – a tool for integrated flood management, associated programme on flood management. Technical report. World Meteorological Organization

    Google Scholar 

  • Yáñez G, Muñoz M, Flores-Aqueveque V, Bosch A (2015) Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geol 42:147–172. https://doi.org/10.5027/andgeoV42n2-a01

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Fernando Poblete for his help with the geological description of Chile and its relationship to the hydrogeology. The Centro de Desarrollo Urbano Sustentable (CEDEUS - ANID/FONAP/15110020) and the Centro de Excelencia en Geotermia Andina (CEGA – ANID/FONDAP/15090013) supported this work. The authors also would like to thank Mr. Guillermo Tapia for providing updated data presented in this study and Dr. Jazmín Aravena for her help with the figures of this chapter. Finally, F. Suárez acknowledges support from project ANID/FONDECYT/1170850 and Sarah Leray thanks support from project ANID/FONDECYT/11170380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suárez, F., Leray, S., Sanzana, P. (2021). Groundwater Resources. In: Fernández, B., Gironás, J. (eds) Water Resources of Chile. World Water Resources, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-56901-3_5

Download citation

Publish with us

Policies and ethics