Skip to main content

Nutrition and Cancer

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

  • 3305 Accesses

Abstract

The last decades have seen the identification of a number of drugs targeting oncogene pathways, therefore contributing to moving the cancer therapy field toward precision medicine. However, existing and acquired resistance to targeted therapies represent major obstacles against their long-term effectiveness. In fact, the initial efficacy of targeted therapies is often limited to a portion of the patient population and is frequently followed by the acquisition of drug-resistant disease.

Molecular profiling of the resistant tissues can shed light on how cancer cells are rewiring to acquire resistance and lead to the identification of secondary targets, although even combination therapy rarely results in cancer eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  2. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342(6155):1242454. https://doi.org/10.1126/science.1242454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. https://doi.org/10.1016/j.molcel.2010.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2009;29(5):625–34. https://doi.org/10.1038/onc.2009.441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fanale D, Bazan V, Corsini LR, Caruso S, Insalaco L, Castiglia M, et al. HIF-1 is involved in the negative regulation of AURKA expression in breast cancer cell lines under hypoxic conditions. Breast Cancer Res Treat. 2013;140(3):505–17. https://doi.org/10.1007/s10549-013-2649-0.

    Article  CAS  PubMed  Google Scholar 

  6. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62. https://doi.org/10.1002/jcp.20166.

    Article  CAS  PubMed  Google Scholar 

  7. Murakami T, Nishiyama T, Shirotani T, Shinohara Y, Kan M, Ishii K, et al. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem. 1992;267(13):9300–6.

    Article  CAS  PubMed  Google Scholar 

  8. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34. https://doi.org/10.1038/nrc.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hao Y, Samuels Y, Li Q, Krokowski D, Guan B-J, Wang C, et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun. 2016;7:11971. https://doi.org/10.1038/ncomms11971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X-L, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37. https://doi.org/10.1016/j.cmet.2012.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe Glenn C, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302–15. https://doi.org/10.1016/j.ccr.2013.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ying H, Kimmelman Alec C, Lyssiotis Costas A, Hua S, Chu Gerald C, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70. https://doi.org/10.1016/j.cell.2012.01.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5. https://doi.org/10.1038/nature12040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64(11):3892–9. https://doi.org/10.1158/0008-5472.can-03-2904.

    Article  CAS  PubMed  Google Scholar 

  15. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105(48):18782–7. https://doi.org/10.1073/pnas.0810199105.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen Z, Wang Y, Warden C, Chen S. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells. J Steroid Biochem Mol Biol. 2015;149:118–27. https://doi.org/10.1016/j.jsbmb.2015.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 2010;107(16):7461–6. https://doi.org/10.1073/pnas.1002459107.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Velletri T, Romeo F, Tucci P, Peschiaroli A, Annicchiarico-Petruzzelli M, Niklison-Chirou M, et al. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle. 2014;12(22):3564–73. https://doi.org/10.4161/cc.26771.

    Article  CAS  Google Scholar 

  19. Arianna G, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert E, Levine AJ, et al. p63 regulates glutaminase 2 expression. Cell Cycle. 2014;12(9):1395–405. https://doi.org/10.4161/cc.24478.

    Article  CAS  Google Scholar 

  20. Zhan H, Ciano K, Dong K, Zucker S. Targeting glutamine metabolism in myeloproliferative neoplasms. Blood Cell Mol Dis. 2015;55(3):241–7. https://doi.org/10.1016/j.bcmd.2015.07.007.

    Article  CAS  Google Scholar 

  21. Csibi A, Lee G, Yoon S-O, Tong H, Ilter D, Elia I, et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol. 2014;24(19):2274–80. https://doi.org/10.1016/j.cub.2014.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178(1):93–105. https://doi.org/10.1083/jcb.200703099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104(49):19345–50. https://doi.org/10.1073/pnas.0709747104.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5. https://doi.org/10.1038/nature07823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuneva Mariia O, Fan Teresa WM, Allen Thaddeus D, Higashi Richard M, Ferraris Dana V, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–70. https://doi.org/10.1016/j.cmet.2011.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010;107(19):8788–93. https://doi.org/10.1073/pnas.1003428107.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blagosklonny MV, Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive S-phase rescued by deoxyribonucleotides in K-Ras transformed fibroblasts. PLoS One. 2009;4(3):e4715. https://doi.org/10.1371/journal.pone.0004715.

    Article  CAS  Google Scholar 

  28. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2014;7(1):523. https://doi.org/10.1038/msb.2011.56.

    Article  CAS  Google Scholar 

  29. Brunelli L, Caiola E, Marabese M, Broggini M, Pastorelli R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget. 2014;5(13):4722–31. https://doi.org/10.18632/oncotarget.1958.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gameiro Paulo A, Yang J, Metelo Ana M, Pérez-Carro R, Baker R, Wang Z, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013;17(3):372–85. https://doi.org/10.1016/j.cmet.2013.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of -ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA. 2011;108(49):19611–6. https://doi.org/10.1073/pnas.1117773108.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481(7381):380–4. https://doi.org/10.1038/nature10602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem. 2014;115(3):498–509. https://doi.org/10.1002/jcb.24684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA. 2010;107(16):7455–60. https://doi.org/10.1073/pnas.1001006107.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy Andrew J, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell. 2006;126(5):941–54. https://doi.org/10.1016/j.cell.2006.06.057.

    Article  CAS  PubMed  Google Scholar 

  36. Csibi A, Fendt S-M, Li C, Poulogiannis G, Choo AY, Chapski DJ, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153(4):840–54. https://doi.org/10.1016/j.cell.2013.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coloff Jonathan L, Murphy JP, Braun Craig R, Harris Isaac S, Shelton Laura M, Kami K, et al. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab. 2016;23(5):867–80. https://doi.org/10.1016/j.cmet.2016.03.016.

    Article  CAS  PubMed  Google Scholar 

  38. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79. https://doi.org/10.1016/j.ccr.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  39. Lee SY, Jeon HM, Ju MK, Jeong EK, Kim CH, Park HG, et al. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget. 2016;7(7):7925–39. https://doi.org/10.18632/oncotarget.6879.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger Jennifer F, et al. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell. 2013;152(3):599–611. https://doi.org/10.1016/j.cell.2012.12.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Cao I, Song Min S, Hobbs Robin M, Laurent G, Giorgi C, de Boer Vincent CJ, et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012;149(1):49–62. https://doi.org/10.1016/j.cell.2012.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG, et al. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene. 2013;33(5):556–66. https://doi.org/10.1038/onc.2012.635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990;1(5):228–37. https://doi.org/10.1016/0955-2863(90)90070-2.

    Article  CAS  PubMed  Google Scholar 

  44. Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://doi.org/10.1016/j.ctrv.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  45. Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, Daisak JI, et al. Arginase 2 suppresses renal carcinoma progression via biosynthetic cofactor pyridoxal phosphate depletion and increased polyamine toxicity. Cell Metab. 2018;27(6):1263–80.e6. https://doi.org/10.1016/j.cmet.2018.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeBerardinis RJ. Serine metabolism: some tumors take the road less traveled. Cell Metab. 2011;14(3):285–6. https://doi.org/10.1016/j.cmet.2011.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2012;493(7433):542–6. https://doi.org/10.1038/nature11743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gravel SP, Hulea L, Toban N, Birman E, Blouin MJ, Zakikhani M, et al. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 2014;74(24):7521–33. https://doi.org/10.1158/0008-5472.can-14-2643-t.

    Article  CAS  PubMed  Google Scholar 

  49. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77. https://doi.org/10.1038/nrc2222.

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp Cell Res. 2002;279(1):80–90. https://doi.org/10.1006/excr.2002.5600.

    Article  CAS  PubMed  Google Scholar 

  51. Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA. 2004;101(29):10715–20. https://doi.org/10.1073/pnas.0403390101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Visca P, Sebastiani V, Botti C, Diodoro MG, Lasagni RP, Romagnoli F, et al. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res. 2004;24(6):4169–73.

    CAS  PubMed  Google Scholar 

  53. Kapur P, Rakheja D, Roy LC, Hoang MP. Fatty acid synthase expression in cutaneous melanocytic neoplasms. Mod Pathol. 2005;18(8):1107–12. https://doi.org/10.1038/modpathol.3800395.

    Article  CAS  PubMed  Google Scholar 

  54. Cangemi A, Fanale D, Rinaldi G, Bazan V, Galvano A, Perez A, et al. Dietary restriction: could it be considered as speed bump on tumor progression road? Tumor Biol. 2016;37(6):7109–18. https://doi.org/10.1007/s13277-016-5044-8.

    Article  CAS  Google Scholar 

  55. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2018;560:499–503. https://doi.org/10.1038/s41586-018-0343-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017;34(8):132. https://doi.org/10.1007/s12032-017-0991-5.

    Article  PubMed  Google Scholar 

  57. Pizzo SV, Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, et al. Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-Nu mouse model. PLoS One. 2015;10(6):e0129802. https://doi.org/10.1371/journal.pone.0129802.

    Article  CAS  Google Scholar 

  58. Aminzadeh-Gohari S, Feichtinger RG, Vidali S, Locker F, Rutherford T, O’Donnel M, et al. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model. Oncotarget. 2017;8(39):64728–44. https://doi.org/10.18632/oncotarget.20041.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Weber DD, Aminazdeh-Gohari S, Kofler B. Ketogenic diet in cancer therapy. Aging. 2018;10(2):164–5. https://doi.org/10.18632/aging.101382.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vidali S, Aminzadeh-Gohari S, Feichtinger RG, Vatrinet R, Koller A, Locker F, et al. The ketogenic diet is not feasible as a therapy in a CD-1 nu/nu mouse model of renal cell carcinoma with features of Stauffer’s syndrome. Oncotarget. 2017;8(34):57201–15. https://doi.org/10.18632/oncotarget.19306.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liśkiewicz AD, Kasprowska D, Wojakowska A, Polański K, Lewin–Kowalik J, Kotulska K, et al. Long-term high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci Rep. 2016;6(1):21807. https://doi.org/10.1038/srep21807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xia S, Lin R, Jin L, Zhao L, Kang H-B, Pan Y, et al. Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab. 2017;25(2):358–73. https://doi.org/10.1016/j.cmet.2016.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan-Shalaby JL, Carrick J, Edinger K, Genovese D, Liman AD, Passero VA, et al. Modified Atkins diet in advanced malignancies – final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab. 2016;13(1):52. https://doi.org/10.1186/s12986-016-0113-y.

  64. Felig P, Owen OE, Wahren J, Cahill GF. Amino acid metabolism during prolonged starvation. J Clin Investig. 1969;48(3):584–94. https://doi.org/10.1172/jci106017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buono R, Longo VD. Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 2018;29(4):271–80. https://doi.org/10.1016/j.tem.2018.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://doi.org/10.1158/0008-5472.can-09-3228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging. 2009;1(12):988–1007. https://doi.org/10.18632/aging.100114.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Caffa I, D’Agostino V, Damonte P, Soncini D, Cea M, Monacelli F, et al. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition. Oncotarget. 2015;6(14):11820–32. https://doi.org/10.18632/oncotarget.3689.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, et al. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget. 2015;6(14):11806–19. https://doi.org/10.18632/oncotarget.3688.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Di Biase S, Lee C, Brandhorst S, Manes B, Buono R, Cheng C-W, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–46. https://doi.org/10.1016/j.ccell.2016.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Obrist F, Michels J, Durand S, Chery A, Pol J, Levesque S, et al. Metabolic vulnerability of cisplatin-resistant cancers. EMBO J. 2018;37(14):e98597. https://doi.org/10.15252/embj.201798597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fanale, D., Incorvaia, L., Russo, A., Longo, V.D., Mirisola, M.G. (2021). Nutrition and Cancer. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics