Skip to main content

Relevance of Network Organization in SCN Clock Function

  • Chapter
  • First Online:
Mechanisms of Circadian Systems in Animals and Their Clinical Relevance

Abstract

The bilateral suprachiasmatic nuclei (SCN) of the hypothalamus are the loci of a circadian pacemaker that coordinates rhythms throughout the body. The ~10,000 cells of each nucleus are organized into distinct core and shell divisions, each of which is comprised of clusters of various cell types. In dispersed cell preparations, individual SCN neurons express a wide range of circadian periods. In a slice preparation, there is a characteristic peak and trough time of clock gene expression in specific subregions, indicating that the networks into which cells are organized are an important aspect of SCN function. Understanding the relationship of individual cells to that of larger neuronal groupings and to brain circuits in which they participate is a problem of general interest in neuroscience. The SCN is an especially tractable system for such queries as the function of this nucleus is known, and circadian rhythms in activity of individual cells and in the SCN as a whole can each be tracked and associated with the overall behavior and physiology of the intact animal.

This chapter focuses on the cellular and circuit organization of the SCN to understand how the SCN encodes circadian time, the ways in which it is synchronized to the local environment and how it adjusts its activity in the presence of mutations in key regulatory genes. While the clock analogy is useful, it can be extended to better capture aspects of SCN function that are not “clock-like”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916(1–2):172–191

    Article  PubMed  CAS  Google Scholar 

  • Aida R, Moriya T, Araki M et al (2002) Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol 61:26–34

    Article  PubMed  CAS  Google Scholar 

  • Albus H, Vansteensel MJ, Michel S et al (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  PubMed  CAS  Google Scholar 

  • An S, Irwin RP, Allen CN et al (2011) Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 105(5):2289–2296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28(3):145–151

    Article  PubMed  CAS  Google Scholar 

  • Antle MC, Foley DK, Foley NC et al (2003) Gates and oscillators: a network model of the brain clock. J Biol Rhythms 18(4):339–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Antle MC, Kriegsfeld LJ, Silver R (2005) Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. J Neurosci 25(10):2447–2454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Antle MC, Foley NC, Foley DN et al (2007) Gates and oscillators II: Zeitgebers and the network model of the brain clock. J Biol Rhythms 22:14–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkins N Jr, Mitchell JW, Romanova EV et al (2010) Circadian integration of glutamatergic signals by little SAAS in novel suprachiasmatic circuits. PLoS One 5(9):e12612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aton SJ, Colwell CS, Harmar AJ et al (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bae K, Jin X, Maywood ES et al (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536

    Article  PubMed  CAS  Google Scholar 

  • Brown TM, Piggins HD (2009) Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod. J Biol Rhythms 24:44–54

    Article  PubMed  CAS  Google Scholar 

  • Brown TM, Hughes AT, Piggins HD (2005) Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J Neurosci 25(48):11155–11164

    Article  PubMed  CAS  Google Scholar 

  • Brown TM, Banks JR, Piggins HD (2006) A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. J Neurosci Methods 156(1):173–181

    Article  PubMed  Google Scholar 

  • Bryant DN, LeSauter J, Silver R et al (2000) Retinal innervation of calbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization. J Biol Rhythms 15(2):103–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217:3–27

    Article  PubMed  Google Scholar 

  • Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526

    Article  PubMed  CAS  Google Scholar 

  • Butler MP, Karatsoreos IN, LeSauter J et al (2012) Dose-dependent effects of androgens on the circadian timing system and its response to light. Endocrinology 153(5):2344–2352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution. Neuroscience 13:415–431

    Article  PubMed  CAS  Google Scholar 

  • Challet E, Pévet P (2003) Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front Biosci 8:246–257

    Article  Google Scholar 

  • Cheng MY, Bullock CM, Li C et al (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417(6887):405–410

    Article  PubMed  CAS  Google Scholar 

  • Coogan AN, Rawlings N, Luckman SM et al (2000) Effects of neurotensin on discharge rates of rat suprachiasmatic nucleus neurons in vitro. Neuroscience 103(3):663–672

    Article  Google Scholar 

  • Daan S, Damassa D, Pittendrigh CS et al (1975) An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci U S A 72:3744–3777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson AJ, Castanon-Cervantes O, Leise TL et al (2009) Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29:171–180

    Article  PubMed  Google Scholar 

  • Drouyer E, LeSauter J, Hernandez AL et al (2010) Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol 518(8):1249–1263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foley NC, Tong TY, Foley D et al (2011) Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci 33(10):1851–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Francl JM, Kaur G, Glass JD (2010) Regulation of vasoactive intestinal polypeptide release in the SCN circadian clock. Neuroreport 21(16):1055–1059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gamble KL, Allen GC, Zhou T et al (2007) Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. J Neurosci 27(44):12078–12087

    Article  PubMed  CAS  Google Scholar 

  • Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Research 379:176–181

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, LeSauter J, Venuti JM et al (2001) Expression of period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. Neuroscience 21(19):7742–7750

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harbour VL, Weigl Y, Robinson B et al (2013) Comprehensive mapping of regional expression of the clock protein PERIOD2 in rat forebrain across the 24-h day. PLoS One 8:e76391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harmar AJ, Marston HM, Shen S et al (2002) The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  PubMed  CAS  Google Scholar 

  • Harrington ME (1996) The ventral lateral geniculate nucleus and the intergeniculate leaflet: Interrelated structures in the visual and circadian systems. Neuroscience Biobehav Rev 21(5):705–727

    Article  Google Scholar 

  • Hay-Schmidt A, Vrang N, Larsen PH et al (2003) Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 25:293–310

    Article  PubMed  Google Scholar 

  • Hazlerigg D, Loudon A (2008) New insights into ancient seasonal life timers. Curr Biol 18:R795–R804

    Article  PubMed  CAS  Google Scholar 

  • Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nature Neurosci 1:708–713

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5(1):33–51

    Article  PubMed  CAS  Google Scholar 

  • Honma KI, Honma S, Hiroshige T (1986) Disorganization of the rat activity rhythm by chronic treatment with methamphetamine. Physiol Behav 38:687–695

    Article  PubMed  CAS  Google Scholar 

  • Honma S, Shirakawa T, Katsuno Y et al (1998) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250:157–160

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Allen CN (2003) Developmental changes in calbindin-Dk28 and calretinin expression in the mouse suprachiasmatic nucleus. Eur J Neurosci 17:1111–1118

    Article  PubMed  Google Scholar 

  • Ingram CD, Snowball RK, Mihai R (1996) Circadian rhythm of neuronal activity in suprachiasmatic nucleus slices from the vasopressin-deficient Brattleboro rat. Neuroscience 75(2):635–641

    Article  PubMed  CAS  Google Scholar 

  • Iwahana E, Karatsoreos I, Shibata S et al (2008) Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Horm Behav 53:422–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janik D, Mrosovsky N (1994) Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651:174–182

    Article  PubMed  CAS  Google Scholar 

  • Jansen K, Van der Zee EA, Gerkema MP (2007) Vasopressin immunoreactivity, but not vasoactive intestinal polypeptide, correlates with expression of circadian rhythmicity in the suprachiasmatic nucleus of voles. Neuropeptides 41(4):207–216

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Shearman LP, Weaver DR et al (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    Article  PubMed  CAS  Google Scholar 

  • Kalamatianos T, Kalló I, Piggins HD et al (2004) Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J Comp Neurol 475(1):19–35

    Article  PubMed  CAS  Google Scholar 

  • Kallingal GJ, Mintz EM (2006) Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light. Eur J Neurosci 24(10):2853–2858

    Article  PubMed  Google Scholar 

  • Kallo I, Kalamatianos T, Wiltshire N et al (2004) Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur J Neurosci 19(8):2201–2211

    Article  PubMed  Google Scholar 

  • Kalsbeek A, Palm IF, La Fleur SE et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–469

    Article  PubMed  CAS  Google Scholar 

  • Karatsoreos IN, Silver R (2007) Minireview: The neuroendocrinology of the suprachiasmatic nucleus as a conductor of body time in mammals. Endocrinology 148:5640–5647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karatsoreos IN, Yan L, LeSauter J et al (2004) Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci 24:68–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karatsoreos IN, Romeo RD, McEwen BS et al (2006) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. Eur J Neurosci 23(4):1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Karatsoreos IN, Wang A, Sasanian J et al (2007) A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus. Endocrinology 148(11):5487–5495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karatsoreos IN, Butler MP, Lesauter J, Silver R (2011) Androgens modulate structure and function of the suprachiasmatic nucleus brain clock. Endocrinology 152:1970–1978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawamoto K, Nagano M, Kanda F et al (2003) Two types of VIP neuronal components in rat suprachiasmatic nucleus. J Neurosci Res 74(6):852–857

    Article  PubMed  CAS  Google Scholar 

  • Koinuma S, Asakawa T, Nagano M et al (2013) Regional circadian period difference in the suprachiasmatic nucleus of the mammalian circadian center. Eur J Neurosci 38:2832–2841

    PubMed  Google Scholar 

  • Kramer A, Yang FC, Snodgrass P et al (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  PubMed  CAS  Google Scholar 

  • Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nature Neurosci 9:212–219

    Article  PubMed  CAS  Google Scholar 

  • Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci 24:2449–2457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krout KE, Kawano J, Mettenleiter TC et al (2002) CNS input to the suprachiasmatic nucleus of the rat. Neuroscience 110(1):73–92

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Fukushima M, Nakai M et al (1997) Daily wheel running activity modifies the period of free-running rhythm in rats via intergeniculate leaflet. Physiol Behav 61:633–637

    Article  PubMed  CAS  Google Scholar 

  • Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433(3):312–334

    Article  PubMed  CAS  Google Scholar 

  • Leak RK, Card JP, Moore RY (1999) Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res 819:23–32

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Atkins N, Hatcher NG et al (2010) Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9:285–297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LeSauter J, Silver R (1998) Output signals of the SCN. Chronobiol Int 15(5):535–550

    Article  PubMed  CAS  Google Scholar 

  • LeSauter J, Silver R (1999) Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci 19:5574–5585

    PubMed  CAS  Google Scholar 

  • Li JD, Burton KJ, Zhang C et al (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296:R824–R830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu C, Weaver DR, Jin X et al (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  PubMed  CAS  Google Scholar 

  • Maywood ES, Reddy AB, Wong GK et al (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16(6):599–605

    Article  PubMed  CAS  Google Scholar 

  • Maywood ES, Chesham JE, O’Brien JA et al (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108(34):14306–14311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meijer JH, Michel S, van der Leest HT et al (2010) Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci 32:2143–2151

    Article  PubMed  Google Scholar 

  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Progress Neurobiol 93(3):421–443

    Article  CAS  Google Scholar 

  • Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508–534

    Article  PubMed  CAS  Google Scholar 

  • Moga MM, Weis RP, Moore RY (1995) Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol 359(2):221–238

    Article  PubMed  CAS  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moore RY (1996a) Entrainment pathways and the functional organization of the circadian system. In: Buijs R, Romijn HJ, Pennartz CMA, Mirmiran M (eds) Hypothalamic integration of circadian rhythms. Elsevier, Amsterdam, pp 103–119

    Google Scholar 

  • Moore RY (1996b). Organization of the human circadian system. Air Force Office Scientific research. Final report, pp: 1–10

    Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of circadian adrenal corticosterone rhythm following suprachiasmatic nucleus lesions in the rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Article  PubMed  CAS  Google Scholar 

  • Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Experimental Neurol 243:4–20

    Article  Google Scholar 

  • Morin LP, Blanchard JH, Moore RY (1992) Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the hamster. Vis Neurosci 8:219–230

    Article  PubMed  CAS  Google Scholar 

  • Moriya T, Yoshinobu Y, Kouzu Y et al (2000) Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J Neurosci Res 60:212–218

    Article  PubMed  CAS  Google Scholar 

  • Mrugala M, Zlomanczuk P, Jagota A et al (2000) Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflects prior photoperiod. Am J Physiol 278:R987–R994

    CAS  Google Scholar 

  • Nagano M, Adachi A, Nakahama K et al (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151

    PubMed  CAS  Google Scholar 

  • Nakamura W, Honma S, Shirakawa T et al (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14(4):666–674

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Watanabe K (2008) Regional differences in circadian period within the suprachiasmatic nucleus. Brain Res 1239:119–126

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Watanabe K, Ogura A et al (2004) The clock in the dorsal suprachiasmatic nucleus runs faster than that in the ventral. Eur J Neurosci 20:3199–3202

    Article  PubMed  Google Scholar 

  • Ono D, Honma S, Honma KI (2013) Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat Commun 4:1666

    Article  PubMed  CAS  Google Scholar 

  • Ota T, Fustin JM, Yamada H et al (2012) Circadian clock signals in the adrenal cortex. Mol Cell Endocrinology 349(1):30–37

    Article  CAS  Google Scholar 

  • Paratcha G, Ledda F (2008) GDNF and GFRa: a versatile molecular complex for developing neurons. Trends Neurosci 31(8):384–391

    Article  PubMed  CAS  Google Scholar 

  • Pauls S, Foley N, Foley DK, LeSauter J et al (2014) Differential contributions of intra- and inter-cellular mechanisms to spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, CRY- and VPAC2–null mutant mice. Eur J Neurosci 40:2528–2540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Piggins HD, Cutler DJ (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J Endocrinology 177:7–15

    Article  CAS  Google Scholar 

  • Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15(8):5612–5622

    PubMed  CAS  Google Scholar 

  • Prosser HM, Bradley A, Chesham JE et al (2007) Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci USA 104:648–653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: A multiphasic oscillator network regulated by light. J Neurosci 23(22):8070–8076

    PubMed  CAS  Google Scholar 

  • Reed HE, Piggins HD (2002) Neurotensin phase-shifts the firing rate rhythm of neurons in the rat suprachiasmatic nuclei in vitro. Eur J Neurosci 16(2):339–344

    Article  PubMed  Google Scholar 

  • Reed HE, Cutler DJ, Coen CW et al (2001) Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13(4):839–843

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Ann Rev Physiol 63(1):647–676

    Article  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Robinson BG, Frim DM, Schwartz WJ et al (1988) Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science 241(4863):342–344

    Article  PubMed  CAS  Google Scholar 

  • Saderi N, Cazarez-Márquez F, Buijs FN et al (2013) The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmits metabolic conditions. Neuroscience 246:291–300

    Article  PubMed  CAS  Google Scholar 

  • Schaap J, Albus H, van der Leest TH et al (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci USA 100:15994–15999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111:919–922

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Tominaga K, Inouye SIT (1998) Luminance-dependent decrease in vasoactive intestinal polypeptide in the rat suprachiasmatic nucleus. Neuroscience Lett 251(1):21–24

    Article  CAS  Google Scholar 

  • Silver R, Lehman MN, Gibson M et al (1990) Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res 525(1):45–58

    Article  PubMed  CAS  Google Scholar 

  • Silver R, LeSauter J, Tresco PA et al (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382(6594):810–813

    Article  PubMed  CAS  Google Scholar 

  • Silver R, Sookhoo AI, LeSauter J et al (1999) Multiple regulatory elements result in regional specificity in circadian rhythms of neuropeptide expression in mouse SCN. Neuroreport 10:3165–3174

    Article  PubMed  CAS  Google Scholar 

  • Slat E, Freeman GM Jr, Herzog ED (2013) The clock in the brain: neurons, glia and networks in daily rhythms. In: Kramer A, Merrow M (eds) Circadian clocks. Handbook of Experimental pharmacology, vol 217. Springer, Heidelberg, pp 104–123

    Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hipothalamic lesions. Proc Nat Acad Sci USA 69:1583–1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sumová A, Bendová Z, Sládek M et al (2004) Seasonal molecular timekeeping within the rat circadian clock. Physiol Res 53:S167–176

    PubMed  Google Scholar 

  • Ueda HR, Hayashi S, Chen W et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    Article  PubMed  CAS  Google Scholar 

  • Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Ann Rev Physiol 72:579–603

    Article  CAS  Google Scholar 

  • Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135(6):2662–2680

    PubMed  CAS  Google Scholar 

  • van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191(4):661–702

    Article  PubMed  Google Scholar 

  • van den Pol AN (1991) The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 17–50

    Google Scholar 

  • van der Leest HT, Rohling JH, Michel S et al (2009) Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS One 4(3):e4976

    Article  CAS  Google Scholar 

  • Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Rev 32(2–3):380–412

    Article  PubMed  CAS  Google Scholar 

  • Vida B, Hrabovszky E, Kalamatianos T et al (2008) Oestrogen receptor alpha and beta immunoreactive cells in the suprachiasmatic nucleus of mice: distribution, sex differences and regulation by gonadal hormones. J Neuroendocrinol 20:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T et al (1999) Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96(21):12114–12119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vosko AM, Schroeder A, Loh DH et al (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152:165–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus I. Studies using anterograde transport of Phaseolus vulgaris- Leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13(2):100–112

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M et al (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Okamura H (2002) Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 15:1153–1162

    Article  PubMed  Google Scholar 

  • Yan L, Silver R (2008) Day-length encoding through tonic photic effects in the retinorecipient SCN region. Eur J Neurosci 28:2108–2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan L, Karatsoreos I, Lesauter J et al (2007) Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb Symp Quant Biol 72:527–541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yao Z, Shafer OT (2014) The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343(6178):1516–1520

    Article  PubMed  CAS  Google Scholar 

  • Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging 13(5):479–493

    Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: unraveling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Albrecht U, Kaasik K et al (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research from Rae Silver lab reported here was supported by NIH grants NS37919 MH 075045 and NSF grant 21-02-0530-120045 (to R.S.) and postdoctoral fellowship awards from CONACYT 186901 (to E.M.) and CONACYT 186902 (to C.J.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rae Silver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morgado, E., Juárez-Portilla, C., Silverman, AJ., Silver, R. (2015). Relevance of Network Organization in SCN Clock Function. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_9

Download citation

Publish with us

Policies and ethics