Skip to main content

Circadian Timekeeping in the Suprachiasmatic Nucleus: Genes, Neurotransmitters, Neurons, and Astrocytes

  • Chapter
  • First Online:
Neuroendocrine Clocks and Calendars

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 10))

Abstract

The nocturnal secretion of melatonin by the pineal gland drives photoperiodic seasonal rhythms in mammals. In turn, the pineal is controlled by daily cues generated intrinsically by the circadian (circa- approximately, −diem a day) clock of the hypothalamic suprachiasmatic nucleus (SCN). Photic cues from the retina both synchronize the SCN and also acutely suppress melatonin synthesis. As a result, the duration of the nocturnal secretion of melatonin encodes the length of the night and hence season. This chapter will consider recent developments in understanding how the SCN generates an internal representation of solar time and thereby functions as a clock and calendar. The first level of timekeeping pivots around intracellular transcriptional and translational feedback loops (TTFLs) that constitute cell-autonomous circadian timers. These mechanisms are common to many, if not all, mammalian tissues, but three properties beyond its TTFLs make the SCN the principal pacemaker. First, it is the sole component of the mammalian circadian system to receive retinal input and is therefore directly entrained to the cycle of day and night. The TTFLs of SCN cells are therefore a high-fidelity, internal proxy of solar time. Second, its neural connections to the hypothalamus and beyond enable the SCN to direct rhythmic endocrine (including melatonin) and autonomic and behavioral rhythms that in turn coordinate the innumerable cellular and tissue-based clocks distributed across the body. Third, the timekeeping power that enables the SCN to sustain this internal coordination is derived from the circuit-level integration of the ~20,000 neurons into a robust and resilient circuit-level pacemaker. Activity across the cellular TTFLs is tightly synchronized but not simultaneous, as cells peak in activity in different phases. Importantly, this network-level pattern of activity is plastic, the long days of summer increasing the phase dispersal between cells. This response of the SCN to daylength causes a reciprocal widening or narrowing of the dependent melatonin profile. The daily clock thereby generates an internal representation of season. The intercellular mechanisms that underpin network integration are twofold. First, neuropeptidergic cues released from various populations of SCN neurons act in a slow paracrine manner, over circadian time and SCN circuit space, to synchronize and amplify the individual intracellular TTFLs. Second, it has recently become clear that astrocytes play an important role in network function, as they are able to initiate SCN neuronal oscillations and behavioral circadian rhythms and impose their own cell-autonomous period. Analysis of the network-level interactions between neurons and astrocytes will therefore advance understanding of how both circadian and seasonal information is encoded and distributed by the SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel JH, Meeker K, Granados-Fuentes D, St. John PC, Wang TJ, Bales BB, Doyle FJ, Herzog ED, Petzold LR (2016) Functional network inference of the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 113:4512–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  CAS  PubMed  Google Scholar 

  • Abudara V, Bechberger J, Freitas-Andrade M, de Bock M, Wang N, Bultynck G, Naus CC, Leybaert L, Giaume C (2014) The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front Cell Neurosci 8:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  CAS  PubMed  Google Scholar 

  • Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception and the photoperiodic control of seasonal responses. J Pineal Res 15:161–190

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Felice FA, Takao M (2002) Phototransduction by retinal ganglion cells that reset the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Best JD, Maywood ES, Smith KL, Hastings MH (1999) Rapid resetting of the mammalian circadian clock. J Neurosci 19:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brancaccio M, Enoki R, Mazuski CN, Jones J, Evans JA, Azzi A (2014) Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 34:15192–15199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brancaccio M, Maywood ES, Chesham JE, Loudon AS, Hastings MH (2013) A Gq-Ca(2+) axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the Suprachiasmatic nucleus via Glutamatergic signaling. Neuron 93(1420–1435):e5

    Google Scholar 

  • Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, Ditacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM (2012) Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 485:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Phys Regul Integr Comp Phys 285:R939–R949

    CAS  Google Scholar 

  • Daan S, Albrecht U, Van der Horst GT, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythm 16:105–116

    Article  CAS  Google Scholar 

  • Daan S, Berde C (1978) Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70:297–313

    Article  CAS  PubMed  Google Scholar 

  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266:1713–1717

    Article  CAS  PubMed  Google Scholar 

  • Dupre SM, Miedzinska K, Duval CV, Yu L, Goodman RL, Lincoln GA, Davis JR, Mcneilly AS, Burt DD, Loudon AS (2010) Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr Biol 20:829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MD, Brancaccio M, Chesham JE, Maywood ES, Hastings MH (2016) Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Proc Natl Acad Sci U S A 113:2732–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst RJ, Krogager TP, Maywood ES, Zanchi R, Beranek V, Elliott TS, Barry NP, Hastings MH, Chin JW (2016) Genetic code expansion in the mouse brain. Nat Chem Biol 12:776–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80:973–983

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DC, Chang YT, Hattar S, Chen SK (2016) Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci U S A 113:6047–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, Von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  PubMed  Google Scholar 

  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4:25–36

    Article  CAS  PubMed  Google Scholar 

  • Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Guler AD (2017) Direct midbrain dopamine input to the Suprachiasmatic nucleus accelerates circadian entrainment. Curr Biol 27(2465–2475):e3

    Google Scholar 

  • Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamnett R, Crosby P, Chesham JE, Hastings MH (2019) Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat Commun 10:542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  CAS  PubMed  Google Scholar 

  • Hastings M (2001) Modeling the molecular calendar. J Biol Rhythm 16:117–123. Discussion 124

    Article  CAS  Google Scholar 

  • Hastings MH, Brancaccio M, Maywood ES (2014) Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol 26:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Reddy AB, Mcmahon DG, Maywood ES (2005) Analysis of circadian mechanisms in the suprachiasmatic nucleus by transgenesis and biolistic transfection. Methods Enzymol 393:579–592

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, LEM J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the Suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb Perspect Biol 9

    Google Scholar 

  • Hirano A, Fu YH, Ptacek LJ (2016) The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104:7664–7669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CR, Huang AL, Ptacek LJ, Fu YH (2013) Genetic basis of human circadian rhythm disorders. Exp Neurol 243:28–33

    Article  PubMed  Google Scholar 

  • Krogager TP, Ernst RJ, Elliott TS, Calo L, Beranek V, Ciabatti E, Spillantini MG, Tripodi M, Hastings MH, Chin JW (2017) Labeling and identifying cell-specific proteomes in the mouse brain. Nat Biotechnol

    Google Scholar 

  • Lazzerini Ospri L, Prusky G, Hattar S (2017) Mood, the circadian system, and Melanopsin retinal ganglion cells. Annu Rev Neurosci 40:539–556

    Article  CAS  PubMed  Google Scholar 

  • Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln GA, Ebling FJP, Almeida OFX (1985) Generation of melatonin rhythms. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal gland. Pitman, London

    Google Scholar 

  • Lincoln G, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci U S A 99:13890–13895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Meng QJ, Tyler NJ, Stokkan KA, Loudon AS (2010) A circadian clock is not required in an arctic mammal. Curr Biol 20:533–537

    Article  CAS  PubMed  Google Scholar 

  • Lucas RJ (2013) Mammalian inner retinal photoreception. Curr Biol 23:R125–R133

    Article  CAS  PubMed  Google Scholar 

  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507

    Article  CAS  PubMed  Google Scholar 

  • Maywood ES, Chesham JE, O’brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108:14306–14311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maywood ES, Elliott TS, Patton AP, Krogager TP, Chesham JE, Ernst RJ, Beranek V, Brancaccio M, Chin JW, Hastings MH (2018) Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic cry-deficient mice. Proc Natl Acad Sci U S A 115:E12388–E12397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maywood ES, Hastings MH, Max M, Ampleford E, Menaker M, Loudon AS (1993) Circadian and daily rhythms of melatonin in the blood and pineal gland of free-running and entrained Syrian hamsters. J Endocrinol 136:65–73

    Article  CAS  PubMed  Google Scholar 

  • Maywood ES, Reddy AB, Wong GK, O’neill JS, O’brien JA, Mcmahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605

    Article  CAS  PubMed  Google Scholar 

  • Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED (2018) Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron 99(555–563):e5

    Google Scholar 

  • Meijer JH, Michel S (2015) Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552:75–102

    Article  CAS  PubMed  Google Scholar 

  • Messager S, Garabette ML, Hastings MH, Hazlerigg DG (2001) Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport 12:579–582

    Article  CAS  PubMed  Google Scholar 

  • Messager S, Ross AW, Barrett P, Morgan PJ (1999) Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc Natl Acad Sci U S A 96:9938–9943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieda M, Okamoto H, Sakurai T (2016) Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol 26:2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular clocks in AVP neurons of the SCN are critical for Interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116

    Article  CAS  PubMed  Google Scholar 

  • Nagoshi E, Brown SA, Dibner C, Kornmann B, Schibler U (2005) Circadian gene expression in cultured cells. Methods Enzymol 393:543–557

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, Welsh DK (2017) Calcium circadian rhythmicity in the Suprachiasmatic nucleus: cell autonomy and network modulation. eNeuro 4

    Google Scholar 

  • Nuesslein-Hildesheim B, O’brien JA, Ebling FJ, Maywood ES, Hastings MH (2000) The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian hamster encodes both daily and seasonal time. Eur J Neurosci 12:2856–2864

    Article  CAS  PubMed  Google Scholar 

  • O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Article  CAS  PubMed  Google Scholar 

  • Park J, Zhu H, O’Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, Vadigepalli R (2016) Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central circadian clock. Front Neurosci 10:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Patton AP, Chesham JE, Hastings MH (2016) Combined pharmacological and genetic manipulations unlock unprecedented temporal elasticity and reveal phase-specific modulation of the molecular circadian clock of the mouse Suprachiasmatic nucleus. J Neurosci 36:9326–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton AP, Hastings MH (2018) The suprachiasmatic nucleus. Curr Biol 28:R816–R822

    Article  CAS  PubMed  Google Scholar 

  • Pennartz CM, De Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290

    Article  CAS  PubMed  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Prosser HM, Bradley A, Chesham JE, Ebling FJ, Hastings MH, Maywood ES (2007) Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci U S A 104:648–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 283:693–695

    Google Scholar 

  • Reppert SM, Weaver DR (2000) Comparing clockworks: mouse versus fly. J Biol Rhythm 15:357–364

    Article  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26:R432–R443

    Article  CAS  PubMed  Google Scholar 

  • Rosbash M, Bradley S, Kadener S, Li Y, Luo W, Menet JS, Nagoshi E, Palm K, Schoer R, Shang Y, Tang CH (2007) Transcriptional feedback and definition of the circadian pacemaker in drosophila and animals. Cold Spring Harb Symp Quant Biol 72:75–83

    Article  CAS  PubMed  Google Scholar 

  • Santos JWQ, Araujo JF, Cunha MJB, Costa SO, Barbosa ALC, Mesquita JB, Costa MSMO (2005) Circadian variation in GFAP immunoreactivity in the mouse suprachiasmatic nucleus. Biol Rhythm Res 36:141–150

    Article  CAS  Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 31:16094–16101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Sengiku A, Ueda M, Kono J, Sano T, Nishikawa N, Kunisue S, Tsujihana K, Liou LS, Kanematsu A, Shimba S, Doi M, Okamura H, Ogawa O, Negoro H (2018) Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Sci Rep 8:1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serviere J, Lavialle M (1996) Astrocytes in the mammalian circadian clock: putative roles. Prog Brain Res 111:57–73

    Article  CAS  PubMed  Google Scholar 

  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap J, Okamura H (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Smyllie NJ, Chesham JE, Hamnett R, Maywood ES, Hastings MH (2016) Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A

    Google Scholar 

  • Stokkan KA, Van Oort BE, Tyler NJ, Loudon AS (2007) Adaptations for life in the Arctic: evidence that melatonin rhythms in reindeer are not driven by a circadian oscillator but remain acutely sensitive to environmental photoperiod. J Pineal Res 43:289–293

    Article  CAS  PubMed  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JS (2016) Molecular architecture of the circadian clock in mammals. In: Sassone-Corsi, P. & Christen, Y. (eds.) A time for metabolism and hormones. Cham (CH)

    Google Scholar 

  • Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED (2017) Astrocytes regulate daily rhythms in the Suprachiasmatic nucleus and behavior. Curr Biol 27:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gelder RN, Buhr ED (2016) Ocular photoreception for circadian rhythm entrainment in mammals. Annu Rev Vis Sci 2:153–169

    Article  PubMed  Google Scholar 

  • Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythm 13:100–112

    Article  CAS  Google Scholar 

  • Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis JCW, Chin JW (2018) Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat Chem 10:831–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, Dong X, Tsujimoto G, Okuno Y, Doi M, Okamura H (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA (2007) Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Inagaki NF, Takagi S, Kuroda S, Yamasaki M, Watanabe M, Honma S, Honma KI (2017) Localization of photoperiod responsive circadian oscillators in the mouse suprachiasmatic nucleus. Sci Rep 7:8210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zawilska JB, Skene DJ, Arendt J (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61:383–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MH was supported by the Medical Research Council, U.K. MC_U105170643. MB was supported by the UK Dementia Research Institute which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Hastings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hastings, M.H., Brancaccio, M. (2020). Circadian Timekeeping in the Suprachiasmatic Nucleus: Genes, Neurotransmitters, Neurons, and Astrocytes. In: Ebling, F.J.P., Piggins, H.D. (eds) Neuroendocrine Clocks and Calendars. Masterclass in Neuroendocrinology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-55643-3_11

Download citation

Publish with us

Policies and ethics