Skip to main content

Hereditary Cancers and Genetics

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Abstract

The study of hereditary syndromes is fundamentally based on the finding and identification of susceptibility genes underlying the pathology. Although hereditary tumors account for only a small fraction of all the tumors, the knowledge of underlying genetics changed the clinical management of affected patients and their families, also providing important information on the molecular mechanisms involved in the development of sporadic tumors. In the subjects who inherit a germline mutation, all the cells of the organism are carriers of that mutation, predisposing such subject to develop neoplasm more easily and earlier compared to the general population. The identification of individuals with a hereditary risk of cancer is based on an accurate reconstruction of their personal and family clinical history. Oncogenes and tumor suppressor genes are generally considered genes whose alterations are involved in the tumor onset and progression, promoting an abnormal cell growth and division. Hereditary predisposition syndromes are associated with germline mutations which determine the activation of oncogenes or inactivation of tumor suppressor genes. Tumor suppressor genes responsible for the heredofamilial cancer syndromes can be schematically divided into three main categories: gatekeepers, caretakers, and landscapers. Gatekeeper genes act by directly controlling cell growth, thus inhibiting proliferation, and leading to the apoptosis. Caretakers are responsible for maintaining genomic stability, by reducing the mutation rates of different genes involved in DNA repair, including gatekeepers and oncogenes.

In this chapter we will define the key concepts related to the heredofamilial tumors, briefly describing the major hereditary tumor syndromes associated with specific susceptibility genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd KP, Korf BR, Theos A. Neurofibromatosis type 1. J Am Acad Dermatol. 2009;61(1):1–14. https://doi.org/10.1016/j.jaad.2008.12.051.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antonio JR, Goloni-Bertollo EM, Tridico LA. Neurofibromatosis: chronological history and current issues. An Bras Dermatol. 2013;88(3):329–43. https://doi.org/10.1590/abd1806-4841.20132125.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brush SG. How Theories became Knowledge: Morgan’s Chromosome Theory of Heredity in America and Britain. J Hist Biol. 2002;35(3):471–535. https://doi.org/10.1023/a:1021175231599.

    Article  PubMed  Google Scholar 

  4. Balmain A. Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer. 2001;1(1):77–82. https://doi.org/10.1038/35094086.

    Article  CAS  PubMed  Google Scholar 

  5. Cavenee WK, Scrable HJ, David JC. Molecular genetics of human cancer predisposition and progression. Mutat Res. 1991;247(2):199–202. https://doi.org/10.1016/0027-5107(91)90015-g.

    Article  CAS  PubMed  Google Scholar 

  6. Quigley D, Balmain A. Systems genetics analysis of cancer susceptibility: from mouse models to humans. Nat Rev Genet. 2009;10(9):651–7. https://doi.org/10.1038/nrg2617.

    Article  CAS  PubMed  Google Scholar 

  7. Mao J-H, Balmain A. Genomic approaches to identification of tumour-susceptibility genes using mouse models. Curr Opin Genet Dev. 2003;13(1):14–9. https://doi.org/10.1016/s0959-437x(03)00005-4.

    Article  CAS  PubMed  Google Scholar 

  8. Uronis JM, Threadgill DW. Murine models of colorectal cancer. Mamm Genome. 2009;20(5):261–8. https://doi.org/10.1007/s00335-009-9186-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hunter KW. Mouse models of cancer: does the strain matter? Nat Rev Cancer. 2012;12(2):144–9. https://doi.org/10.1038/nrc3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hino O, Kobayashi T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci. 2017;108(1):5–11. https://doi.org/10.1111/cas.13116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogel F. Genetics of retinoblastoma. Hum Genet. 1979;52(1):1–54. https://doi.org/10.1007/bf00284597.

    Article  CAS  PubMed  Google Scholar 

  12. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016;30(13):1492–502. https://doi.org/10.1101/gad.282145.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kooi IE, Mol BM, Massink MPG, Ameziane N, Meijers-Heijboer H, Dommering CJ, et al. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Sci Rep. 2016;6(1):25264. https://doi.org/10.1038/srep25264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92. https://doi.org/10.1200/jco.2005.10.042.

    Article  PubMed  Google Scholar 

  15. Stanislaw C, Xue Y, Wilcox WR. Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biology & Medicine. 2016;13(1):55–67. https://doi.org/10.28092/j.issn.2095-3941.2016.0002.

    Article  CAS  Google Scholar 

  16. Cicero G, De Luca R, Dorangricchia P, Lo Coco G, Guarnaccia C, Fanale D, et al. Risk perception and psychological distress in genetic counselling for hereditary breast and/or ovarian cancer. J Genet Couns. 2017;26(5):999–1007. https://doi.org/10.1007/s10897-017-0072-0.

    Article  CAS  PubMed  Google Scholar 

  17. American Society of Clinical Oncology Policy Statement Update. Genetic testing for cancer susceptibility. J Clin Oncol. 2003;21(12):2397–406. https://doi.org/10.1200/jco.2003.03.189.

    Article  Google Scholar 

  18. Fecteau H, Vogel KJ, Hanson K, Morrill-Cornelius S. The evolution of cancer risk assessment in the era of next generation sequencing. J Genet Couns. 2014;23(4):633–9. https://doi.org/10.1007/s10897-014-9714-7.

    Article  PubMed  Google Scholar 

  19. Lee EYHP, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2(10):a003236. https://doi.org/10.1101/cshperspect.a003236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu K, Liu Q, Zhou Y, Tao C, Zhao Z, Sun J, et al. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives. BMC Genomics. 2015;16(Suppl 7):S8. https://doi.org/10.1186/1471-2164-16-s7-s8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao M, Zhao Z. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study. BMC Genomics. 2016;17(S7):532. https://doi.org/10.1186/s12864-016-2904-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4. https://doi.org/10.1126/science.1193494.

    Article  CAS  PubMed  Google Scholar 

  23. Hirshfield KM, Rebbeck TR, Levine AJ. Germline mutations and polymorphisms in the origins of cancers in women. J Oncol. 2010;2010:1–11. https://doi.org/10.1155/2010/297671.

    Article  CAS  Google Scholar 

  24. Cofre J, Abdelhay E. Cancer is to embryology as mutation is to genetics: hypothesis of the cancer as embryological phenomenon. Sci World J. 2017;2017:1–17. https://doi.org/10.1155/2017/3578090.

    Article  CAS  Google Scholar 

  25. Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res. 2014;181(2):111–30. https://doi.org/10.1667/rr13515.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adjiri A. DNA mutations may not be the cause of cancer. Oncol Ther. 2017;5(1):85–101. https://doi.org/10.1007/s40487-017-0047-1.

    Article  PubMed  Google Scholar 

  27. Ngeow J, Eng C. Precision medicine in heritable cancer: when somatic tumour testing and germline mutations meet. NPJ Genom Med. 2016;1(1):15006. https://doi.org/10.1038/npjgenmed.2015.6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Geeleher P, Huang RS. Exploring the Link between the germline and somatic genome in cancer. Cancer Discov. 2017;7(4):354–5. https://doi.org/10.1158/2159-8290.cd-17-0192.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klein G. Oncogenes and tumor suppressor genes. Acta Oncol. 2009;27(4):427–37. https://doi.org/10.3109/02841868809093569.

    Article  Google Scholar 

  30. Caldas C, Venkitaraman AR. Tumor suppressor. Genes. 2001:2081–8. https://doi.org/10.1006/rwgn.2001.1345.

  31. Fanale D, Maragliano R, Bazan V, Russo A. Caretakers and Gatekeepers. 2017:1–10. https://doi.org/10.1002/9780470015902.a0006048.pub2.

  32. Ashworth A, Lord Christopher J, Reis-Filho JS. Genetic interactions in cancer progression and treatment. Cell. 2011;145(1):30–8. https://doi.org/10.1016/j.cell.2011.03.020.

    Article  CAS  PubMed  Google Scholar 

  33. Beroud C. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1996;24(1):121–4. https://doi.org/10.1093/nar/24.1.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kinzler KW, Vogelstein B. Gatekeepers and caretakers. Nature. 1997;386(6627):761–3. https://doi.org/10.1038/386761a0.

    Article  CAS  PubMed  Google Scholar 

  35. Gatekeeper Gene. 2008:739. https://doi.org/10.1007/978-1-4020-6754-9_6454.

  36. Hutchinson E. Alfred Knudson and his two-hit hypothesis. Lancet Oncol. 2001;2(10):642–5. https://doi.org/10.1016/s1470-2045(01)00524-1.

    Article  Google Scholar 

  37. Paige AJW. Redefining tumour suppressor genes: exceptions to the two-hit hypothesis. Cell Mol Life Sci. 2003;60(10):2147–63. https://doi.org/10.1007/s00018-003-3027-6.

    Article  CAS  PubMed  Google Scholar 

  38. Hall MJ, Obeid EI, Schwartz SC, Mantia-Smaldone G, Forman AD, Daly MB. Genetic testing for hereditary cancer predisposition: BRCA1/2, Lynch syndrome, and beyond. Gynecol Oncol. 2016;140(3):565–74. https://doi.org/10.1016/j.ygyno.2016.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med. 2002;8(4):179–86. https://doi.org/10.1016/s1471-4914(02)02298-0.

    Article  CAS  PubMed  Google Scholar 

  40. Cortes-Ciriano I, Lee S, Park W-Y, Kim T-M, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bacher JW, Clipson L, Steffen LS, Halberg RB. Microsatellite instability and its significance to hereditary and sporadic cancer. 2016. https://doi.org/10.5772/65065.

  42. Ponder BAJ. Cancer genetics. Nature. 2001;411(6835):336–41. https://doi.org/10.1038/35077207.

    Article  CAS  PubMed  Google Scholar 

  43. Ottini L, Rizzolo P, Silvestri V, Falchetti M. Inherited and acquired alterations in development of breast cancer. Appl Clin Genet. 2011;4:145. https://doi.org/10.2147/tacg.s13226.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stratakis C. Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony. Trends Endocrinol Metab. 2003;14(9):404–10. https://doi.org/10.1016/j.tem.2003.08.005.

    Article  CAS  PubMed  Google Scholar 

  45. Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T, et al. Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet. 2006;78(6):961–72. https://doi.org/10.1086/504090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brosens LAA. Juvenile polyposis syndrome. World J Gastroenterol. 2011;17(44):4839. https://doi.org/10.3748/wjg.v17.i44.4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Santarosa M, Ashworth A. Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochimica Biophys Acta. 2004;1654(2):105–22. https://doi.org/10.1016/j.bbcan.2004.01.001.

    Article  CAS  Google Scholar 

  48. Salmena L, Narod S. BRCA1 haploinsufficiency: consequences for breast cancer. Womens Health. 2012;8(2):127–9. https://doi.org/10.2217/whe.12.2.

    Article  CAS  Google Scholar 

  49. Berger AH, Pandolfi PP. Haplo-insufficiency: a driving force in cancer. J Pathol. 2011;223(2):138–47. https://doi.org/10.1002/path.2800.

    Article  CAS  Google Scholar 

  50. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci. 2001;98(20):11563–8. https://doi.org/10.1073/pnas.201167798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wittersheim M, Büttner R, Markiefka B. Genotype/phenotype correlations in patients with hereditary breast cancer. Breast Care. 2015;10(1):22–6. https://doi.org/10.1159/000380900.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Houlston RS, Tomlinson IPM. Modifier genes in humans: strategies for identification. Eur J Hum Genet. 1998;6(1):80–8. https://doi.org/10.1038/sj.ejhg.5200156.

    Article  CAS  PubMed  Google Scholar 

  53. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2):171–82. https://doi.org/10.1016/s0092-8674(02)00615-3.

    Article  CAS  PubMed  Google Scholar 

  54. Bayraktar S, Jackson M, Gutierrez-Barrera AM, Liu D, Meric-Bernstam F, Brandt A, et al. Genotype-phenotype correlations by ethnicity and mutation location in BRCA Mutation carriers. Breast J. 2015;21(3):260–7. https://doi.org/10.1111/tbj.12392.

    Article  CAS  PubMed  Google Scholar 

  55. Antoniou AC, Chenevix-Trench G. Common genetic variants and cancer risk in Mendelian cancer syndromes. Curr Opin Genet Dev. 2010;20(3):299–307. https://doi.org/10.1016/j.gde.2010.03.010.

    Article  CAS  PubMed  Google Scholar 

  56. Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. microRNAs in diseases: from candidate to modifier genes. Clin Genet. 2010;77(4):306–13. https://doi.org/10.1111/j.1399-0004.2010.01370.x.

    Article  CAS  PubMed  Google Scholar 

  57. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P. Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol. 2007;63(2):125–49. https://doi.org/10.1016/j.critrevonc.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  58. Maniatis N. Linkage disequilibrium maps and disease-association mapping. Methods Mol Bio. 2007;376:109–21. https://doi.org/10.1007/978-1-59745-389-9_8.

    Article  CAS  Google Scholar 

  59. Rebbeck TR, Lustbader ED, Buetow KH. Somatic allele loss in genetic linkage analysis of cancer. Genet Epidemiol. 1994;11(5):419–29. https://doi.org/10.1002/gepi.1370110504.

    Article  CAS  PubMed  Google Scholar 

  60. Sapkota Y, Germline DNA. Variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res. 2014;144(2):77–91. https://doi.org/10.1159/000369045.

    Article  CAS  PubMed  Google Scholar 

  61. McKinley AG, Russell SEH, Spence RAJ, Odling-Smee W, Nevin NC. Hereditary breast cancer and linkage analysis toBRCA1. Br J Surg. 1995;82(8):1086–8. https://doi.org/10.1002/bjs.1800820826.

    Article  CAS  PubMed  Google Scholar 

  62. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet. 1997;17(1):21–4. https://doi.org/10.1038/ng0997-21.

    Article  CAS  PubMed  Google Scholar 

  63. Goddard KAB, Wijsman EM. Characteristics of genetic markers and maps for cost-effective genome screens using diallelic markers. Genet Epidemiol. 2002;22(3):205–20. https://doi.org/10.1002/gepi.0177.

    Article  PubMed  Google Scholar 

  64. Garner C, Slatkin M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol. 2003;24(1):57–67. https://doi.org/10.1002/gepi.10217.

    Article  PubMed  Google Scholar 

  65. Bonnen PE. Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res. 2002;12(12):1846–53. https://doi.org/10.1101/gr.483802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ellis NA, Kirchhoff T, Mitra N, Ye T-Z, Chuai S, Huang H, et al. Localization of breast cancer susceptibility loci by genome-wide SNP linkage disequilibrium mapping. Genet Epidemiol. 2006;30(1):48–61. https://doi.org/10.1002/gepi.20101.

    Article  PubMed  Google Scholar 

  67. Lewitter F, Bush WS, Moore JH, Kann M. Chapter 11: Genome-Wide Association Studies. PLoS Comput Biol. 2012;8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822.

    Article  CAS  Google Scholar 

  68. Véron A, Blein S, Cox DG. Genome-wide association studies and the clinic: a focus on breast cancer. Biomark Med. 2014;8(2):287–96. https://doi.org/10.2217/bmm.13.121.

    Article  CAS  PubMed  Google Scholar 

  69. Park JH, Gail MH, Weinberg CR, Carroll RJ, Chung CC, Wang Z, et al. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci. 2011;108(44):18026–31. https://doi.org/10.1073/pnas.1114759108.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles. Oncogene. 2004;23(38):6471–6. https://doi.org/10.1038/sj.onc.1207951.

    Article  CAS  PubMed  Google Scholar 

  71. Latif A, Hadfield KD, Roberts SA, Shenton A, Lalloo F, Black GCM, et al. Breast cancer susceptibility variants alter risks in familial disease. J Med Genet. 2009;47(2):126–31. https://doi.org/10.1136/jmg.2009.067256.

    Article  CAS  PubMed  Google Scholar 

  72. Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene. 2011;31(17):2121–8. https://doi.org/10.1038/onc.2011.408.

    Article  CAS  PubMed  Google Scholar 

  73. Witte JS. Genome-Wide Association Studies and Beyond. Annu Rev Public Health. 2010;31(1):9–20. https://doi.org/10.1146/annurev.publhealth.012809.103723.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Akey JM, Casto AM, Feldman MW. Genome-Wide Association Study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with Shared Trait Associations? PLoS Genet. 2011;7(1):e1001266. https://doi.org/10.1371/journal.pgen.1001266.

    Article  CAS  Google Scholar 

  75. van der Groep P. Distinction between hereditary and sporadic breast cancer on the basis of clinicopathological data. J Clin Pathol. 2006;59(6):611–7. https://doi.org/10.1136/jcp.2005.032151.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044–58. https://doi.org/10.1053/j.gastro.2010.01.054.

    Article  CAS  PubMed  Google Scholar 

  77. Al Bakir M, Gabra H. The molecular genetics of hereditary and sporadic ovarian cancer: implications for the future. Br Med Bull. 2014;112(1):57–69. https://doi.org/10.1093/bmb/ldu034.

    Article  CAS  PubMed  Google Scholar 

  78. Kenemans P, Verstraeten RA, Verheijen RHM. Oncogenic pathways in hereditary and sporadic breast cancer. Maturitas. 2004;49(1):34–43. https://doi.org/10.1016/j.maturitas.2004.06.005.

    Article  CAS  PubMed  Google Scholar 

  79. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21(20):2525–38. https://doi.org/10.1101/gad.1593107.

    Article  CAS  PubMed  Google Scholar 

  80. de Leon MP. Familial and hereditary tumors. 1994;136. https://doi.org/10.1007/978-3-642-85076-9.

  81. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132(10):1077–130. https://doi.org/10.1007/s00439-013-1331-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Antoniou AC, Easton DF. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25(43):5898–905. https://doi.org/10.1038/sj.onc.1209879.

    Article  CAS  PubMed  Google Scholar 

  83. Brunet J. Hereditary breast cancer and genetic counseling in young women. Breast Cancer Res Treat. 2010;123(S1):7–9. https://doi.org/10.1007/s10549-010-1050-5.

