Skip to main content

Treatment Toxicity

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

Abstract

The landscape of cancer treatment has dramatically changed over the last decades due to the introduction of novel classes of drugs in the armamentarium against cancer, changing the clinical management of cancer patients. Consequently, further toxicity issues have emerged. The incidence and severity of these toxicities have a great variability.

This chapter summarises the pathogenesis and clinical management strategies of side effects of chemotherapy and targeted and immunotherapy agents currently approved and available for clinical use to predict the onset of these toxicities, recognise the peculiar symptoms and signs and optimise patient care and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroschinsky F, Stölzel F, von Bonin S, et al. Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89.

    Google Scholar 

  2. Lee W, Lockhart AC, Kim RB, Rothenberg ML. Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. Oncologist. 2005;10(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  3. Russo A, Incorvaia L, Malapelle U, et al. The tumor-agnostic treatment for patients with solid tumors: a position paper on behalf of the AIOM-SIAPEC/IAP-SIBIOC-SIF italian scientific societies [published online ahead of print, 2021 Aug 6]. Crit Rev Oncol Hematol. 2021;103436. https://doi.org/10.1016/j.critrevonc.2021.103436.

  4. Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.

    Article  PubMed  Google Scholar 

  5. Lyman GH, Lyman CH, Agboola O. Risk models for predicting chemotherapy-induced neutropenia. Oncologist. 2005;10(6):427–37.

    Article  PubMed  Google Scholar 

  6. Crawford J, Becker PS, Armitage JO, et al. Myeloid growth factors, version 2.2017. J Natl Compr Cancer Netw. 2017;15(12):1520–154.

    Article  CAS  Google Scholar 

  7. Baugh CW, Wang TJ, Caterino JM, et al. Emergency department management of patients with febrile neutropenia: guideline concordant or overly aggressive? Acad Emerg Med. 2017;24(1):83–91.

    Article  PubMed  Google Scholar 

  8. Klastersky J, de Naurois J, Rolston K, et al. ESMO Guidelines Committee. Management of febrile neutropaenia: ESMO clinical practice guidelines. Ann Oncol. 2016;27(suppl 5):v111–8.

    Google Scholar 

  9. Caselli D, Cesaro S, Aricò M. Biosimilars in the management of neutropenia: focus on filgrastim. Biologics. 2016;10:17–22.

    PubMed  PubMed Central  Google Scholar 

  10. Expert Committee on Biological Standardization. Guidelines on evaluation of Similar Biotherapeutic Products (SBPs) [Internet]. Geneva: World Health Organization; 2009.

    Google Scholar 

  11. NCCN Clinical Practice Guidelines in Oncology. Prevention and Treatment of Cancer-Related Infections, version 2. 2017. National Cancer Comprehensive Network website. Published February 21, 2017. Accessed March 27, 2018.

    Google Scholar 

  12. Aapro M, Beguin Y, Bokemeyer C, ESMO Guidelines Committee. Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2018;29(Suppl_4):iv96–iv110.

    Article  CAS  PubMed  Google Scholar 

  13. Aapro M, Krendyukov A, Schiestl M, Gascón P. Epoetin biosimilars in the treatment of chemotherapy-induced anemia: 10 years’ experience gained. BioDrugs. 2018;32(2):129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Chuai Y, Nie W, et al. Thrombopoietin receptor agonists for prevention and treatment of chemotherapyinduced thrombocytopenia in patientswith solid tumours. Cochrane Database Syst Rev. 2017;(11):CD012035.

    Google Scholar 

  15. Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park). 2015;29(4):282–94.

    PubMed  Google Scholar 

  16. Barber NA, Afzal W, Akhtari M. Hematologic toxicities of small molecule tyrosine kinase inhibitors. Target Oncologia. 2011;6(4):203–15.

    Article  Google Scholar 

  17. Spring LM, Zangardi ML, Moy B, Bardia A. Clinical management of potential toxicities and drug interactions related to cyclin dependent kinase 4/6 inhibitors in breast cancer: practical considerations and recommendations. Oncologist. 2017;22(9):1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar V, Chaudhary N, Garg M, et al. Current diagnosis and management of Immune Related Adverse Events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol. 2017;8:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Postow M, Wolchok J. Toxicities associated with checkpoint inhibitor immunotherapy. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. Accessed on 30 March, 2018.

    Google Scholar 

  20. Fabbrocini G, Cameli N, Romano MC, et al. Chemotherapy and skin reactions. J Exp Clin Cancer Res. 2012;31:50.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rubio-Gonzalez B, Juhász M, Fortman J, Mesinkovska NA. Pathogenesis and treatment options for chemotherapy induced alopecia: a systematic review. Int J Dermatol. 2018;57(12):1417–24.

    Article  PubMed  Google Scholar 

  22. Sanmartín O. Skin manifestations of targeted antineoplastic therapy. Curr Probl Dermatol. 2018;53:93–104.

    Article  PubMed  Google Scholar 

  23. Abdullah SE, Haigentz M Jr, Piperdi B. Dermatologic toxicities from monoclonal antibodies and tyrosine kinase inhibitors against EGFR: pathophysiology and management. Chemother Res Pract. 2012;2012:351210.

    PubMed  PubMed Central  Google Scholar 

  24. Gangemi S, Franchina T, Minciullo PL, et al. IL-33/IL-31 axis: a new pathological mechanisms for EGFR tyrosine kinase inhibitors-associated skin toxicity. J Cell Biochem. 2013;114(12):2673–6.

    Article  CAS  PubMed  Google Scholar 

  25. Welsh SJ, Corrie PG. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol. 2015;7(2):122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am J Clin Dermatol. 2017.

    Google Scholar 

  27. Berardi R, Caramanti M, Savini A, et al. State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: a literature review. Crit Rev Oncol Hematol. 2013;88(1):75–86.

    Article  PubMed  Google Scholar 

  28. Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015;12(12):718–31.

    Article  CAS  PubMed  Google Scholar 

  29. Novo G, Di Lisi D, Manganaro R, et al. Arterial stiffness: effects of anticancer drugs used for breast cancer women. Frontiers in Physiology. 2021;12:661464. https://doi.org/10.3389/fphys.2021.661464. PMID: 34054578; PMCID: PMC8161497.

  30. Hong RA, Iimura T, Sumida KN, Eager RM. Cardio-oncology/onco-cardiology. Clin Cardiol. 2010;33(12):733–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Curigliano G, Cardinale D, Suter T, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.

    Article  PubMed  Google Scholar 

  32. Jones LW, Haykowsky MJ, Swartz JJ, et al. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50(15):1435–41.

    Article  PubMed  Google Scholar 

  33. Anderson TJ, Grégoire J, Hegele RA, et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29(2):151–67.

    Article  PubMed  Google Scholar 

  34. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2015;48(4–5):223–35.

    Article  CAS  PubMed  Google Scholar 

  35. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    Article  CAS  PubMed  Google Scholar 

  36. Mokuyasu S, Suzuki Y, Kawahara E, et al. High-sensitivity cardiac troponin I detection for 2 types of drug-induced cardiotoxicity in patients with breast cancer. Breast Cancer. 2015;22(6):563–9.

    Article  PubMed  Google Scholar 

  37. Onitilo AA, Engel JM, Stankowski RV, et al. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: a pilot study. Breast Cancer Res Treat. 2012;134(1):291–8.

    Article  CAS  PubMed  Google Scholar 

  38. Shelburne N, Adhikari B, Brell J, et al. Cancer treatment-related cardiotoxicity: current state of knowledge and future research priorities. J Natl Cancer Inst. 2014;106(9):dju232.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15(4):1318–32.

    Article  CAS  PubMed  Google Scholar 

  40. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34(15):1102–11.

    Article  CAS  PubMed  Google Scholar 

  41. Martín M, Esteva FJ, Alba E, et al. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist. 2009;14(1):1–11.

    Article  PubMed  Google Scholar 

  42. Suter TM, Procter M, van Veldhuisen DJ, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol. 2007;25(25):3859–65.

    Article  CAS  PubMed  Google Scholar 

  43. Howlett JG, Chan M, Ezekowitz JA, et al. The Canadian Cardiovascular Society heart failure companion: bridging guidelines to your practice. Can J Cardiol. 2016;32(3):296–310.

    Article  PubMed  Google Scholar 

  44. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  PubMed  Google Scholar 

  45. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensinconverting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  46. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and metaanalysis. Eur J Cancer. 2013;49:2900–9.

    Article  CAS  PubMed  Google Scholar 

  47. Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.

    Article  CAS  PubMed  Google Scholar 

  48. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schneeweiss A, Chia S, Hickish T, et al. Long-term efficacy analysis of the randomised, phase II TRYPHAENA cardiac safety study: evaluating pertuzumab and trastuzumab plus standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer. Eur J Cancer. 2018;89:27–35.

    Article  CAS  PubMed  Google Scholar 

  50. Swain SM, Ewer MS, Cortés J, et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist. 2013;18:257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krop IE, Kim S-B, González-Martín A, et al. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:689–99.

    Article  CAS  PubMed  Google Scholar 

  52. Perez EA, Barrios C, Eiermann W, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  53. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Awada A, Colomer R, Inoue K, et al. Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NEfERT-T randomized clinical trial. JAMA Oncol. 2016;2:1557–64.

    Article  PubMed  Google Scholar 

  55. Cameron D, Casey M, Oliva C, et al. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15:924–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan A, Delaloge S, Holmes FA, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:367–77.

    Article  CAS  PubMed  Google Scholar 

  57. de Azambuja E, Holmes AP, Piccart-Gebhart M, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15:1137–46.

    Article  PubMed  Google Scholar 

  58. Harbeck N, Huang C-S, Hurvitz S, et al. Afatinib plus vinorelbine versus trastuzumab plus vinorelbine in patients with HER2-overexpressing metastatic breast cancer who had progressed on one previous trastuzumab treatment (LUX-Breast 1): an open-label, randomised, phase 3 trial. Lancet Oncol. 2016;17:357–66.

    Article  CAS  PubMed  Google Scholar 

  59. Piccart-Gebhart M, Holmes E, Baselga J, et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol. 2016;34(10):1034–42.

    Article  CAS  PubMed  Google Scholar 

  60. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  PubMed  Google Scholar 

  61. Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6:1080–90.

    Article  PubMed  Google Scholar 

  62. Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines. Eur Heart J. 2016;37:2768–801.

    Article  PubMed  Google Scholar 

  63. Abdel-Qadir H, Amir E, Thavendiranathan P. Prevention, detection, and management of chemotherapy-related cardiac dysfunction. Can J Cardiol. 2016;32:891–9.

    Article  PubMed  Google Scholar 

  64. Negishi K, Negishi T, Kurosawa K, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8:489–92.

    Article  PubMed  Google Scholar 

  65. Thavendiranathan P, Poulin F, Lim KD, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  PubMed  Google Scholar 

  66. Small HY, Montezano AC, Rios FJ, et al. Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol. 2014;30:534–43.

    Article  PubMed  Google Scholar 

  67. Scartozzi M, Galizia E, Chiorrini S, et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol. 2009;20:227–30.

    Article  CAS  PubMed  Google Scholar 

  68. Maurea N, Spallarossa P, Cadeddu C, et al. A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology. J Cardiovasc Med (Hagerstown). 2016;17(Suppl 1):S93–S104.

    Article  CAS  PubMed  Google Scholar 

  69. Steingart RM, Bakris GL, Chen HX, et al. Management of cardiac toxicity in patients receiving vascular endothelial growth factor signaling pathway inhibitors. Am Heart J. 2012;163:156–63.

    Article  CAS  PubMed  Google Scholar 

  70. Brinda B, Viganego F, Vo T, et al. Anti-VEGF-induced hypertension: a review of pathophysiology and treatment options. Curr Treat Options Cardiovasc Med. 2016;18:33.

    Article  PubMed  Google Scholar 

  71. Rowinsky EK, McGuire WP, Guarnieri T, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9:1704–12.

    Article  CAS  PubMed  Google Scholar 

  72. Cubeddu LX. Iatrogenic QT abnormalities and fatal arrhythmias: mechanisms and clinical significance. Curr Cardiol Rev. 2009;5:166–76.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25:3362–71.

    Article  CAS  PubMed  Google Scholar 

  74. Kim PY, Ewer MS. Chemotherapy and QT prolongation: overview with clinical perspective. Curr Treat Options Cardiovasc Med. 2014;16:303.

    Article  PubMed  Google Scholar 

  75. Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13:473–86.

    Article  CAS  PubMed  Google Scholar 

  76. Voskens CJ, Goldinger SM, Loquai C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013;8:e53745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yun S, Vincelette ND, Mansour I, et al. Late onset ipilimumab induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep Oncol Med. 2015;2015:1–5.

    Google Scholar 

  78. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  79. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.

    Article  CAS  PubMed  Google Scholar 

  80. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang DY, Okoye GD, Neilan TG, et al. Cardiovascular toxicities associated with cancer immunotherapies. Curr Cardiol Rep. 2017;19(3):21.

    Article  CAS  PubMed  Google Scholar 

  82. Khorana AA. Malignancy, thrombosis and trousseau: the case for an eponym. J Thromb Haemost. 2003;1(12):2463–5.

    Article  CAS  PubMed  Google Scholar 

  83. Khorana AA, Francis CW, Culakova E, et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5:632–4.

    Article  CAS  PubMed  Google Scholar 

  84. Nalluri SR, Chu D, Keresztes R, et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a metaanalysis. JAMA. 2008;300:2277–85.

    Article  CAS  PubMed  Google Scholar 

  85. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9:e100127520.

    Article  Google Scholar 

  86. Lyman GH, Bohlke K, Khorana AA, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: american society of clinical oncology clinical practice guideline update 2014. J Clin Oncol. 2015;33(6):654–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levine MN. New antithrombotic drugs: potential for use in oncology. J Clin Oncol. 2009;27:4912–8.

    Article  CAS  PubMed  Google Scholar 

  88. Vahid B, Marik PE. Pulmonary complications of novel antineoplastic agents for solid tumors. Chest. 2008;133(2):528–38.

    Article  CAS  PubMed  Google Scholar 

  89. Narayan V, Deshpande C, Bermudez CA, et al. Bilateral lung transplantation for Bleomycin-associated lung injury. Oncologist. 2017;22(5):620–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120(2):617–24.

    Article  CAS  PubMed  Google Scholar 

  91. den Hollander MW, Westerink ND, Lubberts S, et al. Bleomycin-induced pulmonary changes on restaging computed tomography scans in two thirds of testicular cancer patients show no correlation with fibrosis markers. Oncologist. 2016;21(8):995–1001.

    Article  Google Scholar 

  92. Aapro M, Andre F, Blackwell K, et al. Adverse event management in patients with advanced cancer receiving oral everolimus: focus on breast cancer. Ann Oncol. 2014;25(4):763–73.

    Article  CAS  PubMed  Google Scholar 

  93. Peddi PF, Shatsky RA, Hurvitz SA. Noninfectious pneumonitis with the use of mTOR inhibitors in breast cancer. Cancer Treat Rev. 2014;40(2):320–6.

    Article  CAS  PubMed  Google Scholar 

  94. Shi L, Tang J, Tong L, Liu Z. Risk of interstitial lung disease with gefitinib and erlotinib in advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials. Lung Cancer. 2014;83(2):231–9.

    Article  PubMed  Google Scholar 

  95. Ando M, Okamoto I, Yamamoto N, et al. Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol. 2006;24(16):2549–56.

    Article  CAS  PubMed  Google Scholar 

  96. Johkoh T, Sakai F, Kusumoto M, et al. Association between baseline pulmonary status and interstitial lung disease in patients with non-small-cell lung cancer treated with erlotinib--a cohort study. Clin Lung Cancer. 2014;15(6):448–54.

    Article  CAS  PubMed  Google Scholar 

  97. Russo A, Franchina T, Ricciardi GRR, et al. Third generation EGFR TKIs in EGFR-mutated NSCLC: where are we now and where are we going. Crit Rev Oncol Hematol. 2017;117:38–47.

    Article  CAS  PubMed  Google Scholar 

  98. Bugés C, Carcereny E, Moran T, et al. Interstitial lung disease arising from erlotinib treatment in a Caucasian patient. Clin Lung Cancer. 2015;16(2):e1–3.

    Article  PubMed  Google Scholar 

  99. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35(7):709–17.

    Article  CAS  PubMed  Google Scholar 

  100. Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest. 2017;152(2):271–81.

    Article  PubMed  Google Scholar 

  101. Khoja L, Day D, Wei-Wu Chen T, et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017;28(10):2377–85.

    Article  CAS  PubMed  Google Scholar 

  102. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.

    Article  CAS  PubMed  Google Scholar 

  104. Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Howell M, Lee R, Bowyer S, et al. Optimal management of immune-related toxicities associated with checkpoint inhibitors in lung cancer. Lung Cancer. 2015;88(2):117–23.

    Article  PubMed  Google Scholar 

  106. Nishino M, Ramaiya NH, Awad MM, et al. PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course. Clin Cancer Res. 2016;22(24):6051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yanagihara T, Tanaka K, Ota K, et al. Tumor-infiltrating lymphocyte-mediated pleuritis followed by marked shrinkage of metastatic kidney cancer of the chest wall during nivolumab treatment. Ann Oncol. 2017;28(8):2038–9.

    Article  CAS  PubMed  Google Scholar 

  108. Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–42.

    Article  CAS  PubMed  Google Scholar 

  109. Scotté F. New antiemetics facing the current challenge. Ann Oncol. 2018;29(2):295–6.

    Article  PubMed  Google Scholar 

  110. Hesketh PJ, Drews RE, Savarese DMF. Prevention and treatment of chemotherapy-induced nausea and vomiting in adults. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. Accessed on 30 March, 2018.

    Google Scholar 

  111. Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol. 2010;2(1):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirsh V, Blais N, Burkes R, et al. Management of diarrhea induced by epidermal growth factor receptor tyrosine kinase inhibitors. Curr Oncol. 2014;21(6):329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sahni V, Choudhury D, Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5(8):450–62.

    Article  CAS  PubMed  Google Scholar 

  114. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7(10):1713–21.

    Article  CAS  PubMed  Google Scholar 

  115. Cosmai L, Gallieni M, Liguigli W, Porta C. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). J Nephrol. 2017;30(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  116. Launay-Vacher V, Aapro M, De Castro G Jr, et al. Renal effects of molecular targeted therapies in oncology: a review by the Cancer and the Kidney International Network (C-KIN). Ann Oncol. 2015;26(8):1677–84.

    Article  CAS  PubMed  Google Scholar 

  117. Murakami N, Motwani S, Riella LV. Renal complications of immune checkpoint blockade. Curr Probl Cancer. 2017;41(2):100–10.

    Article  PubMed  Google Scholar 

  118. Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45(2):160–9.

    Article  CAS  PubMed  Google Scholar 

  119. Sathick IJ, Seshan SV, Glezerman IG. Onco-nephrology highlights | why did my patient get this kidney problem after receiving this new cancer drug? J Onco-nephrol. 2017;1(1):9–17.

    Article  Google Scholar 

  120. Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016;90(3):638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.

    Article  CAS  PubMed  Google Scholar 

  122. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490–518.

    Article  CAS  PubMed  Google Scholar 

  123. Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Di Vito R, Sirolli V, Amoroso L, Bonomini M. Nephrotoxicity induced by chemotherapy. G Ital Nefrol. 2011;28(3):296–304.

    PubMed  Google Scholar 

  125. Vickers MM, Karapetis CS, Tu D, et al. Association of hypomagnesemia with inferior survival in a phase III, randomized study of cetuximab plus best supportive care versus best supportive care alone: NCIC CTG/AGITG CO.17. Ann Oncol. 2013;24(4):953–60.

    Article  CAS  PubMed  Google Scholar 

  126. Vincenzi B, Santini D, Galluzzo S, et al. Early magnesium reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as predictive factor of efficacy and outcome. Clin Cancer Res. 2008;14(13):4219–24.

    Article  CAS  PubMed  Google Scholar 

  127. Izzedine H, El-Fekih RK, Perazella MA. The renal effects of ALK inhibitors. Investig New Drugs. 2016;34(5):643–9.

    Article  CAS  Google Scholar 

  128. Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol. 2016;13(2):92–105.

    Article  CAS  PubMed  Google Scholar 

  129. Cliff J, Jorgensen AL, Lord R, et al. The molecular genetics of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2017;120:127–40.

    Article  CAS  PubMed  Google Scholar 

  130. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cuzzubbo S, Javeri F, Tissier M, et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer. 2017;73:1–8.

    Article  CAS  PubMed  Google Scholar 

  132. Zimmer L, Goldinger SM, Hofmann L, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:210–25.

    Article  CAS  PubMed  Google Scholar 

  133. Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.

    Article  CAS  PubMed  Google Scholar 

  134. Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol. 2016;17(12):e529–41.

    Article  PubMed  Google Scholar 

  135. Spain L, Walls G, Julve M, et al. Neurotoxicity from immune-checkpoint inhibition in the treatment of melanoma: a single centre experience and review of the literature. Ann Oncol. 2017;28(2):377–85.

    Article  CAS  PubMed  Google Scholar 

  136. Stjepanovic N, Velazquez-Martin JP, Bedard PL. Ocular toxicities of MEK inhibitors and other targeted therapies. Ann Oncol. 2016;27(6):998–1005.

    Article  CAS  PubMed  Google Scholar 

  137. Walko CM, Aubert RE, La-Beck NM, et al. Pharmacoepidemiology of clinically relevant hypothyroidism and hypertension from Sunitinib and Sorafenib. Oncologist. 2017;22(2):208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weickhardt AJ, Doebele RC, Purcell WT, et al. Symptomatic reduction in free testosterone levels secondary to crizotinib use in male cancer patients. Cancer. 2013;119(13):2383–90.

    Article  CAS  PubMed  Google Scholar 

  139. González-Rodríguez E, Rodríguez-Abreu D, Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21(7):804–16.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sznol M, Postow MA, Davies MJ, et al. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat Rev. 2017;58:70–6.

    Article  CAS  PubMed  Google Scholar 

  141. Weber JS, Postow M, Lao CD, Schadendorf D. Management of adverse events following treatment with anti-programmed death-1 agents. Oncologist. 2016;21(10):1230–40.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Adamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franchina, T., Ricciardi, G.R.R., Russo, A., Adamo, V. (2021). Treatment Toxicity. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics