Skip to main content

Cancer of Exocrine Pancreas

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Abstract

Pancreatic adenocarcinoma represents today a real challenge for oncologists all around the world: it is the 11th most common cancer worldwide, and the 7th deadliest, with a steadily increasing number of new cases every year. Many risk factors, both environmental and genetic, have been identified, the most important of which are excessive body weight, diabetes, and smoking; also, new diagnostic techniques, such as spiral TC, MRCP, and EUS, have improved the ability to diagnose this disease at an early stage. Nevertheless, pancreatic cancer is a silent disease, with few or no symptoms and signs until late stages: the vast majority of patients are inoperable at the time of diagnosis, with either metastatic or locally advanced disease.

Pancreatic cancer is associated with the lowest survival rates among all major cancer types. Unfortunately, pancreatic cancer is inherently resistant to most currently available therapies, and, unlike other cancers, few progresses have been achieved in radio- or chemotherapy improvement; therefore, survival rates remain extremely low. Moreover, many patients with pancreatic cancer suffer from rapidly declining performance status, anorexia, cachexia, and general inanition, which make it challenging to treat them.

Anyway, the recent development of new surgical techniques allowing radical resections in previously unresectable patients, together with new therapeutic schedules, bode well for future improvements for these patients’ outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–20. https://doi.org/10.1016/s0140-6736(10)62307-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lowenfels AB, Maisonneuve P. Risk factors for pancreatic cancer. J Cell Biochem. 2005;95(4):649–56. https://doi.org/10.1002/jcb.20461.

    Article  CAS  PubMed  Google Scholar 

  4. Bachmann J, Michalski CW, Martignoni ME, Büchler MW, Friess H. Pancreatic resection for pancreatic cancer. HPB. 2006;8(5):346–51. https://doi.org/10.1080/13651820600803981.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Torgeson A, Garrido-Laguna I, Tao R, Cannon GM, Scaife CL, Lloyd S. Value of surgical resection and timing of therapy in patients with pancreatic cancer at high risk for positive margins. ESMO Open. 2018;3(1):e000282. https://doi.org/10.1136/esmoopen-2017-000282.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Katz MHG, Wang H, Fleming JB, Sun CC, Hwang RF, Wolff RA, et al. Long-term survival after multidisciplinary management of resected pancreatic adenocarcinoma. Ann Surg Oncol. 2009;16(4):836–47. https://doi.org/10.1245/s10434-008-0295-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rahbari NN, Mollberg N, Koch M, Neoptolemos JP, Weitz J, Büchler MW. Surgical resection for pancreatic cancer. In: Pancreatic cancer. 2010. p. 971–96. https://doi.org/10.1007/978-0-387-77498-5_39.

  8. Boeck S, Heinemann V. Improving post-surgical management of resected pancreatic cancer. Lancet. 2017;390(10097):847–8. https://doi.org/10.1016/s0140-6736(17)31806-8.

    Article  PubMed  Google Scholar 

  9. Wang F, Kumar P. The role of radiotherapy in management of pancreatic cancer. J Gastrointest Oncol. 2011;2(3):157–67. https://doi.org/10.3978/j.issn.2078-6891.2011.032.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018. https://doi.org/10.1038/s41575-018-0005-x.

  11. Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Ther Adv Gastroenterol. 2013;6(4):321–37. https://doi.org/10.1177/1756283x13478680.

    Article  Google Scholar 

  12. Hurtado M, Sankpal UT, Ranjan A, Maram R, Vishwanatha JK, Nagaraju GP, et al. Investigational agents to enhance the efficacy of chemotherapy or radiation in pancreatic cancer. Crit Rev Oncol Hematol. 2018;126:201–7. https://doi.org/10.1016/j.critrevonc.2018.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, et al. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol. 2016;12(16):1929–46. https://doi.org/10.2217/fon-2016-0010.

    Article  CAS  PubMed  Google Scholar 

  14. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  15. Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P. Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog. 2012;51(1):3–13. https://doi.org/10.1002/mc.20785.

    Article  CAS  PubMed  Google Scholar 

  16. Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105(S2):S77–81. https://doi.org/10.1038/bjc.2011.489.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22(44):9694. https://doi.org/10.3748/wjg.v22.i44.9694.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. https://doi.org/10.1016/j.ejca.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  19. Malvezzi M, Carioli G, Bertuccio P, Rosso T, Boffetta P, Levi F, et al. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann Oncol. 2016;27(4):725–31. https://doi.org/10.1093/annonc/mdw022.

    Article  CAS  PubMed  Google Scholar 

  20. Qiu D, Katanoda K, Marugame T, Sobue T. A Joinpoint regression analysis of long-term trends in cancer mortality in Japan (1958-2004). Int J Cancer. 2009;124(2):443–8. https://doi.org/10.1002/ijc.23911.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L. Pancreatic cancer mortality in China (1991-2000). World J Gastroenterol. 2003;9(8):1819. https://doi.org/10.3748/wjg.v9.i8.1819.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2014. Ann Oncol. 2014;25(8):1650–6. https://doi.org/10.1093/annonc/mdu138.

    Article  CAS  PubMed  Google Scholar 

  23. Silverman DT, Hoover RN, Brown LM, Swanson GM, Schiffman M, Greenberg RS, et al. Why do Black Americans have a higher risk of pancreatic cancer than White Americans? Epidemiology. 2003;14(1):45–54.

    Article  PubMed  Google Scholar 

  24. Jemal A, Simard EP, Xu J, Ma J, Anderson RN. Selected cancers with increasing mortality rates by educational attainment in 26 states in the United States, 1993–2007. Cancer Causes Control. 2012;24(3):559–65. https://doi.org/10.1007/s10552-012-9993-y.

    Article  PubMed  Google Scholar 

  25. Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet. 2011;377(9760):127–38. https://doi.org/10.1016/s0140-6736(10)62231-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levi F, Lucchini F, Negri E, La Vecchia C. Pancreatic cancer mortality in Europe: the leveling of an epidemic. Pancreas. 2003;27(2):139–42.

    Article  PubMed  Google Scholar 

  27. Lambe M, Eloranta S, Wigertz A, Blomqvist P. Pancreatic cancer; reporting and long-term survival in Sweden. Acta Oncol. 2011;50(8):1220–7. https://doi.org/10.3109/0284186x.2011.599338.

    Article  PubMed  Google Scholar 

  28. Hiripi E, Gondos A, Emrich K, Holleczek B, Katalinic A, Luttmann S, et al. Survival from common and rare cancers in Germany in the early 21st century. Ann Oncol. 2011;23(2):472–9. https://doi.org/10.1093/annonc/mdr131.

    Article  PubMed  Google Scholar 

  29. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17. https://doi.org/10.1056/NEJMra0901557.

    Article  CAS  PubMed  Google Scholar 

  30. Jarosz M, Sekuła W, Rychlik E. Influence of diet and tobacco smoking on pancreatic cancer incidence in Poland in 1960–2008. Gastroenterol Res Pract. 2012;2012:1–9. https://doi.org/10.1155/2012/682156.

    Article  Google Scholar 

  31. Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbeck’s Arch Surg. 2008;393(4):535–45. https://doi.org/10.1007/s00423-007-0266-2.

    Article  Google Scholar 

  32. Ezzati M, Henley SJ, Lopez AD, Thun MJ. Role of smoking in global and regional cancer epidemiology: Current patterns and data needs. Int J Cancer. 2005;116(6):963–71. https://doi.org/10.1002/ijc.21100.

    Article  CAS  PubMed  Google Scholar 

  33. Weiss W, Benarde MA. The temporal relation between cigarette smoking and pancreatic cancer. Am J Public Health. 1983;73(12):1403–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC, Michaud DS, Severinsen MT, Overvad K, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2010. https://doi.org/10.1002/ijc.24907.

  35. Yeo TP. Demographics, epidemiology, and inheritance of pancreatic ductal adenocarcinoma. Semin Oncol. 2015;42(1):8–18. https://doi.org/10.1053/j.seminoncol.2014.12.002.

    Article  PubMed  Google Scholar 

  36. Aune D, Greenwood DC, Chan DSM, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Ann Oncol. 2012;23(4):843–52. https://doi.org/10.1093/annonc/mdr398.

    Article  CAS  PubMed  Google Scholar 

  37. Genkinger JM, Spiegelman D, Anderson KE, Bernstein L, van den Brandt PA, Calle EE, et al. A pooled analysis of 14 cohort studies of anthropometric factors and pancreatic cancer risk. Int J Cancer. 2011;129(7):1708–17. https://doi.org/10.1002/ijc.25794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Zhao Z, Berkel HJ. Animal fat consumption and pancreatic cancer incidence: evidence of interaction with cigarette smoking. Ann Epidemiol. 2005;15(7):500–8. https://doi.org/10.1016/j.annepidem.2004.11.005.

    Article  PubMed  Google Scholar 

  39. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  40. Anderson KE, Mongin SJ, Sinha R, Stolzenberg-Solomon R, Gross MD, Ziegler RG, et al. Pancreatic cancer risk: associations with meat-derived carcinogen intake in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort. Mol Carcinog. 2012;51(1):128–37. https://doi.org/10.1002/mc.20794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Appleby PN, Crowe FL, Bradbury KE, Travis RC, Key TJ. Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. Am J Clin Nutr. 2016;103(1):218–30. https://doi.org/10.3945/ajcn.115.119461.

    Article  CAS  PubMed  Google Scholar 

  42. Larsson SC, Wolk A. Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies. Br J Cancer. 2012;106(3):603–7. https://doi.org/10.1038/bjc.2011.585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michaud DS, Vrieling A, Jiao L, Mendelsohn JB, Steplowski E, Lynch SM, et al. Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control. 2010;21(8):1213–25. https://doi.org/10.1007/s10552-010-9548-z.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu Q-J, Wu L, Zheng L-Q, Xu X, Ji C, Gong T-T. Consumption of fruit and vegetables reduces risk of pancreatic cancer. Eur J Cancer Prev. 2016;25(3):196–205. https://doi.org/10.1097/cej.0000000000000171.

    Article  PubMed  Google Scholar 

  45. Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2014;44(1):186–98. https://doi.org/10.1093/ije/dyu240.

    Article  PubMed  Google Scholar 

  46. Willett WC. Diet and cancer. Oncologist. 2000;5(5):393–404.

    Article  CAS  PubMed  Google Scholar 

  47. Rosato V, Polesel J, Bosetti C, Serraino D, Negri E, La Vecchia C. Population attributable risk for pancreatic cancer in Northern Italy. Pancreas. 2015;44(2):216–20. https://doi.org/10.1097/mpa.0000000000000251.

    Article  PubMed  Google Scholar 

  48. Batabyal P, Vander Hoorn S, Christophi C, Nikfarjam M. Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol. 2014;21(7):2453–62. https://doi.org/10.1245/s10434-014-3625-6.

    Article  PubMed  Google Scholar 

  49. Stevens RJ, Roddam AW, Beral V. Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. Br J Cancer. 2007;96(3):507–9. https://doi.org/10.1038/sj.bjc.6603571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bosetti C, Rosato V, Li D, Silverman D, Petersen GM, Bracci PM, et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol. 2014;25(10):2065–72. https://doi.org/10.1093/annonc/mdu276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT. Diabetes and risk of pancreatic cancer: a pooled analysis of three large case–control studies. Cancer Causes Control. 2010;22(2):189–97. https://doi.org/10.1007/s10552-010-9686-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ojajarvi IA, Partanen TJ, Ahlbom A, Boffetta P, Hakulinen T, Jourenkova N, et al. Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med. 2000;57(5):316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacobs EJ, Chanock SJ, Fuchs CS, LaCroix A, McWilliams RR, Steplowski E, et al. Family history of cancer and risk of pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Int J Cancer. 2010;127(6):1421–8. https://doi.org/10.1002/ijc.25148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slebos RJC, Hoppin JA, Tolbert PE, Holly EA, Brock JW, Zhang RH, et al. K-ras and p53 in pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study. Cancer Epidemiol Biomarkers Prev. 2000;9(11):1223–32.

    CAS  PubMed  Google Scholar 

  55. Greer JB, Whitcomb DC, Brand RE. Genetic predisposition to pancreatic cancer: a brief review. Am J Gastroenterol. 2007;102(11):2564–9. https://doi.org/10.1111/j.1572-0241.2007.01475.x.

    Article  CAS  PubMed  Google Scholar 

  56. Bono M, Fanale D, Incorvaia L, et al. Impact of deleterious variants in other genes beyond BRCA1/2 detected in breast/ovarian and pancreatic cancer patients by NGS-based multi-gene panel testing: looking over the hedge [published online ahead of print, 2021 Aug 6]. ESMO Open. 2021;6(4):100235. https://doi.org/10.1016/j.esmoop.2021.100235.

  57. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  58. Fanale D, Iovanna JL, Calvo EL, Berthezene P, Belleau P, Dagorn JC, et al. Germline copy number variation in theYTHDC2gene: does it have a role in finding a novel potential molecular target involved in pancreatic adenocarcinoma susceptibility? Expert Opin Ther Targets. 2014;18(8):841–50. https://doi.org/10.1517/14728222.2014.920324.

    Article  CAS  PubMed  Google Scholar 

  59. Fanale D, Iovanna JL, Calvo EL, Berthezene P, Belleau P, Dagorn JC, et al. Analysis of germline gene copy number variants of patients with sporadic pancreatic adenocarcinoma reveals specific variations. Oncology. 2013;85(5):306–11. https://doi.org/10.1159/000354737.

    Article  CAS  PubMed  Google Scholar 

  60. Paradise B, Barham W, Fernandez-Zapico M. Targeting epigenetic aberrations in pancreatic cancer, a new path to improve patient outcomes? Cancers. 2018;10(5):128. https://doi.org/10.3390/cancers10050128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koorstra J-BM, Hustinx SR, Offerhaus GJA, Maitra A. Pancreatic carcinogenesis. Pancreatology. 2008;8(2):110–25. https://doi.org/10.1159/000123838.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Petersen GM, Boffetta P. Carcinogenesis of pancreatic cancer: challenges, collaborations, progress. Mol Carcinog. 2012;51(1):1–2. https://doi.org/10.1002/mc.20876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunetti A, Simone G, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci. 2013;14(10):19731–62. https://doi.org/10.3390/ijms141019731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kozuka S, Sassa R, Taki T, Masamoto K, Nagasawa S, Saga S, et al. Relation of pancreatic duct hyperplasia to carcinoma. Cancer. 1979;43(4):1418–28. https://doi.org/10.1002/1097-0142(197904)43:4<1418::aid-cncr2820430431>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  65. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, et al. Pancreatic Intraepithelial Neoplasia. Am J Surg Pathol. 2001;25(5):579–86. https://doi.org/10.1097/00000478-200105000-00003.

    Article  CAS  PubMed  Google Scholar 

  66. Singh M, Maitra A. Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology. 2007;7(1):9–19. https://doi.org/10.1159/000101873.

    Article  CAS  PubMed  Google Scholar 

  67. Hruban RH, Takaori K, Canto M, Fishman EK, Campbell K, Brune K, et al. Clinical importance of precursor lesions in the pancreas. J Hepato-Biliary-Pancreat Surg. 2007;14(3):255–63. https://doi.org/10.1007/s00534-006-1170-9.

    Article  Google Scholar 

  68. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87. https://doi.org/10.1097/01.pas.0000126675.59108.80.

    Article  PubMed  Google Scholar 

  69. Stelow EB, Adams RB, Moskaluk CA. The prevalence of pancreatic intraepithelial neoplasia in pancreata with uncommon types of primary neoplasms. Am J Surg Pathol. 2006;30(1):36–41. https://doi.org/10.1097/01.pas.0000180440.41280.a5.

    Article  PubMed  Google Scholar 

  70. Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepato-Biliary-Pancreat Surg. 2007;14(3):243–54. https://doi.org/10.1007/s00534-006-1169-2.

    Article  Google Scholar 

  71. Koorstra J-BM, Feldmann G, Habbe N, Maitra A. Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs). Langenbeck’s Arch Surg. 2008;393(4):561–70. https://doi.org/10.1007/s00423-008-0282-x.

    Article  Google Scholar 

  72. Zamboni G, Hirabayashi K, Castelli P, Lennon AM. Precancerous lesions of the pancreas. Best Pract Res Clin Gastroenterol. 2013;27(2):299–322. https://doi.org/10.1016/j.bpg.2013.04.001.

    Article  PubMed  Google Scholar 

  73. Kong B, Bruns P, Behler NA, Chang L, Schlitter AM, Cao J, et al. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy. Gut. 2018;67(1):146–56. https://doi.org/10.1136/gutjnl-2015-310913.

    Article  CAS  PubMed  Google Scholar 

  74. Takaori K. Current understanding of precursors to pancreatic cancer. J Hepato-Biliary-Pancreat Surg. 2007;14(3):217–23. https://doi.org/10.1007/s00534-006-1165-6.

    Article  Google Scholar 

  75. Chou A, Waddell N, Cowley MJ, Gill AJ, Chang DK, Patch A-M, et al. Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med. 2013;5(8):78. https://doi.org/10.1186/gm482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Komoto M, Nakata B, Amano R, Yamada N, Yashiro M, Ohira M, et al. HER2 overexpression correlates with survival after curative resection of pancreatic cancer. Cancer Sci. 2009;100(7):1243–7. https://doi.org/10.1111/j.1349-7006.2009.01176.x.

    Article  CAS  PubMed  Google Scholar 

  77. Aichler M, Seiler C, Tost M, Siveke J, Mazur PK, Da Silva-Buttkus P, et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol. 2012;226(5):723–34. https://doi.org/10.1002/path.3017.

    Article  CAS  PubMed  Google Scholar 

  78. Shi C, Hong SM, Lim P, Kamiyama H, Khan M, Anders RA, et al. KRAS2 mutations in human pancreatic acinar-ductal metaplastic lesions are limited to those with PanIN: implications for the human pancreatic cancer cell of origin. Mol Cancer Res. 2009;7(2):230–6. https://doi.org/10.1158/1541-7786.mcr-08-0206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murtaugh LC. Pathogenesis of pancreatic cancer. Toxicol Pathol. 2013;42(1):217–28. https://doi.org/10.1177/0192623313508250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50. https://doi.org/10.1016/s1535-6108(03)00309-x.

    Article  CAS  PubMed  Google Scholar 

  81. Löhr M, Klöppel G, Maisonneuve P, Lowenfels AB, Lüttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7(1):17–23. https://doi.org/10.1593/neo.04445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7(5):469–83. https://doi.org/10.1016/j.ccr.2005.04.023.

    Article  CAS  PubMed  Google Scholar 

  83. Cicenas J, Kvederaviciute K, Meskinyte I, Meskinyte-Kausiliene E, Skeberdyte A, Cicenas J. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 mutations in pancreatic cancer. Cancers. 2017;9(12):42. https://doi.org/10.3390/cancers9050042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol. 2000;156(6):1821–5. https://doi.org/10.1016/s0002-9440(10)65054-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol. 2002;161(5):1541–7. https://doi.org/10.1016/s0002-9440(10)64432-x.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lustig AJ, Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, Hamayasu H, Fujiwara M, et al. gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. PLoS One. 2015;10(2):e0117575. https://doi.org/10.1371/journal.pone.0117575.

    Article  CAS  Google Scholar 

  87. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell. 2003;4(2):111–20. https://doi.org/10.1016/s1535-6108(03)00191-0.

    Article  CAS  PubMed  Google Scholar 

  88. Aguirre AJ. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17(24):3112–26. https://doi.org/10.1101/gad.1158703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bardeesy N, Aguirre AJ, Chu GC, Cheng K, Lopez LV, Hezel AF, et al. Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci. 2006;103(15):5947–52. https://doi.org/10.1073/pnas.0601273103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 2006;20(22):3147–60. https://doi.org/10.1101/gad.1475506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, et al. KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11(3):229–43. https://doi.org/10.1016/j.ccr.2007.01.017.

    Article  CAS  PubMed  Google Scholar 

  92. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, et al. Inactivation of Smad4 accelerates KrasG12D-mediated pancreatic neoplasia. Cancer Res. 2007;67(17):8121–30. https://doi.org/10.1158/0008-5472.can-06-4167.

    Article  CAS  PubMed  Google Scholar 

  93. Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA. The differential impact of p16 INK4a or p19 ARF deficiency on cell growth and tumorigenesis. Oncogene. 2004;23(2):379–85. https://doi.org/10.1038/sj.onc.1207074.

    Article  CAS  PubMed  Google Scholar 

  94. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302. https://doi.org/10.1016/j.ccr.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  95. Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142(4):730–3.e9. https://doi.org/10.1053/j.gastro.2011.12.042.

    Article  CAS  PubMed  Google Scholar 

  96. Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, et al. SMAD4 and its role in pancreatic cancer. Tumor Biol. 2014;36(1):111–9. https://doi.org/10.1007/s13277-014-2883-z.

    Article  CAS  Google Scholar 

  97. Ahmed S, Bradshaw A-D, Gera S, Dewan M, Xu R. The TGF-β/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med. 2017;6(1):5. https://doi.org/10.3390/jcm6010005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, et al. A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell. 2017;32(4):460–73.e6. https://doi.org/10.1016/j.ccell.2017.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deb S, Lu L, Zeng J. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas. PLoS One. 2017;12(7):e0181532. https://doi.org/10.1371/journal.pone.0181532.

    Article  CAS  Google Scholar 

  100. Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, et al. p53 Mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Lett. 1993;69(3):151–60. https://doi.org/10.1016/0304-3835(93)90168-9.

    Article  CAS  PubMed  Google Scholar 

  101. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8(1):27–32. https://doi.org/10.1038/ng0994-27.

    Article  CAS  PubMed  Google Scholar 

  102. Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000;60(7):1835–9.

    CAS  PubMed  Google Scholar 

  103. Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):211–26. https://doi.org/10.1016/j.bpg.2005.10.002.

    Article  CAS  PubMed  Google Scholar 

  104. Wilentz RE, Argani P, Hruban RH. Loss of heterozygosity or intragenic mutation, which comes first? Am J Pathol. 2001;158(5):1561–3. https://doi.org/10.1016/s0002-9440(10)64109-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Clark SJ. Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet. 2007;16(R1):R88–95. https://doi.org/10.1093/hmg/ddm051.

    Article  CAS  PubMed  Google Scholar 

  106. Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, et al. Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol. 2009;3(5–6):425–38. https://doi.org/10.1016/j.molonc.2009.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Trans Meet Am Surg Assoc. 2003;121:117–26. https://doi.org/10.1097/01.sla.0000086659.49569.9e.

    Article  Google Scholar 

  108. Sato N, Fukushima N, Hruban RH, Goggins M. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol. 2007;21(3):238–44. https://doi.org/10.1038/modpathol.3800991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mishra NK, Guda C. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer. Oncotarget. 2017;8(17). https://doi.org/10.18632/oncotarget.15993.

  110. Klein WM, Hruban RH, Klein-Szanto AJP, Wilentz RE. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod Pathol. 2002;15(4):441–7. https://doi.org/10.1038/modpathol.3880544.

    Article  PubMed  Google Scholar 

  111. Karamitopoulou E, Zlobec I, Tornillo L, Carafa V, Schaffner T, Brunner T, et al. Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN). Pathology. 2010;42(3):229–34. https://doi.org/10.3109/00313021003631379.

    Article  PubMed  Google Scholar 

  112. Chung DC, Brown SB, Graeme-Cook F, Seto M, Warshaw AL, Jensen RT, et al. Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors. J Clin Endocrinol Metabol. 2000;85(11):4373–8. https://doi.org/10.1210/jcem.85.11.6937.

    Article  CAS  Google Scholar 

  113. Kornmann M, Ishiwata T, Itakura J, Tangvoranuntakul P, Beger HG, Korc M. Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival. Oncology. 1998;55(4):363–9. https://doi.org/10.1159/000011879.

    Article  CAS  PubMed  Google Scholar 

  114. Grutzmann R, Niedergethmann M, Pilarsky C, Kloppel G, Saeger HD. Intraductal papillary mucinous tumors of the pancreas: biology, diagnosis, and treatment. Oncologist. 2010;15(12):1294–309. https://doi.org/10.1634/theoncologist.2010-0151.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brugge WR, Lauwers GY, Sahani D, Fernandez-del Castillo C, Warshaw AL. Cystic neoplasms of the pancreas. N Engl J Med. 2004;351(12):1218–26. https://doi.org/10.1056/NEJMra031623.

    Article  CAS  PubMed  Google Scholar 

  116. Schönleben F, Qiu W, Bruckman KC, Ciau NT, Li X, Lauerman MH, et al. BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett. 2007;249(2):242–8. https://doi.org/10.1016/j.canlet.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  117. Yoshizawa K, Nagai H, Sakurai S, Hironaka M, Morinaga S, Saitoh K, et al. Clonality and K- ras mutation analyses of epithelia in intraductal papillary mucinous tumor and mucinous cystic tumor of the pancreas. Virchows Arch. 2002;441(5):437–43. https://doi.org/10.1007/s00428-002-0645-6.

    Article  CAS  PubMed  Google Scholar 

  118. Shibata W, Kinoshita H, Hikiba Y, Sato T, Ishii Y, Sue S et al. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-24375-2.

  119. Ohira G, Kimura K, Yamada N, Amano R, Nakata B, Doi Y, et al. MUC1 and HER2 might be associated with invasive phenotype of intraductal papillary mucinous neoplasm. Hepato-Gastroenterology. 2013;60(125):1067–72. https://doi.org/10.5754/hge121268.

    Article  PubMed  Google Scholar 

  120. Kuboki Y, Shimizu K, Hatori T, Yamamoto M, Shibata N, Shiratori K, et al. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2015;44(2):227–35. https://doi.org/10.1097/mpa.0000000000000253.

    Article  CAS  PubMed  Google Scholar 

  121. Semba S, Moriya T, Kimura W, Yamakawa M. Phosphorylated Akt/PKB controls cell growth and apoptosis in intraductal papillary-mucinous tumor and invasive ductal adenocarcinoma of the pancreas. Pancreas. 2003;26(3):250–7. https://doi.org/10.1097/00006676-200304000-00008.

    Article  CAS  PubMed  Google Scholar 

  122. House MG, Guo MZ, Iacobuzio-Donahue C, Herman JG. Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis. 2003;24(2):193–8. https://doi.org/10.1093/carcin/24.2.193.

    Article  CAS  PubMed  Google Scholar 

  123. Lubezky N, Ben-Haim M, Marmor S, Brazowsky E, Rechavi G, Klausner JM, et al. High-throughput mutation profiling in intraductal papillary mucinous neoplasm (IPMN). J Gastrointest Surg. 2011;15(3):503–11. https://doi.org/10.1007/s11605-010-1411-8.

    Article  PubMed  Google Scholar 

  124. Xiao S-Y. Intraductal papillary mucinous neoplasm of the pancreas: an update. Scientifica. 2012;2012:1–20. https://doi.org/10.6064/2012/893632.

    Article  Google Scholar 

  125. Sahin F, Maitra A, Argani P, Sato N, Maehara N, Montgomery E, et al. Loss of Stk11/Lkb1 expression in pancreatic and biliary neoplasms. Mod Pathol. 2003;16(7):686–91. https://doi.org/10.1097/01.mp.0000075645.97329.86.

    Article  PubMed  Google Scholar 

  126. Furukawa T. Molecular genetics of intraductal papillary–mucinous neoplasms of the pancreas. J Hepato-Biliary-Pancreat Surg. 2007;14(3):233–7. https://doi.org/10.1007/s00534-006-1167-4.

    Article  Google Scholar 

  127. Morales-Oyarvide V, Fong ZV, Fernández-del Castillo C, Warshaw AL. Intraductal papillary mucinous neoplasms of the pancreas: strategic considerations. Visc Med. 2017;33(6):466–76. https://doi.org/10.1159/000485014.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Schönleben F, Qiu W, Remotti HE, Hohenberger W, Su GH. PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbeck’s Arch Surg. 2008;393(3):289–96. https://doi.org/10.1007/s00423-008-0285-7.

    Article  Google Scholar 

  129. Schonleben F. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res. 2006;12(12):3851–5. https://doi.org/10.1158/1078-0432.ccr-06-0292.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66. https://doi.org/10.1126/scitranslmed.3002543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Furukawa T, Kuboki Y, Tanji E, Yoshida S, Hatori T, Yamamoto M, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1(1) https://doi.org/10.1038/srep00161.

  132. Dal Molin M, Matthaei H, Wu J, Blackford A, Debeljak M, Rezaee N, et al. Clinicopathological correlates of activating gnas mutations in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg Oncol. 2013;20(12):3802–8. https://doi.org/10.1245/s10434-013-3096-1.

    Article  Google Scholar 

  133. Crippa S, Salvia R, Warshaw AL, Domínguez I, Bassi C, Falconi M, et al. Mucinous cystic neoplasm of the pancreas is not an aggressive entity. Ann Surg. 2008;247(4):571–9. https://doi.org/10.1097/SLA.0b013e31811f4449.

    Article  PubMed  Google Scholar 

  134. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci. 2011;108(52):21188–93. https://doi.org/10.1073/pnas.1118046108.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fujikura K, Akita M, Abe-Suzuki S, Itoh T, Zen Y. Mucinous cystic neoplasms of the liver and pancreas: relationship between KRAS driver mutations and disease progression. Histopathology. 2017;71(4):591–600. https://doi.org/10.1111/his.13271.

    Article  PubMed  Google Scholar 

  136. Conner JR, Marino-EnrIquez A, Mino-Kenudson M, Garcia E, Pitman MB, Sholl LM, et al. Genomic characterization of low- and high-grade pancreatic mucinous cystic neoplasms reveals recurrent KRAS alterations in “high-risk” lesions. Pancreas. 2017;46(5):665–71. https://doi.org/10.1097/Mpa.0000000000000805.

    Article  CAS  PubMed  Google Scholar 

  137. Klein AP. Genetic susceptibility to pancreatic cancer. Mol Carcinog. 2012;51(1):14–24. https://doi.org/10.1002/mc.20855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol. 2014;20(31):10778. https://doi.org/10.3748/wjg.v20.i31.10778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ducreux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goéré D, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(suppl 5):v56–68. https://doi.org/10.1093/annonc/mdv295.

    Article  PubMed  Google Scholar 

  140. Bakkevold KE, Arnesjo B, Kambestad B. Carcinoma of the pancreas and papilla of Vater: presenting symptoms, signs, and diagnosis related to stage and tumour site. A prospective multicentre trial in 472 patients. Norwegian Pancreatic Cancer Trial. Scand J Gastroenterol. 1992;27(4):317–25.

    Article  CAS  PubMed  Google Scholar 

  141. Porta M, Fabregat X, Malats N, Guarner L, Carrato A, de Miguel A, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7(5):189–97.

    Article  PubMed  Google Scholar 

  142. Furukawa H, Okada S, Saisho H, Ariyama J, Karasawa E, Nakaizumi A, et al. Clinicopathologic features of small pancreatic adenocarcinoma. A collective study. Cancer. 1996;78(5):986–90.

    Article  CAS  PubMed  Google Scholar 

  143. Khorana AA, Fine RL. Pancreatic cancer and thromboembolic disease. Lancet Oncol. 2004;5(11):655–63. https://doi.org/10.1016/s1470-2045(04)01606-7.

    Article  CAS  PubMed  Google Scholar 

  144. Chari S, Leibson C, Rabe K, Ransom J, Deandrade M, Petersen G. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology. 2005;129(2):504–11. https://doi.org/10.1016/j.gastro.2005.05.007.

    Article  PubMed  Google Scholar 

  145. Aggarwal G, Kamada P, Chari ST. Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas. 2013;42(2):198–201. https://doi.org/10.1097/MPA.0b013e3182592c96.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pinzon R, Drewinko B, Trujillo JM, Guinee V, Giacco G. Pancreatic carcinoma and Trousseau’s syndrome: experience at a large cancer center. J Clin Oncol. 1986;4(4):509–14. https://doi.org/10.1200/jco.1986.4.4.509.

    Article  CAS  PubMed  Google Scholar 

  147. Chen L, Li Y, Gebre W, Lin JH. Myocardial and cerebral infarction due to nonbacterial thrombotic endocarditis as an initial presentation of pancreatic adenocarcinoma. Arch Pathol Lab Med. 2004;128(11):1307–8.

    Article  PubMed  Google Scholar 

  148. Galvan VG. Sister Mary Joseph’s nodule. Ann Intern Med. 1998;128(5):410.

    Article  CAS  PubMed  Google Scholar 

  149. Tempero MA, Uchida E, Takasaki H, Burnett DA, Steplewski Z, Pour PM. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 1987;47(20):5501–3.

    CAS  PubMed  Google Scholar 

  150. Fletcher JG, Wiersema MJ, Farrell MA, Fidler JL, Burgart LJ, Koyama T, et al. Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi–detector row CT. Radiology. 2003;229(1):81–90. https://doi.org/10.1148/radiol.2291020582.

    Article  PubMed  Google Scholar 

  151. Lu DS, Vedantham S, Krasny RM, Kadell B, Berger WL, Reber HA. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology. 1996;199(3):697–701. https://doi.org/10.1148/radiology.199.3.8637990.

    Article  CAS  PubMed  Google Scholar 

  152. Bipat S, Phoa SSKS, van Delden OM, Bossuyt PMM, Gouma DJ, Lameris JS, et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr. 2005;29(4):438–45.

    Article  PubMed  Google Scholar 

  153. Ngamruengphong S, Swanson KM, Shah ND, Wallace MB. Preoperative endoscopic ultrasound-guided fine needle aspiration does not impair survival of patients with resected pancreatic cancer. Gut. 2015;64(7):1105–10. https://doi.org/10.1136/gutjnl-2014-307475.

    Article  PubMed  Google Scholar 

  154. Nawaz H, Fan CY, Kloke J, Khalid A, McGrath K, Landsittel D, et al. Performance characteristics of endoscopic ultrasound in the staging of pancreatic cancer: a meta-analysis. JOP. 2013;14(5):484–97.

    PubMed  Google Scholar 

  155. Callery MP, Chang KJ, Fishman EK, Talamonti MS, William Traverso L, Linehan DC. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol. 2009;16(7):1727–33. https://doi.org/10.1245/s10434-009-0408-6.

    Article  PubMed  Google Scholar 

  156. Bockhorn M, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery. 2014;155(6):977–88. https://doi.org/10.1016/j.surg.2014.02.001.

    Article  PubMed  Google Scholar 

  157. Wong JC, Lu DSK. Staging of pancreatic adenocarcinoma by imaging studies. Clin Gastroenterol Hepatol. 2008;6(12):1301–8. https://doi.org/10.1016/j.cgh.2008.09.014.

    Article  PubMed  Google Scholar 

  158. Ricci C, Casadei R, Taffurelli G, Toscano F, Pacilio CA, Bogoni S, et al. Laparoscopic versus open distal pancreatectomy for ductal adenocarcinoma: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19(4):770–81. https://doi.org/10.1007/s11605-014-2721-z.

    Article  PubMed  Google Scholar 

  159. Abrams RA, Lowy AM, O’Reilly EM, Wolff RA, Picozzi VJ, Pisters PWT. Combined modality treatment of resectable and borderline resectable pancreas cancer: expert consensus statement. Ann Surg Oncol. 2009;16(7):1751–6. https://doi.org/10.1245/s10434-009-0413-9.

    Article  PubMed  Google Scholar 

  160. Delpero JR, Bachellier P, Regenet N, Le Treut YP, Paye F, Carrere N, et al. Pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: a French multicentre prospective evaluation of resection margins in 150 evaluable specimens. HPB. 2014;16(1):20–33. https://doi.org/10.1111/hpb.12061.

    Article  PubMed  Google Scholar 

  161. Mitchem JB, Hamilton N, Gao F, Hawkins WG, Linehan DC, Strasberg SM. Long-term results of resection of adenocarcinoma of the body and tail of the pancreas using radical antegrade modular pancreatosplenectomy procedure. J Am Coll Surg. 2012;214(1):46–52. https://doi.org/10.1016/j.jamcollsurg.2011.10.008.

    Article  PubMed  Google Scholar 

  162. Tol JAMG, Gouma DJ, Bassi C, Dervenis C, Montorsi M, Adham M, et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: a consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery. 2014;156(3):591–600. https://doi.org/10.1016/j.surg.2014.06.016.

    Article  PubMed  Google Scholar 

  163. van der Gaag NA, Rauws EAJ, van Eijck CHJ, Bruno MJ, van der Harst E, Kubben FJGM, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med. 2010;362(2):129–37. https://doi.org/10.1056/NEJMoa0903230.

    Article  PubMed  Google Scholar 

  164. Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001;358(9293):1576–85.

    Article  CAS  PubMed  Google Scholar 

  165. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer. JAMA. 2007;297(3):267. https://doi.org/10.1001/jama.297.3.267.

    Article  CAS  PubMed  Google Scholar 

  166. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection. JAMA. 2010;304(10):1073. https://doi.org/10.1001/jama.2010.1275.

    Article  CAS  PubMed  Google Scholar 

  167. Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24. https://doi.org/10.1016/S0140-6736(16)32409-6.

    Article  CAS  PubMed  Google Scholar 

  168. Tempero MA, Cardin DB, Goldstein D, O’Reilly EM, Philip PA, Riess H, et al. APACT: phase III randomized trial of adjuvant treatment with nab-paclitaxel (nab-P) plus gemcitabine (Gem) versus Gem alone in patients (pts) with resected pancreatic cancer (PC). J Clin Oncol. 2016;34(4_suppl):TPS473–TPS. https://doi.org/10.1200/jco.2016.34.4_suppl.tps473.

    Article  Google Scholar 

  169. Denost Q, Laurent C, Adam JP, Capdepont M, Vendrely V, Collet D, et al. Pancreaticoduodenectomy following chemoradiotherapy for locally advanced adenocarcinoma of the pancreatic head. HPB. 2013;15(9):716–23. https://doi.org/10.1111/hpb.12039.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Landry J, Catalano PJ, Staley C, Harris W, Hoffman J, Talamonti M, et al. Randomized phase II study of gemcitabine plus radiotherapy versus gemcitabine, 5-fluorouracil, and cisplatin followed by radiotherapy and 5-fluorouracil for patients with locally advanced, potentially resectable pancreatic adenocarcinoma. J Surg Oncol. 2010;101(7):587–92. https://doi.org/10.1002/jso.21527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Seiler C, Gillen S, Schuster T, Meyer zum Büschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):e1000267. https://doi.org/10.1371/journal.pmed.1000267.

    Article  CAS  Google Scholar 

  172. Hurt CN, Mukherjee S, Bridgewater J, Falk S, Crosby T, McDonald A, et al. Health-related quality of life in SCALOP, a randomized phase 2 trial comparing chemoradiation therapy regimens in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2015;93(4):810–8. https://doi.org/10.1016/j.ijrobp.2015.08.026.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dholakia AS, Hacker-Prietz A, Wild AT, Raman SP, Wood LD, Huang P, et al. Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiographic appearance of tumor–vessel relationships. J Radiat Oncol. 2013;2(4):413–25. https://doi.org/10.1007/s13566-013-0115-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Katz MHG, Fleming JB, Bhosale P, Varadhachary G, Lee JE, Wolff R, et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer. 2012;118(23):5749–56. https://doi.org/10.1002/cncr.27636.

    Article  PubMed  Google Scholar 

  175. Shinchi H, Takao S, Noma H, Matsuo Y, Mataki Y, Mori S, et al. Length and quality of survival after external-beam radiotherapy with concurrent continuous 5-fluorouracil infusion for locally unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2002;53(1):146–50.

    Article  CAS  PubMed  Google Scholar 

  176. Sultana A, Tudur Smith C, Cunningham D, Starling N, Tait D, Neoptolemos JP, et al. Systematic review, including meta-analyses, on the management of locally advanced pancreatic cancer using radiation/combined modality therapy. Br J Cancer. 2007;96(8):1183–90. https://doi.org/10.1038/sj.bjc.6603719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Loehrer PJ, Feng Y, Cardenes H, Wagner L, Brell JM, Cella D, et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2011;29(31):4105–12. https://doi.org/10.1200/jco.2011.34.8904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hammel P, Huguet F, van Laethem J-L, Goldstein D, Glimelius B, Artru P, et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib. JAMA. 2016;315(17):1844. https://doi.org/10.1001/jama.2016.4324.

    Article  CAS  PubMed  Google Scholar 

  179. Ripamonti CI, Santini D, Maranzano E, Berti M, Roila F. Management of cancer pain: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(suppl 7):vii139–vii54. https://doi.org/10.1093/annonc/mds233.

    Article  PubMed  Google Scholar 

  180. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403–13. https://doi.org/10.1200/jco.1997.15.6.2403.

    Article  CAS  PubMed  Google Scholar 

  181. Ciliberto D, Botta C, Correale P, Rossi M, Caraglia M, Tassone P, et al. Role of gemcitabine-based combination therapy in the management of advanced pancreatic cancer: a meta-analysis of randomised trials. Eur J Cancer. 2013;49(3):593–603. https://doi.org/10.1016/j.ejca.2012.08.019.

    Article  CAS  PubMed  Google Scholar 

  182. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/NEJMoa1011923.

    Article  CAS  PubMed  Google Scholar 

  183. Saltz LB, Bach PB. Albumin-bound paclitaxel plus gemcitabine in pancreatic cancer. N Engl J Med. 2014;370(5):478.

    Article  CAS  PubMed  Google Scholar 

  184. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase iii trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6. https://doi.org/10.1200/jco.2006.07.9525.

    Article  CAS  PubMed  Google Scholar 

  185. Citterio C, Baccini M, Orlandi E, Di Nunzio C, Cavanna L. Second-line chemotherapy for the treatment of metastatic pancreatic cancer after first-line gemcitabine-based chemotherapy: a network meta-analysis. Oncotarget. 2018;9(51):29801–9. https://doi.org/10.18632/oncotarget.25639.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545–57. https://doi.org/10.1016/s0140-6736(15)00986-1.

    Article  CAS  PubMed  Google Scholar 

  187. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019; https://doi.org/10.1056/NEJMoa1903387.

  189. House MG, Choti MA. Palliative therapy for pancreatic/biliary cancer. Surg Clin N Am. 2005;85(2):359–71. https://doi.org/10.1016/j.suc.2005.01.022.

    Article  PubMed  Google Scholar 

  190. Stark A, Hines OJ. Endoscopic and operative palliation strategies for pancreatic ductal adenocarcinoma. Semin Oncol. 2015;42(1):163–76. https://doi.org/10.1053/j.seminoncol.2014.12.014.

    Article  PubMed  Google Scholar 

  191. Domínguez-Muñoz JE. Pancreatic exocrine insufficiency: Diagnosis and treatment. J Gastroenterol Hepatol. 2011;26:12–6. https://doi.org/10.1111/j.1440-1746.2010.06600.x.

    Article  PubMed  Google Scholar 

  192. Lemaire E, O’Toole D, Sauvanet A, Hammel P, Belghiti J, Ruszniewski P. Functional and morphological changes in the pancreatic remnant following pancreaticoduodenectomy with pancreaticogastric anastomosis. Br J Surg. 2000;87(4):434–8. https://doi.org/10.1046/j.1365-2168.2000.01388.x.

    Article  CAS  PubMed  Google Scholar 

  193. Witkowski ER, Smith JK, Ragulin-Coyne E, Ng S-C, Shah SA, Tseng JF. Is it worth looking? Abdominal imaging after pancreatic cancer resection: a national study. J Gastrointest Surg. 2011;16(1):121–8. https://doi.org/10.1007/s11605-011-1699-z.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fanale, D. et al. (2021). Cancer of Exocrine Pancreas. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics