Skip to main content

Nanofiber Extracellular Matrices in Regenerative Medicine

  • Chapter
  • First Online:
Cell-Inspired Materials and Engineering

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 389 Accesses

Abstract

Stem cells hold great potential for application in regenerative medicine and drug discovery. For these applications, stem cells need to be expanded by induced differentiation; these expanded stem cells need to be of high quality, purity, and functionality in order to be used in targeted tissues. Conventional methods for culture and differentiation of stem cells revolve around soluble factors in the medium, such as growth factors and small molecules; however, we have only limited knowledge about extracellular matrices (ECMs). Until date, most ECM proteins have been used for simple coating on cell culture flasks or plating in a two-dimensional manner. However, in nature, ECMs are major components of cellular environments and play important roles in cell functions, fate decisions, and organ structures. Nanotechnology is advantageous for mimicking such natural ECM structures and applying them in regenerative medicine and drug discovery. In this chapter, I will discuss the recent developments in nanofiber ECMs and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359. https://doi.org/10.1016/j.tibtech.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Pouton CW, Haynes JM (2007) Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 6(8):605–616. https://doi.org/10.1038/nrd2194

    Article  CAS  PubMed  Google Scholar 

  3. Chen KG, Mallon BS, McKay RD, Robey PG (2014) Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13–26. https://doi.org/10.1016/j.stem.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  6. Sensebé L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66. https://doi.org/10.1186/scrt217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pamies D (2016) Good cell culture practice for stem cells and stem-cell-derived models. Altex. https://doi.org/10.14573/altex.1607121

  8. Usta SN, Scharer CD, Xu J, Frey TK, Nash RJ (2014) Chemically defined serum-free and xeno-free media for multiple cell lineages. Ann Transl Med 2(10):97. https://doi.org/10.3978/j.issn.2305-5839.2014.09.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JMC, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. https://doi.org/10.1038/nmeth.1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burridge PW, Holmström A, Wu JC (2015) Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet 87:21.3.1–21.3.15. https://doi.org/10.1002/0471142905.hg2103s87

    Article  Google Scholar 

  11. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200. https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677. https://doi.org/10.1126/science.1171643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. https://doi.org/10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  14. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

    Article  CAS  PubMed  Google Scholar 

  15. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13(6):547–557. https://doi.org/10.1038/Nmat3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C (2015) A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 61:257–265. https://doi.org/10.1016/j.biomaterials.2015.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen REB, Tsenkina Y, Armit C, Duffy CRE, Helfen M, Edenhofer F, de Sousa PA, Bradley M (2013) A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 4:ARTN 1335. https://doi.org/10.1038/ncomms2341

    Article  CAS  Google Scholar 

  18. Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R (2005) Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26(23):4892–4897. https://doi.org/10.1016/j.biomaterials.2004.11.052

    Article  CAS  PubMed  Google Scholar 

  19. Celiz AD, Smith JGW, Patel AK, Hook AL, Rajamohan D, George VT, Flatt L, Patel MJ, Epa VC, Singh T, Langer R, Anderson DG, Allen ND, Hay DC, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR (2015) Discovery of a novel polymer for human pluripotent stem cell expansion and multilineage differentiation. Adv Mater 27(27):4006–4012. https://doi.org/10.1002/adma.201501351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen A, Mjoseng HK, Zhang R, Kalloudis M, Koutsos V, de Sousa PA, Bradley M (2014) High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. Adv Healthc Mater 3(6):848–853. https://doi.org/10.1002/adhm.201300489

    Article  CAS  PubMed  Google Scholar 

  21. Mei Y, Hollister-Lock J, Bogatyrev SR, Cho SW, Weir GC, Langer R, Anderson DG (2010) A high throughput micro-array system of polymer surfaces for the manipulation of primary pancreatic islet cells. Biomaterials 31(34):8989–8995. https://doi.org/10.1016/j.biomaterials.2010.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J, Muffat J, Davies MC, Alexander MR, Langer R, Anderson DG, Jaenisch R (2011) Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci U S A 108(46):18714–18719. https://doi.org/10.1073/pnas.1114854108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 48(30):5406–5415. https://doi.org/10.1002/anie.200805179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10(8):637–644. https://doi.org/10.1038/nmat3058

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Jallerat Q, Szymanski JM, Feinberg AW (2015) Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces. Nat Methods 12(2):134–136. https://doi.org/10.1038/nmeth.3210

    Article  CAS  PubMed  Google Scholar 

  26. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649. https://doi.org/10.1038/nmat3339

    Article  CAS  PubMed  Google Scholar 

  28. Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24:645. https://doi.org/10.1016/j.ceb.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  29. Pot MW, de Kroon LMG, van der Kraan PM, van Kuppevelt TH, Daamen WF (2017) Unidirectional BMP2-loaded collagen scaffolds induce chondrogenic differentiation. Biomed Mater 13(1):015007. https://doi.org/10.1088/1748-605X/aa8960

    Article  PubMed  Google Scholar 

  30. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, Ito J, Nakagawa T (2017) Transplantation of neurons derived from human iPS cells cultured on collagen matrix into Guinea-pig cochleae. J Tissue Eng Regen Med 11(6):1766–1778. https://doi.org/10.1002/term.2072

    Article  CAS  PubMed  Google Scholar 

  31. Hirata M, Yamaoka T (2017) Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater 65:44. https://doi.org/10.1016/j.actbio.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  32. Cimino M, Goncalves RM, Bauman E, Barroso-Vilares M, Logarinho E, Barrias CC, Martins MCL (2017) Optimization of the use of a pharmaceutical grade xeno-free medium for in vitro expansion of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 12. https://doi.org/10.1002/term.2588

  33. Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, Templeman KL, Hannachi EI, Gooch KJ, Sarang-Sieminski AL, Garcia AJ, Weaver VM (2017) alpha5beta1-integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 28(22):2958–2977. https://doi.org/10.1091/mbc.E17-02-0126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells 26(9):2257–2265. https://doi.org/10.1634/stemcells.2008-0291

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375(1):27–32. https://doi.org/10.1016/j.bbrc.2008.07.111

    Article  CAS  PubMed  Google Scholar 

  36. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:10. https://doi.org/10.1038/ncomms2231

    Article  CAS  Google Scholar 

  37. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–U102. https://doi.org/10.1038/nbt.1620

    Article  CAS  PubMed  Google Scholar 

  38. Sroka IC, Chen ML, Cress AE (2008) Simplified purification procedure of laminin-332 and laminin-511 from human cell lines. Biochem Biophys Res Commun 375(3):410–413. https://doi.org/10.1016/j.bbrc.2008.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimizu T, Yamato M, Kikuchi A, Okano T (2001) Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng 7(2):141–151. https://doi.org/10.1089/107632701300062732

    Article  CAS  PubMed  Google Scholar 

  40. Kamei KI, Koyama Y, Tokunaga Y, Mashimo Y, Yoshioka M, Fockenberg C, Mosbergen R, Korn O, Wells C, Chen Y (2016) Characterization of phenotypic and transcriptional differences in human pluripotent stem cells under 2D and 3D culture conditions. Adv Healthc Mater 5(22):2951–2958. https://doi.org/10.1002/adhm.201600893

    Article  CAS  PubMed  Google Scholar 

  41. Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, Okano T (2015) Thermoresponsive cationic copolymer brushes for mesenchymal stem cell separation. Biomacromolecules 16(2):532–540. https://doi.org/10.1021/bm501591s

    Article  CAS  PubMed  Google Scholar 

  42. Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, Okano T (2013) Hydrophobized thermoresponsive copolymer brushes for cell separation by multistep temperature change. Biomacromolecules 14(10):3423–3433. https://doi.org/10.1021/bm4006722

    Article  CAS  PubMed  Google Scholar 

  43. Xu Y, Luong D, Walker JM, Dean D, Becker ML (2017) Modification of poly(propylene fumarate)-bioglass composites with peptide conjugates to enhance bioactivity. Biomacromolecules 18(10):3168–3177. https://doi.org/10.1021/acs.biomac.7b00828

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, You C, Wei R, Zu J, Song C, Li J, Yan J (2017) Modification of human umbilical cord blood stem cells using polyethylenimine combined with modified TAT peptide to enhance BMP-2 production. Biomed Res Int 2017:2971413. https://doi.org/10.1155/2017/2971413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-De-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583. https://doi.org/10.1038/Nbt.1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou YE, Dolley-Sonneville P, Yang JW, Qiu LQ, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–695. https://doi.org/10.1038/Nbt.1629

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Hu ZQ, Turner NJ, Teng SF, Cheng WY, Zhou HY, Zhang L, Hu HW, Wang Q, Badylak SF (2016) Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials 89:114–126. https://doi.org/10.1016/j.biomaterials.2016.02.040

    Article  CAS  PubMed  Google Scholar 

  48. Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15(4):0. https://doi.org/10.5301/jabfm.5000393

    Article  CAS  Google Scholar 

  49. Ohno M, Fuchimoto Y, Hsu HC, Higuchi M, Komura M, Yamaoka T, Umezawa A, Enosawa S, Kuroda T (2017) Airway reconstruction using decellularized tracheal allografts in a porcine model. Pediatr Surg Int 33(10):1065–1071. https://doi.org/10.1007/s00383-017-4138-8

    Article  PubMed  Google Scholar 

  50. Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8(343):343ra383. https://doi.org/10.1126/scitranslmed.aad5904

    Article  CAS  Google Scholar 

  51. McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ, Salih V (2010) Nanotopographical control of stem cell differentiation. J Tissue Eng 1(1):120623. https://doi.org/10.4061/2010/120623

    Article  CAS  Google Scholar 

  52. Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9(9):917–922. https://doi.org/10.1038/nmeth.2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu L, Yuan Q, Shi J, Li X, Jung D, Wang L, Yamauchi K, Nakatsuji N, Kamei K, Chen Y (2012) Chemically-defined scaffolds created with electrospun synthetic nanofibers to maintain mouse embryonic stem cell culture under feeder-free conditions. Biotechnol Lett 34(10):1951–1957. https://doi.org/10.1007/s10529-012-0973-9

    Article  PubMed  Google Scholar 

  54. Mahairaki V, Lim SH, Christopherson GT, Xu L, Nasonkin I, Yu C, Mao HQ, Koliatsos VE (2011) Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Eng Part A 17(5–6):855–863. https://doi.org/10.1089/ten.TEA.2010.0377

    Article  CAS  PubMed  Google Scholar 

  55. Nandakumar A, Fernandes H, de Boer J, Moroni L, Habibovic P, van Blitterswijk CA (2010) Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration. Macromol Biosci 10(11):1365–1373. https://doi.org/10.1002/mabi.201000145

    Article  CAS  PubMed  Google Scholar 

  56. Nandakumar A, Truckenmuller R, Ahmed M, Damanik F, Santos DR, Auffermann N, de Boer J, Habibovic P, van Blitterswijk C, Moroni L (2013) A fast process for imprinting micro and nano patterns on electrospun fiber meshes at physiological temperatures. Small 9(20):3405–3409. https://doi.org/10.1002/smll.201300220

    Article  CAS  PubMed  Google Scholar 

  57. Nitanan T, Opanasopit P, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, Supaphol P (2012) Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean J Chem Eng 29(2):173–181. https://doi.org/10.1007/s11814-011-0167-5

    Article  CAS  Google Scholar 

  58. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24(2):426–433. https://doi.org/10.1634/stemcells.2005-0170

    Article  PubMed  Google Scholar 

  59. Orlova Y, Magome N, Liu L, Chen Y, Agladze K (2011) Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32(24):5615–5624. https://doi.org/10.1016/j.biomaterials.2011.04.042

    Article  CAS  PubMed  Google Scholar 

  60. Siddappa R, Fernandes H, Liu J, van Blitterswijk C, de Boer J (2007) The response of human mesenchymal stem cells to osteogenic signals and its impact on bone tissue engineering. Curr Stem Cell Res Ther 2(3):209–220

    Article  CAS  Google Scholar 

  61. Song JH, Kim HE, Kim HW (2008) Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci Mater Med 19(1):95–102. https://doi.org/10.1007/s10856-007-3169-4

    Article  CAS  PubMed  Google Scholar 

  62. Truong YB, Glattauer V, Briggs KL, Zappe S, Ramshaw JA (2012) Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials 33(36):9198–9204. https://doi.org/10.1016/j.biomaterials.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  63. Xie JW, MacEwan MR, Li XR, Sakiyama-Elbert SE, Xia YN (2009) Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 3(5):1151–1159. https://doi.org/10.1021/Nn900070z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao S, Zhou Q, Long Y-Z, Sun G-H, Zhang Y (2013) Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale 5(11):4993–5000. https://doi.org/10.1039/c3nr00676j

    Article  CAS  PubMed  Google Scholar 

  65. Dvir T, Timko BP, Kohane DS, Langer R (2010) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22. https://doi.org/10.1038/nnano.2010.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mendes PM (2013) Cellular nanotechnology: making biological interfaces smarter. Chem Soc Rev 42(24):9207. https://doi.org/10.1039/c3cs60198f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dalby MJ, Gadegaard N, Oreffo ROC (2014) Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat Mater 13(6):558–569. https://doi.org/10.1038/nmat3980

    Article  CAS  PubMed  Google Scholar 

  68. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003. https://doi.org/10.1038/nmat2013

    Article  CAS  PubMed  Google Scholar 

  69. Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PM, Gyorke S, Guan J, Angelos MG (2015) Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One 10(5):e0126338. https://doi.org/10.1371/journal.pone.0126338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng ZQ, Wang T, Zhao B, Li J, Jin L (2015) Soft graphene nanofibers designed for the acceleration of nerve growth and development. Adv Mater 27(41):6462–6468. https://doi.org/10.1002/adma.201503319

    Article  CAS  PubMed  Google Scholar 

  71. Alamein MA, Wolvetang EJ, Ovchinnikov DA, Stephens S, Sanders K, Warnke PH (2015) Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency. J Tissue Eng Regen Med 9(9):1078–1083. https://doi.org/10.1002/term.1960

    Article  CAS  PubMed  Google Scholar 

  72. Liu L, Yoshioka M, Nakajima M, Ogasawara A, Liu J, Hasegawa K, Li SS, Zou JL, Nakatsuji N, Kamei K, Chen Y (2014) Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 35(24):6259–6267. https://doi.org/10.1016/j.biomaterials.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  73. Gauthaman K, Venugopal JR, Yee FC, Peh GS, Ramakrishna S, Bongso A (2009) Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. J Cell Mol Med 13(9B):3475–3484. https://doi.org/10.1111/j.1582-4934.2009.00699.x

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huang CC, Lu CT, Chao CY, Huang TC, Lou CW, Lin JH (2010) Evaluation of electrospun poly (vinyl alcohol) (PVA)/gelatin nanofiber membrane and biocompatibility. JMSE 1–5:97–101. https://doi.org/10.4028/www.scientific.net/AMR.97-101.2249

    Article  CAS  Google Scholar 

  75. Huang C, Fu X, Liu J, Qi Y, Li S, Wang H (2012) The involvement of integrin beta1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers. Biomaterials 33(6):1791–1800. https://doi.org/10.1016/j.biomaterials.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  76. Liu L, Kamei K, Yoshioka M, Nakajima M, Liu J, Fujimoto N, Terada S, Tokunaga Y, Koyama Y, Sato H, Hasegawa K, Nakatsuji N, Chen Y (2017) Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials 124:47–54. https://doi.org/10.1016/j.biomaterials.2017.01.039

    Article  CAS  PubMed  Google Scholar 

  77. Jordan AM, Viswanath V, Kim S-E, Pokorski JK, Korley LTJ (2016) Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 4(36):5958–5974. https://doi.org/10.1039/c6tb01303a

    Article  CAS  PubMed  Google Scholar 

  78. Lancuški A, Fort S, Bossard F (2012) Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry. ACS Appl Mater Interfaces 4(12):6499–6504. https://doi.org/10.1021/am301458y

    Article  CAS  PubMed  Google Scholar 

  79. Zheng J, Hua G, Yu J, Lin F, Wade MB, Reneker DH, Becker ML (2015) Post-electrospinning “Triclick” functionalization of degradable polymer nanofibers. ACS Macro Lett 4(2):207–213. https://doi.org/10.1021/mz500759n

    Article  CAS  Google Scholar 

  80. Lipner J, Liu W, Liu Y, Boyle J, Genin GM, Xia Y, Thomopoulos S (2014) The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. J Mech Behav Biomed Mater 40:59–68. https://doi.org/10.1016/j.jmbbm.2014.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B Biointerfaces 134:346–354. https://doi.org/10.1016/j.colsurfb.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  82. Ravichandran R, Sridhar R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2014) Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol Biosci 14(4):515–525. https://doi.org/10.1002/mabi.201300407

    Article  CAS  Google Scholar 

  83. Kim J-J, El-Fiqi A, Kim H-W (2017) Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces 9(3):2059–2073. https://doi.org/10.1021/acsami.6b12089

    Article  CAS  PubMed  Google Scholar 

  84. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho S-W, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9(9):768–778. https://doi.org/10.1038/nmat2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kraehenbuehl TP, Langer R, Ferreira LS (2011) Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods 8(9):731–736. https://doi.org/10.1038/nmeth.1671

    Article  CAS  PubMed  Google Scholar 

  86. Cabezas MD, Eichelsdoerfer DJ, Brown KA, Mrksich M, Mirkin CA (2014) Combinatorial screening of mesenchymal stem cell adhesion and differentiation using polymer pen lithography. Methods Cell Biol 119:261–276. https://doi.org/10.1016/b978-0-12-416742-1.00013-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. K-i K, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Nakajima M, Shibata-Seki T, Liu L, Akaike T, Kobatake E, How S-E, Uesugi M, Chen Y (2017) Microfluidic-nanofiber hybrid array for screening of cellular microenvironments. Small 13(18). https://doi.org/10.1002/smll.201603104

  88. Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16(4):573–582. https://doi.org/10.1089/ten.TEC.2009.0228

    Article  CAS  PubMed  Google Scholar 

  89. Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5(1):51–64. https://doi.org/10.1016/j.scr.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  90. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700. https://doi.org/10.1038/nprot.2011.318

    Article  CAS  PubMed  Google Scholar 

  91. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579. https://doi.org/10.1038/nprot.2011.325

    Article  CAS  PubMed  Google Scholar 

  92. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep 2(5):734–745. https://doi.org/10.1016/j.stemcr.2014.03.012

    Article  CAS  Google Scholar 

  93. Chen AK, Chen X, Choo AB, Reuveny S, Oh SK (2010) Expansion of human embryonic stem cells on cellulose microcarriers. Curr Protoc Stem Cell Biol Chapter 1:Unit 1C 11. https://doi.org/10.1002/9780470151808.sc01c11s14

    Article  PubMed  Google Scholar 

  94. Lecina M, Ting S, Choo A, Reuveny S, Oh S (2010) Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods 16(6):1609–1619. https://doi.org/10.1089/ten.TEC.2010.0104

    Article  CAS  PubMed  Google Scholar 

  95. Lei Y, Schaffer DV (2013) A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci U S A 110(52):E5039–E5048. https://doi.org/10.1073/pnas.1309408110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Serra M, Correia C, Malpique R, Brito C, Jensen J, Bjorquist P, Carrondo MJ, Alves PM (2011) Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6(8):e23212. https://doi.org/10.1371/journal.pone.0023212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chayosumrit M, Tuch B, Sidhu K (2010) Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials 31(3):505–514. https://doi.org/10.1016/j.biomaterials.2009.09.071

    Article  CAS  PubMed  Google Scholar 

  98. Yamazoe T, Shiraki N, Toyoda M, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H, Umezawa A, Sasaki Y, Kume K, Kume S (2013) A synthetic nanofibrillar matrix promotes in vitro hepatic differentiation of embryonic stem cells and induced pluripotent stem cells. J Cell Sci 126(Pt 23):5391–5399. https://doi.org/10.1242/jcs.129767

    Article  CAS  PubMed  Google Scholar 

  99. Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS (2015) Three-dimensional poly-(epsilon-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/beta-catenin signaling. BMC Cell Biol 16:22. https://doi.org/10.1186/s12860-015-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Joanne P, Kitsara M, Boitard SE, Naemetalla H, Vanneaux V, Pernot M, Larghero J, Forest P, Chen Y, Menasche P, Agbulut O (2016) Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 80:157–168. https://doi.org/10.1016/j.biomaterials.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  101. Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM, Miller JM, Duncan RK (2017) Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 12(7):e0180427. https://doi.org/10.1371/journal.pone.0180427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hyysalo A, Ristola M, Joki T, Honkanen M, Vippola M, Narkilahti S (2017) Aligned poly(epsilon-caprolactone) nanofibers guide the orientation and migration of human pluripotent stem cell-derived neurons, astrocytes, and oligodendrocyte precursor cells in vitro. Macromol Biosci 17(7). https://doi.org/10.1002/mabi.201600517

  103. Naskar D, Ghosh AK, Mandal M, Das P, Nandi SK, Kundu SC (2017) Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 136:67–85. https://doi.org/10.1016/j.biomaterials.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  104. Wang TY, Bruggeman KF, Kauhausen JA, Rodriguez AL, Nisbet DR, Parish CL (2016) Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials 74:89–98. https://doi.org/10.1016/j.biomaterials.2015.09.039

    Article  CAS  PubMed  Google Scholar 

  105. Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28(5):73. https://doi.org/10.1007/s10856-017-5874-y

    Article  CAS  PubMed  Google Scholar 

  106. Hayashi K, Ochiai-Shino H, Shiga T, Onodera S, Saito A, Shibahara T, Azuma T (2016) Transplantation of human-induced pluripotent stem cells carried by self-assembling peptide nanofiber hydrogel improves bone regeneration in rat calvarial bone defects. BDJ Open 2:2. https://doi.org/10.1038/bdjopen.2015.7

    Article  Google Scholar 

  107. Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4(5). https://doi.org/10.1063/1.4946894

  108. Rajan K (2005) Materials informatics. Mater Today 8(10):38–45. https://doi.org/10.1016/s1369-7021(05)71123-8

    Article  CAS  Google Scholar 

  109. Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, Suo Z, Langer R, Kohane DS, Lieber CM (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11(11):986–994. https://doi.org/10.1038/nmat3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was generously provided by the Japan Society for the Promotion of Science (JSPS; 17H02083 and 16K14660). WPI-iCeMS is supported by the World Premier International Research Centre Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Kamei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamei, Ki. (2021). Nanofiber Extracellular Matrices in Regenerative Medicine. In: Wang, D.O., Packwood, D. (eds) Cell-Inspired Materials and Engineering. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-55924-3_11

Download citation

Publish with us

Policies and ethics