Skip to main content

The Plasmin System in Milk and Dairy Products

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

Abstract

Plasmin is the principal indigenous proteinase present in bovine milk, and has been the focus of many studies as it contributes in diverse ways to the quality of milk and milk-based products. The plasmin system is a complex protease-protease inhibitor system, which involves a series of interactions that ultimately result in the activation of plasminogen to active plasmin. The components of the plasmin system within bovine milk have been successfully quantified, isolated and characterised. Components of the plasmin system are affected by numerous factors such as processing conditions, environmental factors and storage conditions, which ultimately alter the rate/extent of plasminogen activation and plasmin-induced proteolysis. Factors such as pH, heat treatment, presence of whey proteins and temperature of storage can also influence the rate of plasmin-induced hydrolysis of caseins in milk and other dairy products. Plasmin-mediated hydrolysis can have both beneficial and negative effects on a wide variety of dairy products; plasmin is of great importance in the development of flavour and texture during cheese ripening for example, whereas, in ultra-high-temperature milk and high protein dairy-based beverages, plasmin-induced proteolysis can cause undesirable gelation. In this chapter, an overview of the current state of knowledge and areas that require additional research is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen T, Ollikainen P (2011) Effect of microfiltration of milk on plasmin activity. Int Dairy J 21:193–197

    Article  CAS  Google Scholar 

  • Aimutis WR, Eigel WN (1982) Identification of λ-casein as plasmin-derived fragments of bovine αs1-casein. J Dairy Sci 65:175–181

    Article  CAS  Google Scholar 

  • Alichanidis E, Wrathall JHM, Andrews AT (1986) Heat stability of plasmin (milk proteinase) and plasminogen. J Dairy Res 53:259–269

    Article  CAS  PubMed  Google Scholar 

  • Andrews AT (1982) A new approach to the general detection and measurement of proteinase and proteinase inhibitor activities. Biochim Biophys Acta 708:194–202

    Article  CAS  PubMed  Google Scholar 

  • Andrews AT (1983a) Breakdown of caseins by proteinases in bovine milks with high somatic cell counts arising from mastitis or infusion with bacterial endotoxin. J Dairy Res 50:57–66

    Article  CAS  PubMed  Google Scholar 

  • Andrews AT (1983b) Proteinases in normal bovine milk and their action on caseins. J Dairy Res 50:45–55

    Article  CAS  PubMed  Google Scholar 

  • Andrews AT, Alichanidis E (1983) Proteolysis of caseins and the proteose-peptone fraction of bovine milk. J Dairy Res 50:275–290

    Article  CAS  Google Scholar 

  • Anema SG (2017) Storage stability and age gelation of reconstituted ultra-high temperature skim milk. Int Dairy J 75:56–67

    Article  CAS  Google Scholar 

  • Aslam M, Hurley WL (1997) Proteolysis of milk proteins during involution of the bovine mammary gland. J Dairy Sci 80:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Babcock SM, Russell HL (1897) Unorganized ferments of milk: A new factor in the ripening of cheese. In: Fourteenth annual report of the Wisconsin agricultural experiment station, pp 161–193

    Google Scholar 

  • Baer A, Ryba I, Collin JC (1994) Binding of bovine plasminogen to immobilized casein and its activation thereon. Int Dairy J 4:597–616

    Article  CAS  Google Scholar 

  • Baldi A, Politis I, Barbano DM, Gorewit RC (1993) Primary characterization and determination of plasminogen activator in bovine milk. J Dairy Sci 76(Supp 1):92

    Google Scholar 

  • Barbano DM, Rasmussen RR, Lynch JM (1991) Influence of milk somatic cell count and milk age on cheese yield. J Dairy Sci 74:369–388

    Article  Google Scholar 

  • Barry JG, Donnelly WJ (1980) Casein compositional studies: I. The composition of casein from Friesian herd milks. J Dairy Res 47:71–81

    Article  CAS  Google Scholar 

  • Barry JG, Donnelly WJ (1981) Casein compositional studies: II. The effect of secretory disturbance on casein composition in freshly drawn and aged bovine milks. J Dairy Res 48:437–446

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products: an update. Int Dairy J 6:435–457

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ, Ernstrom CA (1991a) Plasmin activity and milk coagulation. J Dairy Sci 74:3677–3685

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ, Ernstrom CA (1991b) Casein interference in bovine plasmin assays using a synthetic substrate. J Dairy Sci 74:4119–4124

    Article  CAS  PubMed  Google Scholar 

  • Bastian ED, Hansen KG, Brown RJ (1993) Inhibition of plasmin by β-lactoglobulin using casein and a synthetic substrate. J Dairy Sci 76:3354–3361

    Article  CAS  PubMed  Google Scholar 

  • Bastian ED, Lo CG, David KMM (1997) Plasminogen activation in cheese milk: influence on Swiss cheese ripening. J Dairy Sci 80:245–251

    Article  CAS  Google Scholar 

  • Benfeldt C (1992) Isolation and characterization of plasminogen and fragments of plasminogen from bovine milk. Thesis, Department of Molecular Biology, University of Aarhus, Denmark

    Google Scholar 

  • Benfeldt C (2006) Ultrafiltration of cheese milk: effect on plasmin activity and proteolysis during cheese ripening. Int Dairy J 16:600–608

    Article  CAS  Google Scholar 

  • Benfeldt C, Larsen LB, Rasmussen JT, Andreasen PA, Petersen TE (1995) Isolation and characterization of plasminogen and plasmin from bovine milk. Int Dairy J 5:577–592

    Article  CAS  Google Scholar 

  • Benfeldt C, Sørensen J, Ellegård KH, Petersen TE (1997) Heat treatment of cheese milk: effect on plasmin activity and proteolysis during cheese ripening. Int Dairy J 7:723–731

    Article  CAS  Google Scholar 

  • Berglund L, Andersen MD, Petersen TE (1995) Cloning and characterization of the bovine plasminogen cDNA. Int Dairy J 5:593–603

    Article  CAS  Google Scholar 

  • Bhatt H, Cucheval A, Coker C, Patel H, Carr A, Bennett R (2014) Effect of lactosylation on plasmin-induced hydrolysis of β-casein. Int Dairy J 38:213–218

    Article  CAS  Google Scholar 

  • Bhatt H, Cucheval A, Coker C, Patel H, Carr A, Bennett R (2017) Effect of micellar structure of casein and its modification on plasmin-induced hydrolysis. Int Dairy J 75:75–82

    Article  CAS  Google Scholar 

  • Booth NA, Backmann F (2006). Plasminogen-plasmin system. In: Colman RW, Marder VJ, Clowes AW, George, JN, Goldhaber SZ (eds) Hemostasis and thrombosis: basic principles and clinical practice, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 335–364

    Google Scholar 

  • Burbrink CN, Hayes KD (2006) Effect of thermal treatment on the activation of bovine plasminogen. Int Dairy J 16:580–585

    Article  CAS  Google Scholar 

  • Caessens PWJR, Visser S, Gruppen H, Voragen AGJ (1999a) β-Lactoglobulin hydrolysis. 1. Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, trypsin, and Staphylococcus aureus V8 protease. J Agric Food Chem 47:2973–2979

    Article  CAS  PubMed  Google Scholar 

  • Caessens PWJR, Daamen WF, Gruppen H, Visser S, Voragen AGJ (1999b) β-lactoglobulin hydrolysis. 2. Peptide identification, SH/SS exchange, and functional properties of hydrolysate fractions formed by the action of plasmin. J Agric Food Chem 47:2980–2990

    Article  CAS  PubMed  Google Scholar 

  • Carini S, Bozzolati M (1970) Milk proteases. I. Proteolysis of casein. Sci Tecn Lattiero Casearia 21:277–290

    Google Scholar 

  • Castellino FJ, Ploplis VA, Powell JR, Strickland DK (1981) The existence of independent domain structures in human Lys77-plasminogen. J Biol Chem 256:4778–4782

    Article  CAS  PubMed  Google Scholar 

  • Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647–654

    Google Scholar 

  • Cheftel JC (1995) High-pressure, microbial inactivation and food preservation. Food Sci Technol Int 1:75–90

    Article  Google Scholar 

  • Chen JH, Ledford RA (1971) Purification and characterization of milk protease. J Dairy Sci 54:763

    Google Scholar 

  • Chism GW, Huang AE, Marshall JA (1979) Sensitive assay for proteases in sterile milk. J Dairy Sci 62:1798–1800

    Article  CAS  Google Scholar 

  • Choi LH, Were LM, Nielsen SS (2006) Effects of incubation temperature and salt concentration on plasminogen activators in cheese curd. Int Dairy J 16:609–618

    Article  CAS  Google Scholar 

  • Chove LM, Grandison AS, Lewis MJ (2011) Comparison of methods for analysis of proteolysis by plasmin in milk. J Dairy Res 78:184–190

    Article  CAS  PubMed  Google Scholar 

  • Christensen S, Sottrup-Jensen L (1992) Bovine α2-antiplasmin N-terminal and reactive site sequence. FEBS Lett 312:100–104

    Article  CAS  PubMed  Google Scholar 

  • Christensen S, Sottrup-Jensen L (1994) Characterization of two serpins from bovine plasma and milk. Biochem J 303:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen S, Wiegers T, Hermansen J, Sottrup-Jensen L (1995a) Plasma-derived protease inhibitors in bovine milk. Int Dairy J 5:439–449

    Article  CAS  Google Scholar 

  • Christensen S, Sottrup-Jensen L, Christensen U (1995b) Stopped-flow fluorescence kinetics of bovine α2-antiplasmin inhibition of bovine midiplasmin. Biochem J 305:97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christman JK, Silverstein SC, Acs G (1977) Proteinases in mammalian cells and tissues. North Holland Publishing Company, New York, pp 91–149

    Google Scholar 

  • Collen D (1980) On the regulation and control of fibrinolysis. Thromb Haemost 43:77–89

    Article  CAS  PubMed  Google Scholar 

  • Collen D, Lijnen HR, Verstraete M (1985) Thrombolysis. Biological and therapeutic properties of new thrombolytic agents. Churchill Livingstone, New York

    Google Scholar 

  • Collin JC, Compagnone P, Ryba I, Baer A (1988) Determination of plasmin (alkaline milk proteinase) and chymosin in milk products by the ELISA assay. Lait 68:235–239

    Article  CAS  Google Scholar 

  • Corradini C, Pecchini G (1981) Effect on proteinases of different UHT treatments. Neth Milk Dairy J 35:393–395

    CAS  Google Scholar 

  • Crudden A, Kelly AL (2003) Studies of plasmin activity in whey. Int Dairy J 13:987–993

    Article  CAS  Google Scholar 

  • Crudden A, Fox PF, Kelly AL (2005a) Factors affecting the hydrolytic action of plasmin in milk. Int Dairy J 15:305–313

    Article  CAS  Google Scholar 

  • Crudden A, Oliveira JC, Kelly AL (2005b) Kinetic studies of the thermal inactivation of plasmin in acid or sweet whey. Int Dairy J 15:1245–1253

    Article  CAS  Google Scholar 

  • Dalgleish DG, Law AJR (1989) pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. J Dairy Res 56:727–735

    Article  Google Scholar 

  • Dalsgaard TK, Nielsen JH, Larsen LB (2007) Proteolysis of milk proteins lactosylated in model systems. Mol Nutr Food Res 51:404–414

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard TK, Heegaard CW, Larsen LB (2008) Plasmin digestion of photooxidized milk proteins. J Dairy Sci 91:2175–2183

    Article  CAS  PubMed  Google Scholar 

  • Datta N, Deeth HC (2001) Age gelation of UHT milk—a review. Food Bioprod Process 79:197–210

    Article  Google Scholar 

  • Davies DT, Law AJR (1983) Variation in the protein composition of bovine casein micelles and serum casein in relation to micellar size and milk temperature. J Dairy Res 50:67–75

    Article  CAS  Google Scholar 

  • de Koning PJ, Kaper J, Rollema HS, Driessen FM (1985) Age-thinning and gelation in unconcentrated and concentrated UHT-sterilized skim milk; effect of native milk proteinase. Neth Milk Dairy J 39:71–87

    Google Scholar 

  • de Rham O, Andrews AT (1982) Qualitative and quantitative determination of proteolysis in mastitic milks. J Dairy Res 49:587–596

    Article  PubMed  Google Scholar 

  • Donnelly WJ, Barry JG (1983) Casein compositional studies. III. Changes in Irish milk for manufacturing and role of milk proteinase. J Dairy Res 50:433–441

    Article  CAS  Google Scholar 

  • Donnelly WJ, Barry JG, Richardson T (1980) 14C-methylated β-casein as a substrate for plasmin, and its application to the study of milk protein transformations. Biochim Biophys Acta 626:117–126

    Article  CAS  PubMed  Google Scholar 

  • Driessen FM, van der Waals CB (1978) Inactivation of native milk proteinase by heat treatment. Neth Milk Dairy J 32:245–254

    CAS  Google Scholar 

  • Dulley JR (1972) Bovine milk protease. J Dairy Res 39:1–9

    Article  CAS  PubMed  Google Scholar 

  • Eggers CT, Murray IA, Valerie A, Craik CS (2004) The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem J 379:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigel WN (1977) Effect of bovine plasmin on αs1-B and κ-A caseins. J Dairy Sci 60:1399–1403

    Article  CAS  PubMed  Google Scholar 

  • Enright E, Kelly AL (1999) The influence of heat treatment of milk on susceptibility of casein to proteolytic attack by plasmin. Milchwissenschaft 54:491–493

    CAS  Google Scholar 

  • Enright E, Bland AP, Needs EC, Kelly AL (1999) Proteolysis and physicochemical changes in milk on storage as affected by UHT treatment, plasmin activity and KIO3 addition. Int Dairy J 9:581–591

    Article  CAS  Google Scholar 

  • Fajardo-Lira C, Oria M, Hayes KD, Nielsen SS (2000) Effect of psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. J Dairy Sci 83:2190–2199

    Article  CAS  PubMed  Google Scholar 

  • Farkye NY (1986) Role of chymosin and porcine pepsin in Cheddar cheese ripening. PhD Dissertation, Utah State University, Logan, UT

    Google Scholar 

  • Farkye NY, Fox PF (1990) Observations on plasmin activity in cheese. J Dairy Res 57:413–418

    Article  CAS  Google Scholar 

  • Farkye NY, Fox PF (1991) Preliminary study on the contribution of plasmin to proteolysis in Cheddar cheese: cheese containing plasmin inhibitor, 6-aminohexanoic acid. J Agric Food Chem 39:786–788

    Article  CAS  Google Scholar 

  • Farkye N, Fox PF (1992) Contribution of plasmin to Cheddar cheese ripening: effect of added plasmin. J Dairy Res 59:209–216

    Article  CAS  Google Scholar 

  • Farkye NY, Landkrammer CF (1992) Milk plasmin activity influence of cheddar cheese quality during ripening. J Food Sci 57:622–628

    Article  CAS  Google Scholar 

  • Feeney EP, Fox PF, Guinee TP (2001) Effect of ripening temperature on the quality of low moisture Mozzarella cheese: 1. Composition and proteolysis. Lait 81:463–474

    Article  CAS  Google Scholar 

  • Fox PF (1981) Proteinases in dairy technology. Neth Milk Dairy J 35:233–253

    CAS  Google Scholar 

  • Fox PF (1982) Proteolysis in milk and dairy products. Biochem Soc Trans 10:282–284

    Article  CAS  PubMed  Google Scholar 

  • Fox PF (1989) Proteolysis during cheese manufacture and ripening. J Dairy Sci 72:1379–1400

    Article  CAS  Google Scholar 

  • Fox PF, Singh TK, McSweeney PLH (1994) Proteolysis in cheese during ripening. In: Andrews AT, Varley J (eds) Biochemistry of milk products. Royal Society of Chemistry, Cambridge, pp 1–31

    Google Scholar 

  • Fox PF, Wallace JM, Morgan S, Lynch CM, Niland EJ, Tobin J (1996) Acceleration of cheese ripening. Ant Leeuwenhoek 70:271–297

    Article  CAS  Google Scholar 

  • Fox PF, Uniacke-Lowe T, McSweeney PLH, O’Mahony JA (2015) Salts of milk. In: Dairy chemistry and biochemistry, 2nd edn. Springer, Cham, pp 241–270

    Chapter  Google Scholar 

  • Frohbieter KA, Ismail B, Nielsen SS, Hayes KD (2005) Effects of Pseudomonas fluorescens M3/6 bacterial protease on plasmin system and plasminogen activation. J Dairy Sci 88:3392–3401

    Article  CAS  PubMed  Google Scholar 

  • García-Risco MR, Cortés E, Carrascosa AV, López-Fandiño R (1998) Microbiological and chemical changes in high-pressure-treated milk during refrigerated storage. J Food Prot 61:735–737

    Article  PubMed  Google Scholar 

  • García-Risco MR, Recio I, Molina E, López-Fandiño R (2003) Plasmin activity in pressurized milk. J Dairy Sci 3:728–734

    Article  Google Scholar 

  • Garía-Risco MR, Olano A, Ramos M, López-Fandiño R (2000) Micellar changes induced by high pressure. Influence in the proteolytic activity and organoleptic properties of milk. J Dairy Sci 83:2184–2189

    Article  Google Scholar 

  • Gazi I, Vilalva IC, Huppertz T (2014) Plasmin activity and proteolysis in milk protein ingredients. Int Dairy J 38:208–212

    Article  CAS  Google Scholar 

  • Grufferty MB (1986) Alkaline milk proteinase: some of its characteristics and its influence, and that of milk salts, on some processing properties of milk. Doctoral dissertation, PhD thesis, National University of Ireland

    Google Scholar 

  • Grufferty MB, Fox PF (1986) Potassium iodate-induced proteolysis in ultra heat treated milk during storage: the role of β-lactoglobulin and plasmin. J Dairy Res 53:601–613

    Article  CAS  Google Scholar 

  • Grufferty MB, Fox PF (1988a) Milk alkaline proteinase. J Dairy Res 55:609–630

    Article  CAS  PubMed  Google Scholar 

  • Grufferty MB, Fox PF (1988b) Factors affecting the release of plasmin activity from casein micelles. N Z J Dairy Sci Technol 23:153–163

    CAS  Google Scholar 

  • Grufferty MB, Fox PF (1988c) Functional properties of casein hydrolyzed by alkaline milk proteinase. N Z J Dairy Sci Technol 23:95–108

    CAS  Google Scholar 

  • Halpaap I, Reimerdes EH, Klostermeyer H (1977) Milk proteinases. 6: comparative isolation of plasminogen from bovine blood and a proteinase from cow's milk. Milchwissenschaft 32:341–346

    CAS  Google Scholar 

  • Harper WJ, Robertson JA, Gould IA (1960) Observations on milk protease. J Dairy Sci 43:1850–1851

    Article  CAS  Google Scholar 

  • Hayes KD, Nielsen SS (2000) Plasmin levels in fresh milk whey and commercial whey protein products. J Dairy Sci 83:387–394

    Article  CAS  PubMed  Google Scholar 

  • Heegaard CW, Christensen T, Andreasen PA (1993) t-PA binds to casein micelles in bovine milk. In: Proc mol cell biol plasminogen activation, Cold Spring Harbor, New York, p 64

    Google Scholar 

  • Heegaard CW, Christensen T, Rasmussen MD, Benfeldt C, Jensen NE, Sejrsen K, Petersen TE, Andreasen PA (1994a) Plasminogen activators in bovine milk during mastitis, an inflammatory disease. Fibrinolysis 8:22–30

    Article  CAS  Google Scholar 

  • Heegaard CW, Rasmussen LK, Andreasen PA (1994b) The plasminogen activation system in bovine milk: differential localization of tissue-type plasminogen activator and urokinase in milk fractions is caused by binding to casein and urokinase receptor. Biochim Biophys Acta 1222:45–55

    Article  CAS  PubMed  Google Scholar 

  • Heegaard CW, Andreasen PA, Petersen TE, Rasmussen LK (1997) Binding of plasminogen and tissue-type plasminogen activator to dimeric αs2-casein accelerates plasmin generation. Fibrinol Proteol 11:29–36

    Article  CAS  Google Scholar 

  • Hofmann CJ, Keenan TW, Eigel WN (1979) Association of plasminogen with bovine milk fat globule membrane. Int J Biochem 10:909–917

    Article  CAS  PubMed  Google Scholar 

  • Humbert G, Alais C (1979) Review of the progress of dairy science: the milk proteinase system. J Dairy Res 46:559–571

    Article  CAS  PubMed  Google Scholar 

  • Humbert G, Guingamp MF, Linden G, Gaillard JL (2006) The clarifying reagent, or how to make the analysis of milk and dairy products easier. J Dairy Res 73:464–471

    Article  CAS  PubMed  Google Scholar 

  • Huppertz T (2013) Chemistry of the caseins. In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry: vol 1A: proteins: basic aspects, 4th edn. Springer, Boston, pp 135–160

    Chapter  Google Scholar 

  • Huppertz T, Fox PF, Kelly AL (2004a) Plasmin activity and proteolysis in high pressure-treated bovine milk. Lait 84:297–304

    Article  CAS  Google Scholar 

  • Huppertz T, Fox PF, Kelly AL (2004b) High pressure treatment of bovine milk: effects on casein micelles and whey proteins. J Dairy Res 71:97–106

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y (1989) A method for determination of γ-casein and its use for investigating proteolysis in bovine milk. J Dairy Res 56:619–629

    Article  CAS  Google Scholar 

  • Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93:4999–5009

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Choi LH, Were LM, Nielsen SS (2006) Activity and nature of plasminogen activators associated with the casein micelle. J Dairy Sci 89:3285–3295

    Article  CAS  PubMed  Google Scholar 

  • Johnsen LB, Poulsen K, Kilian M, Petersen TE (1999) Purification and cloning of a streptokinase from Streptococcus uberis. Infect Immun 67:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HA (1974) The composition of milk. In: Webb BH, Johnson AH, Alford JA (eds) Fundamentals of dairy chemistry, 2nd edn. AVI Publishing Co. Inc, Westport, pp 1–57

    Google Scholar 

  • Kaminogawa S, Yamauchi K, Tsugo T (1969) Properties of milk protease concentrated from acid-precipitated casein. Jpn J Zootech Sci 40:559–565

    CAS  Google Scholar 

  • Kaminogawa S, Mizobuchi H, Yamauchi K (1972) Comparison of bovine milk protease with plasmin. Agric Biol Chem 36:2163–2167

    Article  CAS  Google Scholar 

  • Karlan BY, Clark AS, Littlefield BA (1987) A highly sensitive chromogenic microtiter plate assay for plasminogen activators which quantitatively discriminates between the urokinase and tissue-type activators. Biochem Biophys Res Commun 142:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kelly AL (1995) Variations in total and differential milk somatic cell counts and plasmin levels and their role in proteolysis and quality of milk and cheese. PhD Thesis, National University of Ireland, Cork

    Google Scholar 

  • Kelly AL, Foley J (1997) Proteolysis and storage stability of UHT milk as influenced by milk plasmin activity, plasmin/β-lactoglobulin complexation, plasminogen activation and somatic cell count. Int Dairy J 7:411–420

    Article  CAS  Google Scholar 

  • Kelly AL, Fox PF (2006) Indigenous enzymes in milk: a synopsis of future research requirements. Int Dairy J 16:707–715

    Article  CAS  Google Scholar 

  • Kelly AL, McSweeney PLH (2003) Indigenous proteinases in milk. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry: vol 1. Proteins, 3rd edn. Plenum Press, New York, pp 495–521

    Chapter  Google Scholar 

  • Kennedy A, Kelly AL (1997) The influence of somatic cell count on the heat stability of bovine milk plasmin activity. Int Dairy J 7:717–721

    Article  CAS  Google Scholar 

  • Kiermeier F, Semper G (1960) Incidence of a proteolytic enzyme and a trypsin-inhibitor in cows’ milk. Part I. Proteolytic activity. Z Lebensm-Unters-Forsch 111:282–307

    Article  CAS  Google Scholar 

  • Kohlmann KL, Nielsen SS, Ladisch MR (1988) Effect of serine proteolytic enzymes (trypsin and plasmin), trypsin inhibitor, and plasminogen activator addition to ultra-high temperature processed milk. J Dairy Sci 71:1728–1739

    Article  CAS  Google Scholar 

  • Korycha-Dahl M, Dumas BR, Chene N, Martal J (1983) Plasmin activity in milk. J Dairy Sci 66:704–711

    Article  Google Scholar 

  • Larson NK, Ismail B, Nielsen SS, Hayes KD (2006) Activity of Bacillus polymyxa protease on components of the plasmin system in milk. Int Dairy J 16:586–592

    Article  CAS  Google Scholar 

  • Lawrence RC, Creamer LK, Gilles J (1987) Texture development during cheese ripening. J Dairy Sci 70:1748–1760

    Article  CAS  Google Scholar 

  • Le Bars D, Gripon JC (1989) Specificity of plasmin towards bovine αs2-casein. J Dairy Res 56:817–821

    Article  PubMed  Google Scholar 

  • Leigh JA (1994) Purification of a plasminogen activator from Streptococcus uberis. FEMS Microbiol Lett 118:153–158

    Article  CAS  PubMed  Google Scholar 

  • Lelievre J, Lawrence RC (1988) Manufacture of cheese from milk concentrated by ultrafiltration. J Dairy Res 55:465–478

    Article  Google Scholar 

  • Levi M, Roem D, Kamp AM, de Boer JP, Hack CE, ten Cate JW (1993) Assessment of the relative contribution of different protease inhibitors to the inhibition of plasmin in vivo. Thromb Haemost 70:141–146

    Google Scholar 

  • Lindberg T (1979) Protease inhibitors in human milk. Pediatr Res 13:969–972

    Article  CAS  PubMed  Google Scholar 

  • López-Fandiño R, De la Fuente MA, Ramos M, Olano A (1998) Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. J Dairy Res 65:69–78

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lu DD, Nielsen SS (1993a) Isolation and characterization of native bovine milk plasminogen activators. J Dairy Sci 76:3369–3383

    Article  CAS  Google Scholar 

  • Lu DD, Nielsen SS (1993b) Assays for native plasminogen activators in bovine milk. J Dairy Sci 76:3362–3368

    Article  CAS  Google Scholar 

  • Manji B, Kakuda Y, Arnott DR (1986) Effect of storage temperature on age gelation of ultra-high temperature milk processed by direct and indirect heating systems. J Dairy Sci 69:2994–3001

    Article  Google Scholar 

  • Mara O, Roupie C, Duffy A, Kelly AL (1998) The curd-forming properties of milk as affected by the action of plasmin. Int Dairy J 8:807–812

    Article  CAS  Google Scholar 

  • Markus G, DePasquale JL, Wissler FC (1978) Quantitative determination of the binding of ε-aminocaproic acid to native plasminogen. J Biol Chem 253:727–732

    Article  CAS  PubMed  Google Scholar 

  • Markus G, Hitt S, Harvey SR, Tritsch GL (1993) Casein, a powerful enhancer of the rate of plasminogen activation. Fibrinolysis 7:229–236

    Article  CAS  Google Scholar 

  • McKellar RC (1981) Development of off-flavors in ultra-high temperature and pasteurized milk as a function of proteolysis. J Dairy Sci 64:2138–2145

    Article  CAS  Google Scholar 

  • McSweeney PLH, Olson NF, Fox PF, Healy A, Højrup P (1993) Proteolytic specificity of plasmin on bovine αs1-Casein. Food Biotechnol 7:143–158

    Article  CAS  Google Scholar 

  • Metwalli AAM, de Jongh HHJ, van Boekel MAJS (1998) Heat inactivation of bovine plasmin. Int Dairy J 8:47–56

    Article  CAS  Google Scholar 

  • Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins 24:81–91

    Article  CAS  PubMed  Google Scholar 

  • Mullins DE, Rohlich ST (1983) The role of proteinase in cellular invasiveness. Biochim Biophys Acta 695:177–214

    CAS  PubMed  Google Scholar 

  • Needs EC, Capellas M, Bland AP, Manoj P, MacDougal D, Paul G (2000a) Comparison of heat and pressure treatments of skim milk, fortified with whey protein concentrate, for set yogurt preparation: effects on milk proteins and gel structure. J Dairy Res 67:329–348

    Article  CAS  PubMed  Google Scholar 

  • Needs EC, Stenning RA, Gill AL, Ferragut V, Rich GT (2000b) High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. J Dairy Res 67:31–42

    Article  CAS  PubMed  Google Scholar 

  • Newstead DF, Paterson G, Anema SG, Coker CJ, Wewala AR (2006) Plasmin activity in direct-steam-injection UHT-processed reconstituted milk: effects of preheat treatment. Int Dairy J 16:573–579

    Article  CAS  Google Scholar 

  • Nielsen SS (2002) Plasmin system and microbial proteases in milk: characteristics, roles, and relationship. J Agric Food Chem 50:6628–6634

    Article  CAS  PubMed  Google Scholar 

  • Noomen A (1975) Proteolytic activity of milk protease in raw and pasteurized cow's milk. Neth Milk Dairy J 29:153–161

    CAS  Google Scholar 

  • O’Mahony JA, Fox PF, Kelly AL (2013) Indigenous enzymes of milk. In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry: vol 1A: proteins: basic aspects, 4th edn. Springer, Boston, MA, pp 337–385

    Chapter  Google Scholar 

  • O'Keeffe AM (1984) Seasonal and lactational influences on moisture content of Cheddar cheese. Ir J Food Sci Technol 8:27–37

    CAS  Google Scholar 

  • Okigbo LM, Richardson GH, Brown RJ, Ernstrom CA (1985) Casein composition of cow's milk of different chymosin coagulation properties. J Dairy Sci 68:1887–1892

    Article  CAS  Google Scholar 

  • Oliver SP, Pighetti GM, Almeida RA (2011) Enviromental pathogens. In: Fuquay JW, Fox PF, McSweeney PLH (eds) Encyclopedia of dairy sciences, vol 3, 2nd edn. Academic Press, Oxford, p 415

    Chapter  Google Scholar 

  • Ollikainen P, Kivelä T (1989) The importance of plasmin in swiss-type cheese ripening. Milchwissenschaft 44:204–206

    CAS  Google Scholar 

  • Ozen BF, Hayes KD, Mauer LJ (2003) Measurement of plasminogen concentration and differentiation of plasmin and plasminogen using Fourier-transform infrared spectroscopy. Int Dairy J 13:441–446

    Article  CAS  Google Scholar 

  • Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot 58:524–529

    Article  PubMed  Google Scholar 

  • Pierzchala PA, Dorn CP, Zimmerman M (1979) A new fluorogenic substrate for plasmin. Biochem J 183:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihlanto-Leppälä A, Pahkala E, Antila V (1993) Hydrolysis of κ-casein in solution by chymosin, plasmin, trypsin and Lactobacillus proteinases. Agric Sci Finl 2:489–496

    Google Scholar 

  • Politis I, Hang KNK, Giroux RN (1989a) Environmental factors affecting plasmin activity in milk. J Dairy Sci 72:1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Politis I, Lachance E, Block E, Turner JD (1989b) Plasmin and plasminogen in bovine milk: a relationship with involution? J Dairy Sci 72:900–906

    Article  CAS  PubMed  Google Scholar 

  • Politis I, Zhao X, McBride BW, Burton JH, Turner JD (1991) Plasminogen activator production by bovine milk macrophages and blood monocytes. Am J Vet Res 52:1208–1213

    CAS  PubMed  Google Scholar 

  • Politis I, Barbano DM, Gorewit RC (1992) Distribution of plasminogen and plasmin in fractions of bovine milk. J Dairy Sci 75:1402–1410

    Article  CAS  PubMed  Google Scholar 

  • Politis I, Zavizion B, Barbano DM, Gorewit RC (1993) Enzymatic assay for the combined determination of plasmin plus plasminogen in milk: revisited. J Dairy Sci 76:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Politis I, White JH, Zavizion B, Goldberg JJ, Guo MR, Kindstedt P (1995) Effect of individual caseins on plasminogen activation by bovine urokinase-type and tissue-type plasminogen activators. J Dairy Sci 78:484–490

    Article  CAS  PubMed  Google Scholar 

  • Prado BM, Sombers SE, Ismail B, Hayes KD (2006) Effect of heat treatment on the activity of inhibitors of plasmin and plasminogen activators in milk. Int Dairy J 16:593–599

    Article  CAS  Google Scholar 

  • Prado BM, Ismail B, Ramos O, Hayes KD (2007) Thermal stability of plasminogen activators and plasminogen activation in heated milk. Int Dairy J 17:1028–1033

    Article  CAS  Google Scholar 

  • Precetti AS, Oria MP, Nielsen SS (1997) Presence in bovine milk of two protease inhibitors of the plasmin system. J Dairy Sci 80:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Rademacher B, Pfeiffer B, Kessler HG (1998) Inactivation of microorganisms and enzymes in pressure-treated raw milk. In: Isaaacs NS (ed) High pressure food science, bioscience and chemistry. The Royal Society of Chemistry, Cambridge, pp 145–151

    Chapter  Google Scholar 

  • Rånby M, Norrman B, Wallén P (1982) A sensitive assay for tissue plasminogen activator. Thromb Res 27:743–749

    Article  PubMed  Google Scholar 

  • Rauh VM, Bakman M, Ipsen R, Paulsson M, Kelly AL, Larsen LB, Hammershøj M (2014a) The determination of plasmin and plasminogen-derived activity in turbid samples from various dairy products using an optimised spectrophotometric method. Int Dairy J 38:74–80

    Article  CAS  Google Scholar 

  • Rauh VM, Sundgren A, Bakman M, Ipsen R, Paulsson M, Larsen LB, Hammershøj M (2014b) Plasmin activity as a possible cause for age gelation in UHT milk produced by direct steam infusion. Int Dairy J 38:199–207

    Article  CAS  Google Scholar 

  • Rauh VM, Johansen LB, Ipsen R, Paulsson M, Larsen LB, Hammershøj M (2014c) Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness. J Agric Food Chem 62:6852–6860

    Article  CAS  PubMed  Google Scholar 

  • Reimerdes EH, Herlitz E (1979) The formation of γ-caseins during cooling of raw milk. J Dairy Res 46:219–221

    Article  CAS  PubMed  Google Scholar 

  • Reimerdes EH, Klostermeyer H (1974) Milchproteasen. I. Micellenassoziierte protease-anreicherung und hydrolyse von caseinen. Milchwissenschaft 29:517–523

    CAS  Google Scholar 

  • Reimerdes EH, Mrowetz G, Klostermeyer H (1975) Milchproteasen. IV. Differenzierung der micellenassoziierten Aktivitat mit Aminosaure-4-nitroaniliden. Milchwissenschaft 30:271–274

    CAS  Google Scholar 

  • Reimerdes EH, Klostermeyer H, Sayk E (1976) Milch-Proteinasen. VII. Fraktionierung von komponenten des proteinasen-inhibitor-systems der milch. Milchwissenschaft 31:329–334

    CAS  Google Scholar 

  • Reimerdes EH, Petersen F, Kielwein G (1979) Milk proteinases. 9. Proteolytic activity profiles of casein micelles, milk serum, blood serum and Pseudomonas fluorescens. Milchwissenschaft 34:548–551

    CAS  Google Scholar 

  • Reimerdes EH, Halpaap J, Klostermeyer H (1981) Milk proteases. 8. Comparative characterization of plasmin from cow's blood with a serine proteinase from cow’s milk. Milchwissenschaft 36:19–22

    CAS  Google Scholar 

  • Ribadeau-Dumas B, Brignon G, Grosclaude F, Mercier JC (1972) Structure primaire de la caséine β bovine: séquence complète. Eur J Biochem 25:505–514

    Article  CAS  PubMed  Google Scholar 

  • Richardson BC (1983a) Proteinases of bovine milk and the effect of pasteurization on their activity. N Z J Dairy Sci Technol 18:233–245

    CAS  Google Scholar 

  • Richardson BC (1983b) Variation of the concentration of plasmin and plasminogen in bovine milk with lactation. N Z J Dairy Sci Technol 18:247–252

    CAS  Google Scholar 

  • Richardson BC, Elston PD (1984) Plasmin activity in commercial caseins and caseinates. N Z J Dairy Sci Technol 19:63–67

    CAS  Google Scholar 

  • Richardson BC, Pearce KN (1981) Determination of plasmin in dairy products. N Z J Dairy Sci Technol 16:209–220

    CAS  Google Scholar 

  • Richter RL, Schmidt RH, Smith KL, Mull LE, Henry SL (1979) Proteolytic activity in ultra-pasteurized, aseptically packaged whipping cream. J Food Prot 42:43–45

    Article  CAS  PubMed  Google Scholar 

  • Rippel KM, Nielsen SS, Hayes KD (2004) Effects of native and denatured whey proteins on plasminogen activator activity. J Dairy Sci 87:2344–2350

    Article  CAS  PubMed  Google Scholar 

  • Rollema HS, Poll JK (1986) The alkaline milk proteinase system: kinetics and mechanism of heat-inactivation. Milchwissenschaft 41:536–540

    CAS  Google Scholar 

  • Rosey EL, Lincoln RA, Ward PN, Yancey RJ Jr, Leigh JA (1999) PauA: a novel plasminogen activator from Streptococcus uberis. FEMS Microbiol Lett 178:27–33

    Article  CAS  PubMed  Google Scholar 

  • Saeman AI, Verdi RJ, Galton DM, Barbano DM (1988) Effect of mastitis on proteolytic activity in bovine milk. J Dairy Sci 71:505–512

    Article  CAS  PubMed  Google Scholar 

  • Saint Denis T, Humbert G, Gaillard JL (2001a) Heat inactivation of native plasmin, plasminogen and plasminogen activators in bovine milk: a revisited study. Lait 81:715–729

    Article  CAS  Google Scholar 

  • Saint Denis T, Humbert G, Gaillard JL (2001b) Enzymatic assays for native plasmin, plasminogen and plasminogen activators in bovine milk. J Dairy Res 68:437–449

    Article  CAS  PubMed  Google Scholar 

  • Sawyer L (2003) β-lactoglobulin. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1: proteins, 3rd edn. Springer, Boston, pp 319–386

    Chapter  Google Scholar 

  • Schaar J (1985) Plasmin activity and proteose-peptone content of individual milks. J Dairy Res 52:369–378

    Article  CAS  Google Scholar 

  • Schaar J, Funke H (1986) Effect of subclinical mastitis on milk plasminogen and plasmin compared with that on sodium, antitrypsin and N-acetyl-β-D-glucosaminidase. J Dairy Res 53:515–528

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Moser PW, Dannegger-Müller GAK, Rösselet SJ, Kämpfer U, Rickli EE (1985) Complete amino acid sequence of bovine plasminogen: comparison with human plasminogen. Eur J Biochem 149:267–278

    Article  CAS  PubMed  Google Scholar 

  • Scherze I, Sienkiewcz T, Krenkel K (1994) Studies on proteolytic degradation of caseins. 2. Influence of plasmin on the proteolysis in Gouda cheese. Milchwissenschaft 49:564–569

    CAS  Google Scholar 

  • Schroeder DL, Nielsen SS, Hayes KD (2008) The effect of raw milk storage temperature on plasmin activity and plasminogen activation in pasteurized milk. Int Dairy J 18:114–119

    Article  CAS  Google Scholar 

  • Scollard PG, Beresford TP, Murphy PM, Kelly AL (2000a) Barostability of milk plasmin activity. Lait 80:609–619

    Article  CAS  Google Scholar 

  • Scollard PG, Beresford TP, Needs EC, Murphy PM, Kelly AL (2000b) Plasmin activity, β-lactoglobulin denaturation and proteolysis in high pressure treated milk. Int Dairy J 10:835–841

    Article  CAS  Google Scholar 

  • Searls DB (1980) An improved colorimetric assay for plasminogen activator. Anal Biochem 107:64–70

    Article  CAS  PubMed  Google Scholar 

  • Sheehan JJ, Oliveira JC, Kelly AL, Mc Sweeney PLH (2007) Effect of cook temperature on primary proteolysis and predicted residual chymosin activity of a semi-hard cheese manufactured using thermophilic cultures. Int Dairy J 17:826–834

    Article  CAS  Google Scholar 

  • Shi GY, Wu HL (1988) Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem 263:17071–17075

    Article  CAS  PubMed  Google Scholar 

  • Snoeren THM, van Riel JAM (1979) Milk proteinase, its isolation and action of αs2-and β-casein. Milchwissenschaft 34:528–531

    CAS  Google Scholar 

  • Snoeren THM, van Riel JAM, Both P (1980) Some properties of a milk proteinase isolated from UHT milk. Zuivelzicht 72:42–43

    Google Scholar 

  • Somer HH (1938) Market milk and related products. Olsen Publishing Co., Milwuakee

    Google Scholar 

  • Somers JM, Kelly AL (2002) Contribution of plasmin to primary proteolysis during ripening of cheese: effect of milk heat treatment and cheese cooking temperature. Lait 82:181–191

    Article  CAS  Google Scholar 

  • Soodam K, Guinee TP (2018) The case for milk protein standardisation using membrane filtration for improving cheese consistency and quality. Int Dairy J 71:277–291

    Article  CAS  Google Scholar 

  • Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S (1978) The primary structure of human plasminogen: Isolation of the two lysine-binding fragments and one ‘mini’-plasminogen (MW. 38000) by elastase catalysed, specific limited proteolysis. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis, vol 3. Raven Press, New York, pp 191–209

    Google Scholar 

  • Spreer E (1998) Milk and dairy product technology. Marcel Dekker, New York

    Google Scholar 

  • Stoeckel M, Lidolt M, Stressler T, Fischer L, Wenning M, Hinrichs J (2016) Heat stability of indigenous milk plasmin and proteases from Pseudomonas: a challenge in the production of ultra-high temperature milk products. Int Dairy J 61:250–261

    Article  CAS  Google Scholar 

  • Thatcher RW, Dahlberg AC (1917) Enzymes of milk and butter. J Agric Res 11:437

    CAS  Google Scholar 

  • Upadhyay VK, Sousa MJ, Ravn P, Israelsen H, Kelly AL, McSweeney PLH (2004) Use of exogenous streptokinase to accelerate proteolysis in Cheddar cheese during ripening. Lait 84:527–538

    Article  CAS  Google Scholar 

  • Upadhyay VK, Ravn P, Israelsen H, Sousa MJ, Kelly AL, McSweeney PLH (2006) Acceleration of proteolysis during ripening of Cheddar-type cheese using of a streptokinase-producing strain of Lactococcus. J Dairy Res 73:70–73

    Article  CAS  PubMed  Google Scholar 

  • van Asselt AJ, Sweere APJ, Rollema HS, De Jong P (2008) Extreme high-temperature treatment of milk with respect to plasmin inactivation. Int Dairy J 18:531–538

    Article  CAS  Google Scholar 

  • van Boekel MAJS (1998) Effect of heating on maillard reactions in milk. Food Chem 62:403–414

    Article  Google Scholar 

  • Verheijen JH, Mullaart E, Chang GTG, Kluft C, Wijngaards G (1982) A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb Haemost 47:266–269

    Google Scholar 

  • Visser S, Slangen KJ, Alting AC, Vreeman HJ (1989) Specificity of plasmin in its action on bovine αs2-casein. Milchwissenschaft 44:335–339

    CAS  Google Scholar 

  • Visser S, Slangen CJ, Rollema HS (1991) Phenotyping of bovine milk proteins by reversed-phase high-performance liquid chromatography. J Chromatogr A 548:361–370

    Article  CAS  Google Scholar 

  • Wallén P (1978) Chemistry of plasminogen and plasminogen activation. In: Davidson JF, Desnoyers PC, Samama MM (eds) Progress in chemical fibrinolysis and thrombolysis, vol 3. Raven Press, New York, pp 167–181

    Google Scholar 

  • Wallén P, Wiman B (1975) On the generation of intermediate plasminogen and its significance for activation. In: Reich E, Rifkin DB, Shaw E (eds) Proteases and biological control. Cold Spring Harbour Laboratory, New York, pp 291–303

    Google Scholar 

  • Walther PJ, Hill RL, McKee PA (1975) The importance of the preactivation peptide in the two-stage mechanism of human plasminogen activation. J Biol Chem 250:5926–5933

    Article  CAS  PubMed  Google Scholar 

  • Ward PN, Leigh JA (2002) Characterization of PauB, a novel broad-spectrum plasminogen activator from Streptococcus uberis. J Bacteriol 184:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner RC, Polis E (1945) On the presence of a proteolytic enzyme in casein. J Am Chem Soc 67:529–532

    Article  CAS  Google Scholar 

  • Weber BA, Nielsen SS (1991) Isolation and partial characterization of a native serine-type protease inhibitor from bovine milk. J Dairy Sci 74:764–771

    Article  CAS  Google Scholar 

  • White JH, Zavizion B, O'Hare K, Gilmore J, Guo MR, Kindstedt P, Politis I (1995) Distribution of plasminogen activator in different fractions of bovine milk. J Dairy Res 62:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wiman B, Collen D (1978) Molecular mechanism of physiological fibrinolysis. Nature 272:549–550

    Article  CAS  PubMed  Google Scholar 

  • Wiman B, Wallén P (1977) The specific interaction between plasminogen and fibrin. A physiological role of the lysine binding site in plasminogen. Thromb Res 1:213–222

    Article  Google Scholar 

  • Wu HL, Shi GY, Wohl RC, Bender ML (1987) Structure and formation of microplasmin. Proc Natl Acad Sci U S A 84:8793–8795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi K, Kaminogawa S (1972) Decomposition of milk proteins by milk protease. Agric Biol Chem 36:249–254

    Article  CAS  Google Scholar 

  • Zachos T, Politis I, Gorewit RC, Barbano DM (1992) Effect of mastitis on plasminogen activator activity of milk somatic cells. J Dairy Res 59:461–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bijl E, Hettinga K (2018) Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin. Food Chem 263:127–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Dairy Processing Technology Centre (DPTC), an Enterprise Ireland initiative, for financial support and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

France, T.C., O’Mahony, J.A., Kelly, A.L. (2021). The Plasmin System in Milk and Dairy Products. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_2

Download citation

Publish with us

Policies and ethics