    Article  PubMed  Google Scholar 

  84. Wang Q. Cancer predisposition genes: molecular mechanisms and clinical impact on personalized cancer care: examples of Lynch and HBOC syndromes. Acta Pharmacol Sin. 2015;37(2):143–9. https://doi.org/10.1038/aps.2015.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stigliano V. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol. 2014;20(35):12420. https://doi.org/10.3748/wjg.v20.i35.12420.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Esteller M. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10(26):3001–7. https://doi.org/10.1093/hmg/10.26.3001.

    Article  CAS  PubMed  Google Scholar 

  87. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–59. https://doi.org/10.1097/GIM.0b013e3181d38f2f.

    Article  CAS  PubMed  Google Scholar 

  88. Iau PTC, Macmillan RD, Blamey RW. Germ line mutations associated with breast cancer susceptibility. Eur J Cancer. 2001;37(3):300–21. https://doi.org/10.1016/s0959-8049(00)00378-6.

    Article  CAS  PubMed  Google Scholar 

  89. Milne RL, Osorio A, Ramón y Cajal T, Baiget M, Lasa A, Diaz-Rubio E, et al. Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2009;119(1):221–32. https://doi.org/10.1007/s10549-009-0394-1.

    Article  CAS  PubMed  Google Scholar 

  90. Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, et al. Hereditary ovarian cancer: not ONLYBRCA1 and 2 genes. Biomed Res Int. 2015;2015:1–11. https://doi.org/10.1155/2015/341723.

    Article  CAS  Google Scholar 

  91. de Jong MM. Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility. J Med Genet. 2002;39(4):225–42. https://doi.org/10.1136/jmg.39.4.225.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2008;17(6):722–31. https://doi.org/10.1038/ejhg.2008.212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506. https://doi.org/10.1056/NEJMoa1400382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park HS, Park S-J, Kim JY, Kim S, Ryu J, Sohn J, et al. Next-generation sequencing of BRCA1/2 in breast cancer patients: potential effects on clinical decision-making using rapid, high-accuracy genetic results. Ann Surg Treat Res. 2017;92(5):331. https://doi.org/10.4174/astr.2017.92.5.331.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nusbaum R, Vogel KJ, Ready K, Peshkin BN. Susceptibility to breast cancer: hereditary syndromes and low penetrance genes. Breast Dis. 2007;27(1):21–50. https://doi.org/10.3233/bd-2007-27103.

    Article  Google Scholar 

  96. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat Genet. 2015;47(2):164–71. https://doi.org/10.1038/ng.3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walker LC, Waddell N, Ten Haaf A, Grimmond S, Spurdle AB. Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers. Breast Cancer Res Treat. 2007;112(2):229–36. https://doi.org/10.1007/s10549-007-9848-5.

    Article  CAS  PubMed  Google Scholar 

  98. Kuchenbaecker KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Dennis J, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. JNCI J Natl Cancer Inst. 2017;109(7):djw302. https://doi.org/10.1093/jnci/djw302.

    Article  CAS  PubMed  Google Scholar 

  99. Johnatty SE, Tyrer JP, Kar S, Beesley J, Lu Y, Gao B, et al. Genome-wide analysis identifies novel loci associated with ovarian cancer outcomes: findings from the Ovarian Cancer Association Consortium. Clin Cancer Res. 2015;21(23):5264–76. https://doi.org/10.1158/1078-0432.ccr-15-0632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shulman LP. Hereditary Breast and Ovarian Cancer (HBOC): clinical features and counseling for BRCA1 and BRCA2, Lynch syndrome, Cowden syndrome, and Li-Fraumeni syndrome. Obstet Gynecol Clin N Am. 2010;37(1):109–33. https://doi.org/10.1016/j.ogc.2010.03.003.

    Article  Google Scholar 

  101. Varley JM. GermlineTP53 mutations and Li-Fraumeni syndrome. Hum Mutat. 2003;21(3):313–20. https://doi.org/10.1002/humu.10185.

    Article  CAS  PubMed  Google Scholar 

  102. Lyon DE, Erickson J. Breast cancer in Cowden syndrome: manifestation of a familial cancer syndrome. Clin J Oncol Nurs. 2010;14(1):33–5. https://doi.org/10.1188/10.cjon.33-35.

    Article  PubMed  Google Scholar 

  103. Bridges BA, Arlett CF. Risk of breast cancer in ataxia–telangiectasia. N Engl J Med. 1992;326(20):1357–61. https://doi.org/10.1056/nejm199205143262011.

    Article  CAS  PubMed  Google Scholar 

  104. Gronwald J, Byrski T, Huzarski T, Oszurek O, Janicka A, Szymańska-Pasternak J, et al. Hereditary breast and ovarian cancer. Hereditary Cancer Clin Pract. 2008;6(2):88. https://doi.org/10.1186/1897-4287-6-2-88.

    Article  Google Scholar 

  105. Berzina D, Nakazawa-Miklasevica M, Zestkova J, Aksenoka K, Irmejs A, Gardovskis A, et al. BRCA1/2 mutation screening in high-risk breast/ovarian cancer families and sporadic cancer patient surveilling for hidden high-risk families. BMC Med Genetics. 2013;14(1). https://doi.org/10.1186/1471-2350-14-61.

  106. Thompson D, Szabo CI, Mangion J, Oldenburg RA, Odefrey F, Seal S, et al. Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc Natl Acad Sci. 2002;99(2):827–31. https://doi.org/10.1073/pnas.012584499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006;34(5):1416–26. https://doi.org/10.1093/nar/gkl010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wooster R, Neuhausen S, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90. https://doi.org/10.1126/science.8091231.

    Article  CAS  PubMed  Google Scholar 

  109. Fanale D, Bazan V, Caruso S, Castiglia M, Bronte G, Rolfo C, et al. Hypoxia and human genome stability: downregulation of BRCA2 expression in breast cancer cell lines. Biomed Res Int. 2013;2013:1–8. https://doi.org/10.1155/2013/746858.

    Article  CAS  Google Scholar 

  110. Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 2000;408(6811):429–32. https://doi.org/10.1038/35044000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Savage KI, Harkin DP. BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J. 2015;282(4):630–46. https://doi.org/10.1111/febs.13150.

    Article  CAS  PubMed  Google Scholar 

  112. Wu W, Koike A, Takeshita T, Ohta T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div. 2008;3(1):1. https://doi.org/10.1186/1747-1028-3-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, et al. BRCA1 is associated with a human SWI/SNF-related complex. Cell. 2000;102(2):257–65. https://doi.org/10.1016/s0092-8674(00)00030-1.

    Article  CAS  PubMed  Google Scholar 

  114. Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, Migon E, et al. Brca1 required for T cell lineage development but not TCR loci rearrangement. Nat Immunol. 2000;1(1):77–82. https://doi.org/10.1038/76950.

    Article  CAS  PubMed  Google Scholar 

  115. MacLachlan TK, Takimoto R, El-Deiry WS. BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol. 2002;22(12):4280–92. https://doi.org/10.1128/mcb.22.12.4280-4292.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25(43):5864–74. https://doi.org/10.1038/sj.onc.1209874.

    Article  CAS  PubMed  Google Scholar 

  117. Kan C, Zhang J. BRCA1 mutation: a predictive marker for radiation therapy? Int J Radiat Oncol Biol Phy. 2015;93(2):281–93. https://doi.org/10.1016/j.ijrobp.2015.05.037.

    Article  CAS  Google Scholar 

  118. Chatterjee G, Jimenez-Sainz J, Presti T, Nguyen T, Jensen RB. Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity. Nucleic Acids Res. 2016;44(11):5256–70. https://doi.org/10.1093/nar/gkw242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. D’Andrea AD, Schwartz RS. Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med. 2010;362(20):1909–19. https://doi.org/10.1056/NEJMra0809889.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lane TF, Lin C, Brown MA, Solomon E, Leder P. Gene replacement with the human BRCA1 locus: tissue specific expression and rescue of embryonic lethality in mice. Oncogene. 2000;19(36):4085–90. https://doi.org/10.1038/sj.onc.1203760.

    Article  CAS  PubMed  Google Scholar 

  121. Szabo C, Masiello A, Ryan JF, Brody LC. The breast cancer information core: database design, structure, and scope. Hum Mutat. 2000;16(2):123–31. https://doi.org/10.1002/1098-1004(200008)16:2<123::aid-humu4>3.0.co;2-y.

    Article  CAS  PubMed  Google Scholar 

  122. Hoogerbrugge N, Jongmans MCJ. Finding all BRCA pathogenic mutation carriers: best practice models. Eur J Hum Genet. 2016;24(S1):S19–26. https://doi.org/10.1038/ejhg.2016.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ha SM, Chae EY, Cha JH, Kim HH, Shin HJ, Choi WJ. Association of BRCA mutation types, imaging features, and pathologic findings in patients with breast cancer with BRCA1 and BRCA2 mutations. Am J Roentgenol. 2017;209(4):920–8. https://doi.org/10.2214/ajr.16.16957.

    Article  Google Scholar 

  124. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379. https://doi.org/10.1001/jama.295.12.1379.

    Article  CAS  PubMed  Google Scholar 

  125. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al. Association of type and location ofBRCA1andBRCA2Mutations with risk of breast and ovarian cancer. JAMA. 2015;313(13):1347. https://doi.org/10.1001/jama.2014.5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Godet I, Gilkes MD. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1). https://doi.org/10.15761/icst.1000228.

  127. Eccles BK, Copson E, Maishman T, Abraham JE, Eccles DM. Understanding of BRCA VUS genetic results by breast cancer specialists. BMC Cancer. 2015;15(1). https://doi.org/10.1186/s12885-015-1934-1.

  128. Culver JO, Brinkerhoff CD, Clague J, Yang K, Singh KE, Sand SR, et al. Variants of uncertain significance in BRCA testing: evaluation of surgical decisions, risk perception, and cancer distress. Clin Genet. 2013;84(5):464–72. https://doi.org/10.1111/cge.12097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fanale D, Fiorino F, Incorvaia L, Dimino A, Filorizzo C, Bono M, et al. Prevalence and spectrum of germline BRCA1 and BRCA2 variants of uncertain significance in breast/ovarian cancer: mysterious signals from the genome. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.682445.

  130. Russo A, Calò V, Bruno L, Schirò V, Agnese V, Cascio S, et al. Is BRCA1-5083del19, identified in breast cancer patients of Sicilian origin, a Calabrian founder mutation? Breast Cancer Res Treat. 2008;113(1):67–70. https://doi.org/10.1007/s10549-008-9906-7.

    Article  CAS  PubMed  Google Scholar 

  131. Tonin PN, Mes-Masson A-M, Futreal PA, Morgan K, Mahon M, Foulkes WD, et al. Founder BRCA1 and BRCA2 Mutations in French Canadian Breast and Ovarian Cancer Families. Am J Hum Genet. 1998;63(5):1341–51. https://doi.org/10.1086/302099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ferla R, Calo V, Cascio S, Rinaldi G, Badalamenti G, Carreca I, et al. Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol. 2007;18(Supplement 6):vi93–vi8. https://doi.org/10.1093/annonc/mdm234.

    Article  PubMed  Google Scholar 

  133. McClain MR, Nathanson KL, Palomaki GE, Haddow JE. An evaluation of BRCA1 and BRCA2 founder mutations penetrance estimates for breast cancer among Ashkenazi Jewish women. Genet Med. 2005;7(1):34–9. https://doi.org/10.1097/01.gim.0000151156.14983.08.

    Article  CAS  PubMed  Google Scholar 

  134. Janavičius R. Founder BRCA1/2 mutations in the Europe: implications for hereditary breast-ovarian cancer prevention and control. EPMA Journal. 2010;1(3):397–412. https://doi.org/10.1007/s13167-010-0037-y.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Weitzel JN. Prevalence of BRCA mutations and founder effect in high-risk hispanic families. Cancer Epidemiol Biomark Prev. 2005;14(7):1666–71. https://doi.org/10.1158/1055-9965.epi-05-0072.

    Article  CAS  Google Scholar 

  136. Palomba G, Cossu A, Friedman E, Budroni M, Farris A, Contu A, et al. Origin and distribution of the BRCA2-8765delAG mutation in breast cancer. BMC Cancer. 2007;7(1):132. https://doi.org/10.1186/1471-2407-7-132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baudi F, Lavecchia AM, Quaresima B, Faniello MC, De Paola L, D'Amico W, et al. High prevalence of a BRCA1 gene founder mutation, 5083del19, in unselected breast–ovarian cancer patients from Southern Italy: genotype–phenotype correlations. Breast Cancer Res. 2005;7(S2):P1.04. https://doi.org/10.1186/bcr1091.

    Article  PubMed Central  Google Scholar 

  138. Incorvaia L, Fanale D, Badalamenti G, Bono M, Calò V, Cancelliere D, et al. Hereditary Breast and Ovarian Cancer in Families from Southern Italy (Sicily)—Prevalence and Geographic Distribution of Pathogenic Variants in BRCA1/2 Genes. Cancers. 2020;12(5):1158. https://doi.org/10.3390/cancers12051158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marroni F, Cipollini G, Peissel B, D’Andrea E, Pensabene M, Radice P, et al. Reconstructing the genealogy of a BRCA1 founder mutation by phylogenetic analysis. Ann Hum Genet. 2008;72(3):310–8. https://doi.org/10.1111/j.1469-1809.2007.00420.x.

    Article  CAS  PubMed  Google Scholar 

  140. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402. https://doi.org/10.1001/jama.2017.7112.

    Article  CAS  PubMed  Google Scholar 

  141. Incorvaia L, Fanale D, Bono M, Calò V, Fiorino A, Brando C, et al. BRCA1/2 pathogenic variants in triple-negative versus luminal-like breast cancers: genotype–phenotype correlation in a cohort of 531 patients. Ther Adv Med Oncol. 2020;12:175883592097532. https://doi.org/10.1177/1758835920975326.

  142. Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L, et al. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 2016;7(37):60712–22. https://doi.org/10.18632/oncotarget.10858.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. JNCI J Natl Cancer Inst. 1998;90(15):1138–45. https://doi.org/10.1093/jnci/90.15.1138.

    Article  CAS  PubMed  Google Scholar 

  144. Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res. 2015;17(1):37. https://doi.org/10.1186/s13058-015-0546-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Iglehart JD, Silver DP. Synthetic lethality — a new direction in cancer-drug development. N Engl J Med. 2009;361(2):189–91. https://doi.org/10.1056/NEJMe0903044.

  146. Rosen E, Pishvaian M. Targeting the BRCA1/2 tumor suppressors. Curr Drug Targets. 2014;15(1):17–31. https://doi.org/10.2174/1389450114666140106095432.

    Article  CAS  PubMed  Google Scholar 

  147. Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC, Macmillan RD, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2014;149(2):353–62. https://doi.org/10.1007/s10549-014-3230-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. https://doi.org/10.1056/NEJMoa0900212.

    Article  CAS  PubMed  Google Scholar 

  149. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, et al. Poly(ADP)-Ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 2010;28(15):2512–9. https://doi.org/10.1200/jco.2009.26.9589.

    Article  CAS  PubMed  Google Scholar 

  150. Bono M, Fanale D, Incorvaia L, et al. Impact of deleterious variants in other genes beyond BRCA1/2 detected in breast/ovarian and pancreatic cancer patients by NGS-based multi-gene panel testing: looking over the hedge [published online ahead of print, 2021 Aug 6]. ESMO Open. 2021;6(4):100235.

    Google Scholar 

  151. Oza AM, Cibula D, Benzaquen AO, Poole C, Mathijssen RHJ, Sonke GS, et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 2015;16(1):87–97. https://doi.org/10.1016/s1470-2045(14)71135-0.

    Article  CAS  PubMed  Google Scholar 

  152. Ledermann JA, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol. 2016;17(11):1579–89. https://doi.org/10.1016/s1470-2045(16)30376-x.

    Article  CAS  PubMed  Google Scholar 

  153. Gori S, Barberis M, Bella MA, Buttitta F, Capoluongo E, Carrera P, et al. Recommendations for the implementation of BRCA testing in ovarian cancer patients and their relatives. Crit Rev Oncol Hematol. 2019;140:67–72. https://doi.org/10.1016/j.critrevonc.2019.05.012.

    Article  PubMed  Google Scholar 

  154. Ly D, Forman D, Ferlay J, Brinton LA, Cook MB. An international comparison of male and female breast cancer incidence rates. Int J Cancer. 2013;132(8):1918–26. https://doi.org/10.1002/ijc.27841.

    Article  CAS  PubMed  Google Scholar 

  155. Altekruse SF, Rosenfeld GE, Carrick DM, Pressman EJ, Schully SD, Mechanic LE, et al. SEER cancer registry biospecimen research: yesterday and tomorrow. Cancer Epidemiol Biomark Prev. 2014;23(12):2681–7. https://doi.org/10.1158/1055-9965.epi-14-0490.

    Article  CAS  Google Scholar 

  156. Giordano SH, Longo DL. Breast cancer in men. N Engl J Med. 2018;378(24):2311–20. https://doi.org/10.1056/NEJMra1707939.

    Article  PubMed  Google Scholar 

  157. Ferzoco RM, Ruddy KJ. The epidemiology of male breast cancer. Current Oncol Rep. 2015;18(1). https://doi.org/10.1007/s11912-015-0487-4.

  158. Anderson WF, Jatoi I, Tse J, Rosenberg PS. Male breast cancer: a population-based comparison with female breast cancer. J Clin Oncol. 2010;28(2):232–9. https://doi.org/10.1200/jco.2009.23.8162.

    Article  PubMed  Google Scholar 

  159. Korde LA, Zujewski JA, Kamin L, Giordano S, Domchek S, Anderson WF, et al. Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol. 2010;28(12):2114–22. https://doi.org/10.1200/jco.2009.25.5729.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ottini L, Palli D, Rizzo S, Federico M, Bazan V, Russo A. Male breast cancer. Crit Rev Oncol Hematol. 2010;73(2):141–55. https://doi.org/10.1016/j.critrevonc.2009.04.003.

    Article  PubMed  Google Scholar 

  161. Deb S, Lakhani SR, Ottini L, Fox SB. The cancer genetics and pathology of male breast cancer. Histopathology. 2016;68(1):110–8. https://doi.org/10.1111/his.12862.

    Article  PubMed  Google Scholar 

  162. Silvestri V, Zelli V, Valentini V, Rizzolo P, Navazio AS, Coppa A, et al. Whole-exome sequencing and targeted gene sequencing provide insights into the role ofPALB2as a male breast cancer susceptibility gene. Cancer. 2017;123(2):210–8. https://doi.org/10.1002/cncr.30337.

    Article  CAS  PubMed  Google Scholar 

  163. Rizzolo P, Zelli V, Silvestri V, Valentini V, Zanna I, Bianchi S, et al. Insight into genetic susceptibility to male breast cancer by multigene panel testing: results from a multicenter study in Italy. Int J Cancer. 2019;145(2):390–400. https://doi.org/10.1002/ijc.32106.

    Article  CAS  PubMed  Google Scholar 

  164. Rizzolo P, Silvestri V, Tommasi S, Pinto R, Danza K, Falchetti M, et al. Male breast cancer: genetics, epigenetics, and ethical aspects. Ann Oncol. 2013;24(suppl 8):viii75–82. https://doi.org/10.1093/annonc/mdt316.

    Article  PubMed  Google Scholar 

  165. Ottini L. Male breast cancer: a rare disease that might uncover underlying pathways of breast cancer. Nat Rev Cancer. 2014;14(10):643–4. https://doi.org/10.1038/nrc3806.

    Article  CAS  PubMed  Google Scholar 

  166. Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L, et al. Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J Clin Oncol. 2017;35(20):2240–50. https://doi.org/10.1200/jco.2016.69.4935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff ML, Klint Å, et al. NORDCAN – a Nordic tool for cancer information, planning, quality control and research. Acta Oncol. 2010;49(5):725–36. https://doi.org/10.3109/02841861003782017.

  168. Piera R, Valentina S, Mario F, Matteo G, Laura O. Breast cancer: not only a “Womans” disease. Current Women’s Health Rev. 2012;8(1):55–64. https://doi.org/10.2174/157340412799079066.

  169. Giordano SH. A review of the diagnosis and management of male breast cancer. Oncologist. 2005;10(7):471–9. https://doi.org/10.1634/theoncologist.10-7-471.

    Article  PubMed  Google Scholar 

  170. Papi L, Putignano AL, Congregati C, Zanna I, Sera F, Morrone D, et al. Founder mutations account for the majority of BRCA1-attributable hereditary breast/ovarian cancer cases in a population from Tuscany, Central Italy. Breast Cancer Res Treat. 2008;117(3):497–504. https://doi.org/10.1007/s10549-008-0190-3.

    Article  CAS  PubMed  Google Scholar 

  171. Ottini L, Rizzolo P, Zanna I, Falchetti M, Masala G, Ceccarelli K, et al. BRCA1/BRCA2 mutation status and clinical-pathologic features of 108 male breast cancer cases from Tuscany: a population-based study in central Italy. Breast Cancer Res Treat. 2008;116(3):577–86. https://doi.org/10.1007/s10549-008-0194-z.

    Article  PubMed  Google Scholar 

  172. Ottini L, Silvestri V, Rizzolo P, Falchetti M, Zanna I, Saieva C, et al. Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Res Treat. 2012;134(1):411–8. https://doi.org/10.1007/s10549-012-2062-0.

    Article  CAS  PubMed  Google Scholar 

  173. Karhu R, Laurila E, Kallioniemi A, Syrjäkoski K. Large genomic BRCA2 rearrangements and male breast cancer. Cancer Detect Prev. 2006;30(6):530–4. https://doi.org/10.1016/j.cdp.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  174. Capalbo C, Buffone A, Vestri A, Ricevuto E, Rinaldi C, Zani M, et al. Does the search for large genomic rearrangements impact BRCAPRO carrier prediction? J Clin Oncol. 2007;25(18):2632–4. https://doi.org/10.1200/jco.2007.11.4330.

    Article  PubMed  Google Scholar 

  175. Hansen TO, Jønson L, Albrechtsen A, Andersen MK, Ejlertsen B, Nielsen FC. Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families. Breast Cancer Res Treat. 2008;115(2):315–23. https://doi.org/10.1007/s10549-008-0088-0.

    Article  CAS  PubMed  Google Scholar 

  176. Sluiter MD, van Rensburg EJ. Large genomic rearrangements of the BRCA1 and BRCA2 genes: review of the literature and report of a novel BRCA1 mutation. Breast Cancer Res Treat. 2010;125(2):325–49. https://doi.org/10.1007/s10549-010-0817-z.

    Article  CAS  PubMed  Google Scholar 

  177. Tournier I, Paillerets BB-d, Sobol H, Stoppa-Lyonnet D, Lidereau R, Barrois M, et al. Significant contribution of germline BRCA2 rearrangements in male breast cancer families. Cancer Res. 2004;64(22):8143–7. https://doi.org/10.1158/0008-5472.can-04-2467.

    Article  CAS  PubMed  Google Scholar 

  178. Falchetti M, Lupi R, Rizzolo P, Ceccarelli K, Zanna I, Calò V, et al. BRCA1/BRCA2 rearrangements and CHEK2 common mutations are infrequent in Italian male breast cancer cases. Breast Cancer Res Treat. 2007;110(1):161–7. https://doi.org/10.1007/s10549-007-9689-2.

    Article  CAS  PubMed  Google Scholar 

  179. Silvestri V, Barrowdale D, Mulligan AM, Neuhausen SL, Fox S, Karlan BY, et al. Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res. 2016;18(1):1–13. https://doi.org/10.1186/s13058-016-0671-y.

    Article  CAS  Google Scholar 

  180. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002;31(1):55–9. https://doi.org/10.1038/ng879.

    Article  CAS  PubMed  Google Scholar 

  181. Pritzlaff M, Summerour P, McFarland R, Li S, Reineke P, Dolinsky JS, et al. Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res Treat. 2016;161(3):575–86. https://doi.org/10.1007/s10549-016-4085-4.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Neuhausen S, Dunning A, Steele L, Yakumo K, Hoffman M, Szabo C, et al. Role ofCHEK2*1100delC in unselected series of non-BRCA1/2 male breast cancers. Int J Cancer. 2004;108(3):477–8. https://doi.org/10.1002/ijc.11385.

    Article  CAS  PubMed  Google Scholar 

  183. Ohayon T, Gal I, Baruch RG, Szabo C, Friedman E. CHEK2*1100delC and male breast cancer risk in Israel. Int J Cancer. 2004;108(3):479–80. https://doi.org/10.1002/ijc.11603.

    Article  CAS  PubMed  Google Scholar 

  184. Syrjäkoski K, Kuukasjärvi T, Auvinen A, Kallioniemi O-P. CHEK2 1100delC is not a risk factor for male breast cancer population. Int J Cancer. 2004;108(3):475–6. https://doi.org/10.1002/ijc.11384.

    Article  CAS  PubMed  Google Scholar 

  185. Wasielewski M, den Bakker MA, van den Ouweland A, Meijer-van Gelder ME, Portengen H, Klijn JGM, et al. CHEK2 1100delC and male breast cancer in the Netherlands. Breast Cancer Res Treat. 2008;116(2):397–400. https://doi.org/10.1007/s10549-008-0162-7.

    Article  CAS  PubMed  Google Scholar 

  186. Hallamies S, Pelttari LM, Poikonen-Saksela P, Jekunen A, Jukkola-Vuorinen A, Auvinen P et al. CHEK2 c.1100delC mutation is associated with an increased risk for male breast cancer in Finnish patient population. BMC Cancer. 2017;17(1). doi:https://doi.org/10.1186/s12885-017-3631-8.

  187. Levy-Lahad E. Fanconi anemia and breast cancer susceptibility meet again. Nat Genet. 2010;42(5):368–9. https://doi.org/10.1038/ng0510-368.

    Article  CAS  PubMed  Google Scholar 

  188. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2006;39(2):165–7. https://doi.org/10.1038/ng1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. García MJ, Fernández V, Osorio A, Barroso A, Llort G, Lázaro C, et al. Analysis of FANCB and FANCN/PALB2 Fanconi Anemia genes in BRCA1/2-negative Spanish breast cancer families. Breast Cancer Res Treat. 2008;113(3):545–51. https://doi.org/10.1007/s10549-008-9945-0.

    Article  CAS  PubMed  Google Scholar 

  190. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK, et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res. 2011;71(6):2222–9. https://doi.org/10.1158/0008-5472.can-10-3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sauty de Chalon A, Teo Z, Park DJ, Odefrey FA, Hopper JL, Southey MC. Are PALB2 mutations associated with increased risk of male breast cancer? Breast Cancer Res Treat. 2009;121(1):253–5. https://doi.org/10.1007/s10549-009-0673-x.

    Article  PubMed  Google Scholar 

  192. Silvestri V, Rizzolo P, Falchetti M, Zanna I, Masala G, Bianchi S, et al. Mutation analysis of BRIP1 in male breast cancer cases: a population-based study in Central Italy. Breast Cancer Res Treat. 2010;126(2):539–43. https://doi.org/10.1007/s10549-010-1289-x.

    Article  PubMed  Google Scholar 

  193. Adank MA, van Mil SE, Gille JJP, Waisfisz Q, Meijers-Heijboer H. PALB2 analysis in BRCA2-like families. Breast Cancer Res Treat. 2010;127(2):357–62. https://doi.org/10.1007/s10549-010-1001-1.

    Article  CAS  PubMed  Google Scholar 

  194. Ding YC, Steele L, Kuan C-J, Greilac S, Neuhausen SL. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. 2010;126(3):771–8. https://doi.org/10.1007/s10549-010-1195-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Blanco A, de la Hoya M, Balmaña J, Ramón y Cajal T, Teule A, Miramar M-D, et al. Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat. 2011;132(1):307–15. https://doi.org/10.1007/s10549-011-1842-2.

    Article  PubMed  Google Scholar 

  196. Vietri MT, Caliendo G, Casamassimi A, Cioffi M, De Paola ML, Napoli C, et al. A novel PALB2 truncating mutation in an Italian family with male breast cancer. Oncol Rep. 2015;33(3):1243–7. https://doi.org/10.3892/or.2014.3685.

    Article  CAS  PubMed  Google Scholar 

  197. Thompson ER, Gorringe KL, Rowley SM, Wong-Brown MW, McInerny S, Li N, et al. Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls. Breast Cancer Res. 2015;17(1):111. https://doi.org/10.1186/s13058-015-0627-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MDM, et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun. 2015;6(1):1–13. https://doi.org/10.1038/ncomms10086.

    Article  CAS  Google Scholar 

  199. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41. https://doi.org/10.1038/ng1902.

    Article  CAS  PubMed  Google Scholar 

  200. Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Jonasdottir A, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104–7. https://doi.org/10.1038/ng.955.

    Article  CAS  PubMed  Google Scholar 

  201. Easton DF, Lesueur F, Decker B, Michailidou K, Li J, Allen J, et al. No evidence that protein truncating variants inBRIP1are associated with breast cancer risk: implications for gene panel testing. J Med Genet. 2016;53(5):298–309. https://doi.org/10.1136/jmedgenet-2015-103529.

    Article  CAS  PubMed  Google Scholar 

  202. Jønson L, Ahlborn LB, Steffensen AY, Djursby M, Ejlertsen B, Timshel S, et al. Identification of six pathogenic RAD51C mutations via mutational screening of 1228 Danish individuals with increased risk of hereditary breast and/or ovarian cancer. Breast Cancer Res Treat. 2016;155(2):215–22. https://doi.org/10.1007/s10549-015-3674-y.

    Article  CAS  PubMed  Google Scholar 

  203. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4. https://doi.org/10.1038/ng.569.

    Article  CAS  PubMed  Google Scholar 

  204. Sopik V, Akbari MR, Narod SA. Genetic testing forRAD51Cmutations: in the clinic and community. Clin Genet. 2015;88(4):303–12. https://doi.org/10.1111/cge.12548.

    Article  CAS  PubMed  Google Scholar 

  205. Silvestri V, Rizzolo P, Falchetti M, Zanna I, Masala G, Palli D et al. Mutation screening of RAD51C in male breast cancer patients. Breast Cancer Res. 2011;13(1). https://doi.org/10.1186/bcr2823.

  206. Fackenthal JD. Male breast cancer in Cowden syndrome patients with germline PTEN mutations. J Med Genet. 2001;38(3):159–64. https://doi.org/10.1136/jmg.38.3.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare Mutations in XRCC2 Increase the Risk of Breast Cancer. Am J Hum Genet. 2012;90(4):734–9. https://doi.org/10.1016/j.ajhg.2012.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kiiski JI, Pelttari LM, Khan S, Freysteinsdottir ES, Reynisdottir I, Hart SN, et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc Natl Acad Sci. 2014;111(42):15172–7. https://doi.org/10.1073/pnas.1407909111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cybulski C, Carrot-Zhang J, Kluźniak W, Rivera B, Kashyap A, Wokołorczyk D, et al. Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet. 2015;47(6):643–6. https://doi.org/10.1038/ng.3284.

    Article  CAS  PubMed  Google Scholar 

  210. Pharoah PDP, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BAJ. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31(1):33–6. https://doi.org/10.1038/ng853.

    Article  CAS  PubMed  Google Scholar 

  211. BCAC. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the breast cancer association consortium. JNCI J Natl Cancer Inst. 2006;98(19):1382–96. https://doi.org/10.1093/jnci/djj374.

    Article  Google Scholar 

  212. Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93. https://doi.org/10.1038/nature05887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009;41(5):579–84. https://doi.org/10.1038/ng.353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zheng W, Long J, Gao Y-T, Li C, Zheng Y, Xiang Y-B, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet. 2009;41(3):324–8. https://doi.org/10.1038/ng.318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7. https://doi.org/10.1038/ng.586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2012;44(3):312–8. https://doi.org/10.1038/ng.1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ford JM, Orr N, Cooke R, Jones M, Fletcher O, Dudbridge F, et al. Genetic Variants at Chromosomes 2q35, 5p12, 6q25.1, 10q26.13, and 16q12.1 Influence the Risk of Breast Cancer in Men. PLoS Genetics. 2011;7(9):e1002290. https://doi.org/10.1371/journal.pgen.1002290.

    Article  CAS  Google Scholar 

  218. Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet. 2012;44(11):1182–4. https://doi.org/10.1038/ng.2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ottini L, Silvestri V, Saieva C, Rizzolo P, Zanna I, Falchetti M, et al. Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy. Breast Cancer Res Treat. 2013;138(3):861–8. https://doi.org/10.1007/s10549-013-2459-4.

    Article  CAS  PubMed  Google Scholar 

  220. Silvestri V, Rizzolo P, Scarnò M, Chillemi G, Navazio AS, Valentini V, et al. Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a multicenter study in Italy. Eur J Cancer. 2015;51(16):2289–95. https://doi.org/10.1016/j.ejca.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  221. Ottini L, Rizzolo P, Zanna I, Silvestri V, Saieva C, Falchetti M, et al. Association of SULT1A1 Arg213His polymorphism with male breast cancer risk: results from a multicenter study in Italy. Breast Cancer Res Treat. 2014;148(3):623–8. https://doi.org/10.1007/s10549-014-3193-2.

    Article  CAS  PubMed  Google Scholar 

  222. Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA, Schmutzler RK, et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet. 2008;82(4):937–48. https://doi.org/10.1016/j.ajhg.2008.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zanna I, Rizzolo P, Sera F, Falchetti M, Aretini P, Giannini G, et al. The BRCAPRO 5.0 model is a useful tool in genetic counseling and clinical management of male breast cancer cases. Eur J Hum Genet. 2010;18(7):856–8. https://doi.org/10.1038/ejhg.2010.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mitri ZI, Jackson M, Garby C, Song J, Giordano SH, Hortobagyi GN, et al. BRCAPRO 6.0 model validation in male patients presenting for BRCA testing. Oncologist. 2015;20(6):593–7. https://doi.org/10.1634/theoncologist.2014-0425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Masci G, Caruso M, Caruso F, Salvini P, Carnaghi C, Giordano L, et al. Clinicopathological and immunohistochemical characteristics in male breast cancer: a retrospective case series. Oncologist. 2015;20(6):586–92. https://doi.org/10.1634/theoncologist.2014-0243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.

    Article  PubMed  Google Scholar 

  227. Da Silva FC, Wernhoff P, Dominguez-Barrera C, Dominguez-Valentin MEV. Update on hereditary colorectal cancer. Anticancer Res. 2016;36(9):4399–406. https://doi.org/10.21873/anticanres.10983.

    Article  PubMed  Google Scholar 

  228. Stoffel EM, Boland CR. Genetics and genetic testing in hereditary colorectal cancer. Gastroenterology. 2015;149(5):1191–203.e2. https://doi.org/10.1053/j.gastro.2015.07.021.

    Article  PubMed  Google Scholar 

  229. Wells K, Wise PE. Hereditary colorectal cancer syndromes. Surg Clin N Am. 2017;97(3):605–25. https://doi.org/10.1016/j.suc.2017.01.009.

    Article  PubMed  Google Scholar 

  230. Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101(2):385–98. https://doi.org/10.1111/j.1572-0241.2006.00375.x.

    Article  PubMed  Google Scholar 

  231. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4(1):22. https://doi.org/10.1186/1750-1172-4-22.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Knudsen AL, Bülow S, Tomlinson I, Möslein G, Heinimann K, Christensen IJ. Attenuated familial adenomatous polyposis: results from an international collaborative study. Colorectal Disease. 2010;12(10Online):e243–e9. https://doi.org/10.1111/j.1463-1318.2010.02218.x.

    Article  CAS  PubMed  Google Scholar 

  233. Groen EJ, Roos A, Muntinghe FL, Enting RH, de Vries J, Kleibeuker JH, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol. 2008;15(9):2439–50. https://doi.org/10.1245/s10434-008-9981-3.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66(3):589–600. https://doi.org/10.1016/0092-8674(81)90021-0.

    Article  CAS  PubMed  Google Scholar 

  235. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. https://doi.org/10.1016/0092-8674(90)90186-i.

    Article  CAS  PubMed  Google Scholar 

  236. Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18(9):1967–79. https://doi.org/10.1200/jco.2000.18.9.1967.

    Article  CAS  PubMed  Google Scholar 

  237. Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagenstecher C, Propping P, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2003;12(1):52–8. https://doi.org/10.1038/sj.ejhg.5201088.

    Article  CAS  Google Scholar 

  238. Balaguer F, Leoz M, Carballal S, Moreira L, Ocaña T. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet. 2015;8:95. https://doi.org/10.2147/tacg.s51484.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Boursi B, Sella T, Liberman E, Shapira S, David M, Kazanov D, et al. The APC p.I1307K polymorphism is a significant risk factor for CRC in average risk Ashkenazi Jews. Eur J Cancer. 2013;49(17):3680–5. https://doi.org/10.1016/j.ejca.2013.06.040.

    Article  CAS  PubMed  Google Scholar 

  240. Laurent-Puig P. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1998;26(1):269–70. https://doi.org/10.1093/nar/26.1.269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bertario L, Russo A, Sala P, Varesco L, Giarola M, Mondini P, et al. Multiple approach to the exploration of genotype-phenotype correlations in familial adenomatous polyposis. J Clin Oncol. 2003;21(9):1698–707. https://doi.org/10.1200/jco.2003.09.118.

    Article  CAS  PubMed  Google Scholar 

  242. Nieuwenhuis MH, Vasen HFA. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61(2):153–61. https://doi.org/10.1016/j.critrevonc.2006.07.004.

    Article  CAS  PubMed  Google Scholar 

  243. Palles C, Cazier J-B, Howarth KM, Domingo E, Jones AM, Broderick P, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2012;45(2):136–44. https://doi.org/10.1038/ng.2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bellido F, Pineda M, Aiza G, Valdés-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2015;18(4):325–32. https://doi.org/10.1038/gim.2015.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RKS, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348(9):791–9. https://doi.org/10.1056/NEJMoa025283.

    Article  PubMed  Google Scholar 

  246. Lipton L, Tomlinson I. The multiple colorectal adenoma phenotype and MYH, a base excision repair gene. Clin Gastroenterol Hepatol. 2004;2(8):633–8. https://doi.org/10.1016/s1542-3565(04)00286-1.

    Article  CAS  PubMed  Google Scholar 

  247. Nieuwenhuis MH, Vogt S, Jones N, Nielsen M, Hes FJ, Sampson JR, et al. Evidence for accelerated colorectal adenoma–carcinoma progression in MUTYH-associated polyposis? Gut. 2012;61(5):734–8. https://doi.org/10.1136/gut.2010.229104.

    Article  CAS  PubMed  Google Scholar 

  248. Poulsen M, Bisgaard M. MUTYH Associated Polyposis (MAP). Curr Genomics. 2008;9(6):420–35. https://doi.org/10.2174/138920208785699562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Nielsen M, Joerink - van de Beld MC, Jones N, Vogt S, Tops CM, HFA V, et al. Analysis of MUTYH genotypes and colorectal phenotypes in patients with MUTYH-associated polyposis. Gastroenterology. 2009;136(2):471–6. https://doi.org/10.1053/j.gastro.2008.10.056.

    Article  CAS  PubMed  Google Scholar 

  250. Theodoratou E, Campbell H, Tenesa A, Houlston R, Webb E, Lubbe S, et al. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer. 2010;103(12):1875–84. https://doi.org/10.1038/sj.bjc.6605966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146(5):1208–11.e5. https://doi.org/10.1053/j.gastro.2014.01.022.

    Article  CAS  PubMed  Google Scholar 

  252. Jenne DE, Reomann H, Nezu J-I, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18(1):38–43. https://doi.org/10.1038/ng0198-38.

    Article  CAS  PubMed  Google Scholar 

  253. van Lier MGF, Wagner A, Mathus-Vliegen EMH, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105(6):1258–64. https://doi.org/10.1038/ajg.2009.725.

    Article  PubMed  Google Scholar 

  254. Latchford AR, Neale K, Phillips RKS, Clark SK. Juvenile Polyposis Syndrome. Dis Colon Rectum. 2012;55(10):1038–43. https://doi.org/10.1097/DCR.0b013e31826278b3.

    Article  PubMed  Google Scholar 

  255. Sweet K. Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA. 2005;294(19):2465. https://doi.org/10.1001/jama.294.19.2465.

    Article  CAS  PubMed  Google Scholar 

  256. Howe JR, Mitros FA, Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998;5(8):751–6. https://doi.org/10.1007/bf02303487.

    Article  CAS  PubMed  Google Scholar 

  257. Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7. https://doi.org/10.1038/ng0597-64.

    Article  CAS  PubMed  Google Scholar 

  258. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139(6):1927–33. https://doi.org/10.1053/j.gastro.2010.06.061.

    Article  CAS  PubMed  Google Scholar 

  259. Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol. 2012;107(9):1315–29. https://doi.org/10.1038/ajg.2012.161.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Yan HHN, Lai JCW, Ho SL, Leung WK, Law WL, Lee JFY, et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut. 2017;66(9):1645–56. https://doi.org/10.1136/gutjnl-2016-311849.

    Article  CAS  PubMed  Google Scholar 

  261. Vasen H, Watson P, Mecklin J, Lynch H. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology. 1999;116(6):1453–6. https://doi.org/10.1016/s0016-5085(99)70510-x.

    Article  CAS  PubMed  Google Scholar 

  262. Vasen HFA, Mecklin JP, Meera Khan P, Lynch HT. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–5. https://doi.org/10.1007/bf02053699.

    Article  CAS  PubMed  Google Scholar 

  263. Macrae F, Harris M. Re: Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. JNCI J Natl Cancer Inst. 2005;97(12):936–7. https://doi.org/10.1093/jnci/dji157.

    Article  PubMed  Google Scholar 

  264. Rubenstein JH, Enns R, Heidelbaugh J, Barkun A, Adams MA, Dorn SD, et al. American Gastroenterological Association Institute guideline on the diagnosis and management of Lynch syndrome. Gastroenterology. 2015;149(3):777–82. https://doi.org/10.1053/j.gastro.2015.07.036.

    Article  PubMed  Google Scholar 

  265. Jenkins M, Baglietto L, Dowty J, Vanvliet C, Smith L, Mead L, et al. Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol. 2006;4(4):489–98. https://doi.org/10.1016/j.cgh.2006.01.002.

    Article  CAS  PubMed  Google Scholar 

  266. Peltomäki P. Lynch syndrome genes. Familial Cancer. 2005;4(3):227–32. https://doi.org/10.1007/s10689-004-7993-0.

    Article  CAS  PubMed  Google Scholar 

  267. Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11(1):42–65. https://doi.org/10.1097/GIM.0b013e31818fa2db.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Tiwari AK, Roy HK, Lynch HT. Lynch syndrome in the 21st century: clinical perspectives. QJM. 2016;109(3):151–8. https://doi.org/10.1093/qjmed/hcv137.

    Article  CAS  PubMed  Google Scholar 

  269. Møller P, Seppälä T, Bernstein I, Holinski-Feder E, Sala P, Evans DG, et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut. 2017;66(3):464–72. https://doi.org/10.1136/gutjnl-2015-309675.

    Article  PubMed  Google Scholar 

  270. Gryfe R, Kim H, Hsieh ETK, Aronson MD, Holowaty EJ, Bull SB, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342(2):69–77. https://doi.org/10.1056/nejm200001133420201.

    Article  CAS  PubMed  Google Scholar 

  271. Hendriks YMC, de Jong AE, Morreau H, Tops CMJ, Vasen HF, Wijnen JT, et al. Diagnostic approach and management of Lynch syndrome (Hereditary Nonpolyposis Colorectal Carcinoma): a guide for clinicians. CA Cancer J Clin. 2006;56(4):213–25. https://doi.org/10.3322/canjclin.56.4.213.

    Article  PubMed  Google Scholar 

  272. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  273. Gupta S, Provenzale D, Regenbogen SE, Hampel H, Slavin TP, Hall MJ, et al. NCCN guidelines insights: genetic/familial high-risk assessment: colorectal, Version 3.2017. J Natl Compr Cancer Netw. 2017;15(12):1465–75. https://doi.org/10.6004/jnccn.2017.0176.

    Article  CAS  Google Scholar 

  274. Mensenkamp AR, Vogelaar IP, van Zelst–Stams WAG, Goossens M, Ouchene H, Hendriks–Cornelissen SJB, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146(3):643–6.e8. https://doi.org/10.1053/j.gastro.2013.12.002.

    Article  CAS  PubMed  Google Scholar 

  275. Mas-Moya J, Dudley B, Brand RE, Thull D, Bahary N, Nikiforova MN, et al. Clinicopathological comparison of colorectal and endometrial carcinomas in patients with Lynch-like syndrome versus patients with Lynch syndrome. Hum Pathol. 2015;46(11):1616–25. https://doi.org/10.1016/j.humpath.2015.06.022.

    Article  PubMed  Google Scholar 

  276. Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency. JAMA. 2005;293(16):1979. https://doi.org/10.1001/jama.293.16.1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Llor X. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res. 2005;11(20):7304–10. https://doi.org/10.1158/1078-0432.ccr-05-0965.

    Article  CAS  PubMed  Google Scholar 

  278. Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S, et al. Germline TP53 mutations in patients with early-onset colorectal cancer in the colon cancer family registry. JAMA Oncol. 2015;1(2):214. https://doi.org/10.1001/jamaoncol.2015.0197.

    Article  PubMed  Google Scholar 

  279. Phelan CM, Iqbal J, Lynch HT, Lubinski J, Gronwald J, Moller P, et al. Incidence of colorectal cancer in BRCA1 and BRCA2 mutation carriers: results from a follow-up study. Br J Cancer. 2013;110(2):530–4. https://doi.org/10.1038/bjc.2013.741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Fanale D, Bronte G, Russo A. Targeted therapies in melanoma. 2015:211–27. https://doi.org/10.1007/978-1-4939-2047-1_16.

  281. Nelson AA, Tsao H. Melanoma and genetics. Clin Dermatol. 2009;27(1):46–52. https://doi.org/10.1016/j.clindermatol.2008.09.005.

    Article  PubMed  Google Scholar 

  282. Di Lorenzo S, Fanale D, Corradino B, Caló V, Rinaldi G, Bazan V, et al. Absence of germlineCDKN2Amutation in Sicilian patients with familial malignant melanoma: could it be a population-specific genetic signature? Cancer Biol Ther. 2015;17(1):83–90. https://doi.org/10.1080/15384047.2015.1108494.

    Article  CAS  PubMed Central  Google Scholar 

  283. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20(16):2149–82. 20/16/2149 [pii]. https://doi.org/10.1101/gad.1437206.

    Article  CAS  PubMed  Google Scholar 

  284. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6. https://doi.org/10.1038/ng0994-22.

    Article  CAS  PubMed  Google Scholar 

  285. Begg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst. 2005;97(20):1507–15. 97/20/1507 [pii]. https://doi.org/10.1093/jnci/dji312.

    Article  CAS  PubMed  Google Scholar 

  286. Hayward NK. Genetics of melanoma predisposition. Oncogene. 2003;22(20):3053–62. https://doi.org/10.1038/sj.onc.1206445. 1206445 [pii].

    Article  CAS  PubMed  Google Scholar 

  287. Harland M, Taylor CF, Chambers PA, Kukalizch K, Randerson-Moor JA, Gruis NA, et al. A mutation hotspot at the p14ARF splice site. Oncogene. 2005;24(28):4604–8. 1208678 [pii]. https://doi.org/10.1038/sj.onc.1208678.

    Article  CAS  PubMed  Google Scholar 

  288. Hewitt C, Lee Wu C, Evans G, Howell A, Elles RG, Jordan R, et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet. 2002;11(11):1273–9.

    Article  CAS  PubMed  Google Scholar 

  289. Garcia-Casado Z, Nagore E, Fernandez-Serra A, Botella-Estrada R, Lopez-Guerrero JA. A germline mutation of p14/ARF in a melanoma kindred. Melanoma Res. 2009;19(5):335–7. https://doi.org/10.1097/CMR.0b013e32832dd2d4. 00008390-200910000-00010 [pii].

    Article  PubMed  Google Scholar 

  290. Balogh K, Szell M, Polyanka H, Pagani F, Bussani E, Kemeny L, et al. Detection of a rare CDKN2A intronic mutation in a Hungarian melanoma-prone family and its role in splicing regulation. Br J Dermatol. 2012;167(1):131–3. https://doi.org/10.1111/j.1365-2133.2012.10864.x.

    Article  CAS  PubMed  Google Scholar 

  291. Djursby M, Wadt K, Lorentzen H, Borg A, Gerdes AM, Krogh L. [CDKN2A-mutation in a family with hereditary malignant melanoma.]. Ugeskr Laeger. 2014;176(40). V10130587 [pii].

    Google Scholar 

  292. Veinalde R, Ozola A, Azarjana K, Molven A, Akslen LA, Donina S, et al. Analysis of Latvian familial melanoma patients shows novel variants in the noncoding regions of CDKN2A and that the CDK4 mutation R24H is a founder mutation. Melanoma Res. 2013;23(3):221–6. https://doi.org/10.1097/CMR.0b013e3283608695.

    Article  CAS  PubMed  Google Scholar 

  293. Harland M, Mistry S, Bishop DT, Bishop JA. A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees. Hum Mol Genet. 2001;10(23):2679–86.

    Article  CAS  PubMed  Google Scholar 

  294. Laud K, Marian C, Avril MF, Barrois M, Chompret A, Goldstein AM, et al. Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. J Med Genet. 2006;43(1):39–47. jmg.2005.033498 [pii]. https://doi.org/10.1136/jmg.2005.033498.

    Article  CAS  PubMed  Google Scholar 

  295. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999;287(5):821–8. S0022-2836(99)92640-2 [pii]. https://doi.org/10.1006/jmbi.1999.2640.

    Article  CAS  PubMed  Google Scholar 

  296. Bennett DC. How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res. 2008;21(1):27–38. https://doi.org/10.1111/j.1755-148X.2007.00433.x. PCR433 [pii].

    Article  CAS  PubMed  Google Scholar 

  297. Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D, et al. BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene. 2004;23(35):5968–77. https://doi.org/10.1038/sj.onc.1207780. 1207780 [pii].

    Article  CAS  PubMed  Google Scholar 

  298. Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch Dermatol. 2000;136(9):1118–22. dst0010 [pii].

    Article  CAS  PubMed  Google Scholar 

  299. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94(12):894–903.

    Article  CAS  PubMed  Google Scholar 

  300. Fallah M, Pukkala E, Sundquist K, Tretli S, Olsen JH, Tryggvadottir L, et al. Familial melanoma by histology and age: joint data from five Nordic countries. Eur J Cancer. 2014;50(6):1176–83. https://doi.org/10.1016/j.ejca.2013.12.023. S0959-8049(14)00005-7 [pii].

    Article  PubMed  Google Scholar 

  301. Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99–106. jmg.2006.043802 [pii]. https://doi.org/10.1136/jmg.2006.043802.

    Article  CAS  PubMed  Google Scholar 

  302. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996;12(1):97–9. https://doi.org/10.1038/ng0196-97.

    Article  CAS  PubMed  Google Scholar 

  303. Rane SG, Cosenza SC, Mettus RV, Reddy EP. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol. 2002;22(2):644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22. nature03664 [pii]. https://doi.org/10.1038/nature03664.

    Article  CAS  PubMed  Google Scholar 

  305. Ugurel S, Houben R, Schrama D, Voigt H, Zapatka M, Schadendorf D, et al. Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin Cancer Res. 2007;13(21):6344–50. 13/21/6344 [pii]. https://doi.org/10.1158/1078-0432.CCR-06-2682.

    Article  CAS  PubMed  Google Scholar 

  306. Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2010;23(1):27–40. https://doi.org/10.1111/j.1755-148X.2009.00653.x. PCR653 [pii].

    Article  CAS  PubMed  Google Scholar 

  307. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998;142(3):827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433(7027):764–9. nature03269 [pii]. https://doi.org/10.1038/nature03269.

    Article  CAS  PubMed  Google Scholar 

  309. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P, et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene. 2011;30(20):2307–18. https://doi.org/10.1038/onc.2010.598. onc2010598 [pii].

    Article  CAS  PubMed  Google Scholar 

  310. Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, et al. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res. 2000;255(2):135–43. https://doi.org/10.1006/excr.2000.4803. S0014-4827(00)94803-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  311. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature. 2011;480(7375):99–103. https://doi.org/10.1038/nature10630. nature10630 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94–8. https://doi.org/10.1038/nature10539. nature10539 [pii].

    Article  CAS  PubMed  Google Scholar 

  313. Beuret L, Flori E, Denoyelle C, Bille K, Busca R, Picardo M, et al. Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J Biol Chem. 2007;282(19):14140–7. M611563200 [pii]. https://doi.org/10.1074/jbc.M611563200.

    Article  CAS  PubMed  Google Scholar 

  314. Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, et al. Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol. 2005;170(1):49–59. jcb.200501067 [pii]. https://doi.org/10.1083/jcb.200501067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Liu F, Fu Y, Meyskens FL Jr. MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J Invest Dermatol. 2009;129(2):422–31. https://doi.org/10.1038/jid.2008.255. jid2008255 [pii].

    Article  CAS  PubMed  Google Scholar 

  316. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20(24):3426–39. 20/24/3426 [pii]. https://doi.org/10.1101/gad.406406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6(6):565–76. S1535610804003095 [pii]. https://doi.org/10.1016/j.ccr.2004.10.014.

    Article  CAS  PubMed  Google Scholar 

  318. Sturm RA. Skin colour and skin cancer - MC1R, the genetic link. Melanoma Res. 2002;12(5):405–16.

    Article  CAS  PubMed  Google Scholar 

  319. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69(4):765–73. S0002-9297(07)61132-X [pii]. https://doi.org/10.1086/323412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003;22(20):3099–112. https://doi.org/10.1038/sj.onc.1206450. 1206450 [pii].

    Article  CAS  PubMed  Google Scholar 

  321. Demenais F, Mohamdi H, Chaudru V, Goldstein AM, Newton Bishop JA, Bishop DT, et al. Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst. 2010;102(20):1568–83. https://doi.org/10.1093/jnci/djq363. djq363 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Fanale D, Incorvaia L, Filorizzo C, Bono M, Fiorino A, Calò V, et al. Detection of germline mutations in a cohort of 139 patients with bilateral breast cancer by multi-gene panel testing: impact of pathogenic variants in other genes beyond BRCA1/2. Cancers. 2020;12(9):2415. https://doi.org/10.3390/cancers12092415.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fanale, D. et al. (2021). Hereditary Cancers and Genetics. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics