Skip to main content

Abstract

In the past decade since the review in the 2nd edition of this book (Hambling et al., 1992), significant advances in our understanding of the structure and properties of β-lactoglobulin (β-Lg) have occurred, and it is the purpose of this review to revise and update that earlier chapter in the light of these later data. As space precludes mere addition of recent material, the interested reader is referred to the previous edition for a review of the work up to 1990. The aim, however, remains that of bringing together information from the last 65 years in order to discuss the possible biological function of this enigmatic milk protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S.L., Barnett, D., Walsh, B.J., Pearce, R.J., Hill, D.J. and Howden, M.E.H. (1991) Human IgE-binding synthetic pep tides of bovine β-lactoglobulin and α-lactalbumin-in vitro cross-reactivity of the allergens. Immunol. Cell Biol., 69, 191–7.

    CAS  Google Scholar 

  • Alexander, L.J. and Pace, C.N. (1971) A comparison of the denaturation of bovine β-lactoglobulins A and B and goat β-lactoglobulin. Biochem., 10, 2738–43.

    CAS  Google Scholar 

  • Ali, S. and Clark, A.J. (1988) Characterization of the gene encoding ovine β-lactoglobulin. Similarity to the genes for retinol binding protein and other secretory proteins. J. Mol. Bioi., 199, 415–26.

    CAS  Google Scholar 

  • Ananthanarayanan, V.S., Ahmad, F. and Bigelow, C.C. (1977) The denaturation of β-lactoglobulin-A at pH 2. Biochim. Biophys. Acta, 492, 194–203.

    CAS  Google Scholar 

  • Anderson, L.J., Hayes, G., Pearse, M.J., Stewart, A.F., Willis, T.M. and McKinlay, A.G. (1989) Complete sequence of bovine β-lactoglobulin cDNA. Nucleic Acid Research, 17, 6739–45.

    Google Scholar 

  • Antila, P., Paakkari, I., Mattila, M.J., Laukkanen, M., Pihlanto-Leppala, A., Mantsala, P. and Hellman, J. (1991) Opioid peptides derived from in vitro proteolysis of bovine whey proteins. Int. Dairy J., 1, 215–29.

    CAS  Google Scholar 

  • Apenten, R.K.O. and Galani, D. (1999) Is the rate of sulfur-disulfide exchange between the native β-lactoglobulin and PDS related to protein conformational stability? Int. J. Food Sci. Technol., 34, 483–6.

    CAS  Google Scholar 

  • Apenten, R.K.O. and Galani, D. (2000) Thermodynamic parameters for β-lactoglobulin dissociation over a broad temperature range at pH 2.6 and 7.0. Thermochim. Ada, 359, 181–8.

    Google Scholar 

  • Arakawa, T. and Timasheff, S.N. (1987) Abnormal solubility behaviour of β-lactoglobulin: salting-in by glycine and NaCl. Biochem., 26, 5147–53.

    CAS  Google Scholar 

  • Armstrong, J.M. and McKenzie, H.A. (1967) A method for modification of carboxyl groups in proteins: its application to the association of bovine β-lactoglobulin A. Biochim. Biophys. Ada, 147, 93–9.

    CAS  Google Scholar 

  • Armstrong, J.M., McKenzie, H.A. and Sawyer, W.H. (1967) On the fractionation of β-lactoglobulin and α-lactalbumin. Biochim. Biophys. Acta, 147, 60–72.

    CAS  Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1955) Occurrence of different β-lactoglobulins in cow’s milk. Nature, 176, 218–9.

    CAS  Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1957) Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow’s milk. Biochem. J., 65, 273–7.

    CAS  Google Scholar 

  • Aschaffenburg, R., Green, D.W. and Simmons, R.M. (1965) Crystal forms of β-lactoglobulin. J. Mol. Biol., 13, 194–201.

    CAS  Google Scholar 

  • Ashworth, U.S., Ramaiah, G.D. and Keyes, M.C. (1996) Species difference in the composition of milk with special reference to the Northern fur seal. J. Dairy Sci., 49, 1206–11.

    Google Scholar 

  • Askonas, B.A. (1954) Crystallization of goat β-lactoglobulin. Biochem. J., 58, 332–6.

    CAS  Google Scholar 

  • Axelsson, I., Jakobsson, I., Lindberg, T. and Benediktsson, B. (1986) Bovine β-lactoglobulin in the human milk. Acta Paediatr. Scand., 75, 702–7.

    CAS  Google Scholar 

  • Aymard, P., Durand, D. and Nicolai, T. (1996) The effect of temperature and ionicstrength on the dimerization of β-lactoglobulin. Int. J. Biol. Macromol., 19, 213–21.

    CAS  Google Scholar 

  • Aymard, P., Nicolai, T., Durand, D. and Clark, A. (1999) Static and dynamic scattering of β-lactoglobulin aggregates formed after heat-induced denaturation at pH 2. Macromolecules, 32, 2542–52.

    CAS  Google Scholar 

  • Azuma, N. and Yamauchi, K. (1991) Identification of a-lactalbumin and β-lactoglobulin in cynomolgus monkey (Macaca, fascicularis) milk. Comp. Biochem. Physiol. B, 99, 917–21.

    CAS  Google Scholar 

  • Bain, J.A. and Deutsch, H.F. (1948) Studies on lactoglobulins. Arch. Biochem. Biophys., 16, 221–9.

    CAS  Google Scholar 

  • Bairoch, A. and Apweiler, R. (2000) The SWISS-PROT protein sequence database and its supplement TREMBL in 2000. Nucleic Acids Res., 28, 45–8.

    CAS  Google Scholar 

  • Baker, H.P. and Saroff, H.A. (1965) Binding of sodium ions to β-lactoglobulin. Biochem., 4, 1670–7.

    CAS  Google Scholar 

  • Ball, G., Shelton, M.J., Walsh, B.J., Hill, D.J., Hosking, C.S. and Howden, M.E.H. (1994) A major continuous allergenic epitope of bovine β-lactoglobulin recognised by human IgE binding. Clin. Experimental Allergy, 24, 758–64.

    CAS  Google Scholar 

  • Batt, C.A., Brady, J. and Sawyer, L. (1994) Design improvements of β-lactoglobulin. Trends Food Sci. Technol., 5, 261–5.

    CAS  Google Scholar 

  • Baumy, J.J. and Brule, G. (1988) Binding of bivalent-cations to a-lactalbumin and β-lactoglobulin — effect of pH and ionic-strength. Lait, 68, 33–48.

    CAS  Google Scholar 

  • Bawden, W.S., Passey, R.J. and Mackinlay, A.G. (1994) The genes encoding the major milk-specific proteins and their use in transgenic studies and protein engineering. In Biotechnology and Genetic Engineering Reviews — Vol. 12, (M.P. Tombs ed.) Intercept Ltd, UK, pp. 89–137.

    Google Scholar 

  • Beg, O.U. (1995) Partial characterization of platypus (Ornithorhynchus anatinus) milk-proteins. Protein and Peptide Letters, 2, 431–4.

    CAS  Google Scholar 

  • Bell, K. and McKenzie, H.A. (1964) β-Lactoglobulins. Nature, 204, 1275–9.

    CAS  Google Scholar 

  • Bell, K. and McKenzie, H.A. (1967) The isolation and properties of bovine β-lactoglobulin C. Biochim. Biophys. Acta, 147, 109–22.

    CAS  Google Scholar 

  • Bell, K., McKenzie, H.A., Muller, V., Rogers, C. and Shaw, D.C. (1981) Equine whey proteins. Comp. Biochem. Physiol., 68B, 225–36.

    CAS  Google Scholar 

  • Bell, K., McKenzie, H.A., Murphy, W.H. and Shaw, D.C. (1970) β-Lactoglobulin Droughtmaster: a unique protein variant. Biochem. Biophys. Acta, 214, 427–36.

    CAS  Google Scholar 

  • Bell, K., McKenzie, H.A. and Shaw, D.C. (1981a) Porcine β-lactoglobulin A and C. Mol. Cell. Biochem., 35, 103–11.

    CAS  Google Scholar 

  • Bell, K., McKenzie, H.A. and Shaw, D.C. (1981b) Bovine β-lactoglobulin E, F and G of Bali (Banteng) cattle, Bos (Bibos) javanicus. Aust. J. Biol. Sci., 34, 133–47.

    CAS  Google Scholar 

  • Belloque, J. and Smith, G.M. (1998) Thermal denaturation of β-lactoglobulin: a H-l NMR study. J. Agric. Food Chem., 46, 1805–13.

    CAS  Google Scholar 

  • Bertino, E., Prandi, G.M., Fabris, C, Cavaletto, M., Dimartino, S., Cardaropoli, S., Calderone, V. and Conti, A. (1996) Human-milk proteins may interfere in ELISA measurements of bovine β-lactoglobulin in human-milk. Acta Paediatr., 85, 543–9.

    CAS  Google Scholar 

  • Beste, G., Schmidt, F.S., Stibora, T. and Skerra, A. (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA, 96, 1898–903.

    CAS  Google Scholar 

  • Bewley, M.C., Qin, B.Y., Jameson, G.B., Sawyer, L. and Baker, E.N. (1997) Bovine β-lactoglobulin and its variants: a three-dimensional perspective. In Milk Protein Polymorphism, (J.P. Hill and M. Boland eds.) Special Issue, 9702, International Dairy Federation, Brussels, pp. 100–9.

    Google Scholar 

  • Blanch, E.W., Hecht, L. and Barron, L.D. (1999) New insight into the pH-dependent conformational changes in bovine β-lactoglobulin from Raman optical activity. Protein Sci., 8, 1362–7.

    CAS  Google Scholar 

  • Blanchet, M.A., Bains, G., Pelosi, P., Pevsner, J., Snyder, S.H., Monaco, H.L. and Amzel, L.M. (1996) The 3-dimensional structure of bovine odorant bindingprotein and its mechanism of odor recognition. Nature Struct. Biol., 3, 934–9.

    Google Scholar 

  • Bocskei, Z., Groom, C.R., Flower, D.R., Wright, C.E., Phillips, S.E.V., Cavaggioni, A., Findlay, J.B.C. and North, A.C.T. (1992) Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature, 360, 186–8.

    CAS  Google Scholar 

  • Bolognesi, M., Liberatori, J., Oberti, R. and Ungaretti, L. (1979) Preliminary crystallographic data on buffalo β-lactoglobulin. J. Mol. Biol., 131, 411–3.

    CAS  Google Scholar 

  • Bos, M.A. and Nylander, T. (1996) Interaction between β-lactoglobulin and phospholipids at the air/water interface. Langmuir, 12, 2791–7.

    CAS  Google Scholar 

  • Boudaud, N. and Dumont, J.P. (1996) Interaction between flavor components and β-lactoglobulin. ACS Symposium Series, 633, 90–7.

    CAS  Google Scholar 

  • Braunitzer, G., Chen, R., Schrank, B. and Stangl, A. (1972) Die sequenzanalyse des β-lactoglobulins. Hoppe-Seyler’s Z. Physiol. Chem., 354, 867–8.

    Google Scholar 

  • Braunitzer, G., Liberatori, J. and Kolde, H.-J. (1979) The primary structure of the β-lactoglobulin of the waterbuffalo (Bubalus arnee). Z. Naturforsch., 34c, 880–1.

    CAS  Google Scholar 

  • Brew, K. and Campbell, P.N. (1967) The characterization of the whey proteins of guinea-pig milk, Biochem. J., 102, 258–64.

    CAS  Google Scholar 

  • Brown, E.M. and Farrell, H.M., Jr. (1978) Interaction of β-lactoglobulin and cytochrome c: complex formation and iron reduction. Arch. Biochem. Biophys., 185, 156–64.

    CAS  Google Scholar 

  • Brown, E.M., Carroll, R.J., Pfeffer, P.E. and Sampugna, J. (1983) Complex formation in sonicated mixtures of β-lactoglobulin and phosphatidylcholine. Lipids, 18, 111–8.

    CAS  Google Scholar 

  • Brown, E.M., Pfeffer, P.E., Kumosinski, T.F. and Greenberg, R. (1988) Accessibility and mobility of lysine residues in β-lactoglobulin. Biochem., 27, 5601–10.

    CAS  Google Scholar 

  • Brownlow, S., Cabrai, J.H.M., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C.T. and Sawyer, L. (1997) Bovine β-lactoglobulin at 1.8 Å resolution — still an enigmatic lipocalin. Structure, 5, 481–95.

    CAS  Google Scholar 

  • Bull, H.B. and Currie, B.T. (1946) Osmotic pressure of β-lactoglobulin solutions. J. Amer. Chem. Soc., 68, 742–7.

    CAS  Google Scholar 

  • Burova, T.V., Choiset, Y., Tran, V. and Haertlé, T. (1998) Role of free Cysl21 in stabilization of bovine β-lactoglobulin B. Protein Eng., 11, 1065–73.

    CAS  Google Scholar 

  • Burr, R., Moore, C.H. and Hill, J.P. (1996) Evidence of multiple glycosylation of bovine β-lactoglobulin by electrospray-ionization mass-spectrometry. Milchwissenschaft, 51, 488–92.

    CAS  Google Scholar 

  • Busti, P., Gatti, C.A. and Delorenzi, N.J. (1998) Some aspects of β-lactoglobulin structural properties in solution studied by fluorescence quenching. Int. J. Biol. Macromol., 23, 143–8.

    CAS  Google Scholar 

  • Byler, D.M. and Susi, H. (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25, 469–87.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Daamen, W.F., Gruppen, H., Visser, S. and Voragen, A.G.J. (1999) β-Lactoglobulin hydrolysis. 2. Peptide identification, SH/SS exchange, and functional properties of hydrolysate fractions formed by the action of plasmin. J. Agric. Food Chem., 47, 2980–90.

    CAS  Google Scholar 

  • Casal, H.L., Kohler, U. and Mantsch, H.N. (1988) Structural and conformation changes of β-lactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature. Biochim. Biophys. Acta, 957, 11–20.

    CAS  Google Scholar 

  • Cecil, R. and Ogston, A.G. (1949) The sedimentation constant, diffusion constant and molecular weight of lactoglobulin. Biochem. J., 44, 33–5.

    CAS  Google Scholar 

  • Changani, S.D., Belmar-Beiny, M.T. and Fryer, P.J. (1997) Engineering and chemical factors associated with fouling and cleaning in milk processing. Exptl. Therm. Fluid Sci., 14, 392–406.

    CAS  Google Scholar 

  • Chatel, J.M., Bernard, H., Clement, G., Frobert, Y., Batt, C.A., Gavalchin, J., Peltre, G. and Wal, J.M. (1996) Expression, purification and immunochemical characterization of recombinant bovine β-lactoglobulin, a major cow milk allergen. Mol. Immunol., 33, 1113–8.

    CAS  Google Scholar 

  • Chaudhuri, B.N., Kleywegt, G.J., Bjorkman, J., Lehmanmckeeman, L.D., Oliver, J.D. and Jones, T.A. (1999) The structures of α(2u)-globulin and its complex with a hyaline droplet inducer. Acta Cryst., D55, 753–62.

    CAS  Google Scholar 

  • Chiancone, E. and Gattoni, M. (1993) Selective removal of β-lactoglobulin directly from cows milk and preparation of hypoallergenic formulas — a bioaffinity method. Biotechnol. Appl. Biochem., 18, 1–8.

    CAS  Google Scholar 

  • Cho, Y.J., Batt, C.A. and Sawyer, L. (1994a) Probing the retinol-binding site of bovine β-lactoglobulin. J. Biol. Chem., 269, 11102–7.

    CAS  Google Scholar 

  • Cho, Y.J., Gu, W., Watkins, S., Lee, S.P., Kim, T.R., Brady, J.W. and Batt, C.A. (1994b) Thermostable variants of bovine β-lactoglobulin. Protein Eng., 7, 263–70.

    CAS  Google Scholar 

  • Chobert, J.M., Briand, L., Grinberg, V. and Haertlé, T. (1995) Impact of esterification on the folding and the susceptibility to peptic proteolysis of β-lactoglobulin. Biochim. Biophys. Acta, 1248, 170–6.

    Google Scholar 

  • Christensen, L.K. (1952) Denaturation and enzymic hydrolysis of lactoglobulin. C. R. Lab. Carlsberg (Ser. Chim.), 28, 37–174.

    CAS  Google Scholar 

  • Chu, L., MacLeod, A. and Ozimek, L. (1996) Effect of charcoal delipidization treatment of β-lactoglobulin on kinetics of β-lactoglobulin/retinoic acid complex and its tryptic hydrolysis. Milchwissenschaft, 51, 252–5.

    CAS  Google Scholar 

  • Clark, A.J. (1996) Genetic-modification of milk-proteins. Amer. J. Clin. Nutr., 63, S633–S638.

    Google Scholar 

  • Clark, A.J., Simons, P., Wilmut, I. and Lathe, R. (1987) Pharmaceuticals from transgenic livestock. Trends Biotechnol., 5, 20–4.

    CAS  Google Scholar 

  • Clark, D.C., Wilde, P.J., Wilson, D.R. and Wustneck, R. (1992) The interaction of sucrose esters with β-lactoglobulin and β-casein from bovine-milk. Food Hydrocolloids, 6, 173–86.

    CAS  Google Scholar 

  • Coke, M., Wilde, P.J., Russell, E.J. and Clark, D.C. (1990) The influence of surfacecomposition and molecular-diffusion on the stability of foams formed from protein surfactant mixtures. J. Coll. Interface Sci., 138, 489–504.

    CAS  Google Scholar 

  • Collet, C. and Joseph, R. (1995) Exon organization and sequence of the genes encoding α-lactalbumin and β-lactoglobulin from the tammar wallaby (Macropodidae, Marsupialia). Biochem. Genet., 33, 61–72.

    CAS  Google Scholar 

  • Conti, A., Godovac-Zimmermann, J., Liberatori, J. and Braunitzer, G. (1984) The primary structure of monomeric β-lactoglobulin I from horse colostrum (Equus caballus, Perissodactyla). Hoppe-Seyler’s Z. Physiol. Chem., 366, 1393–401.

    Google Scholar 

  • Cornell, D.G. and Patterson, D.L. (1989) Interaction of phospholipids in monolayers with β-lactoglobulin adsorbed from solution. J. Agric. Food Chem., 37, 1455–9.

    CAS  Google Scholar 

  • Cowan, S.W., Newcomer, M.E. and Jones, T.A. (1990) Crystallographic refinement of human serum retinol binding-protein at 2 A resolution. Prot. Struct. Funct. Genet., 8, 44–61.

    CAS  Google Scholar 

  • Creamer, L.K. (1995) Effect of sodium dodecyl-sulfate and palmitic acid on the equilibrium unfolding of bovine β-lactoglobulin. Biochemistry, 34, 7170–6.

    CAS  Google Scholar 

  • Creamer, L.K., Parry, D.A.D. and Malcolm, G.N. (1983) Secondary structure of bovine β-lactoglobulin B. Arch. Biochem. Biophys., 227, 98–105.

    CAS  Google Scholar 

  • Creighton, T.E. (1980) Kinetic study of protein unfolding and refolding using urea gradient electrophoresis. J. Mol. Biol., 137, 61–80.

    CAS  Google Scholar 

  • Crossett, B., Allen, W.R. and Stewart, F. (1996) A 19 kDa protein secreted by the endometrium of the mare is a novel member of the lipocalin family. Biochem. J., 320, 137–43.

    CAS  Google Scholar 

  • Crowfoot, D.M. and Riley, D.P. (1938) An X-ray study of Palmer’s lactoglobulin. Nature, 141, 521–2.

    CAS  Google Scholar 

  • Cunningham, L.W. and Nuenke, B.J. (1960) Analysis of modified β-lactoglobulins and ovalbumins prepared from the sulfenyl iodide intermediates. J. Biol. Chem., 235, 1711–5.

    CAS  Google Scholar 

  • Cupo, J.F. and Pace, C.N. (1983) Conformational stability of mixed disulphide derivatives of β-lactoglobulin B. Biochem., 22, 2654–8.

    CAS  Google Scholar 

  • D’Alfonso, L., Collini, M. and Baldini, G. (1999) Evidence of heterogeneous l-anilinonaphthalene-8-sulfonate binding to β-lactoglobulin from fluorescence spectroscopy. Biochim. Biophys. Acta, 1432, 194–202.

    CAS  Google Scholar 

  • Dalgalarrondo, M., Dufour, E., Chobert, J.M., Bertrandharb, C. and Haertlé, T. (1995) Proteolysis of β-lactoglobulin and β-casein by pepsin in ethanolic media. Int. Dairy J., 5, 1–14.

    CAS  Google Scholar 

  • Davies, D.T. (1974) The quantitative partition of the albumin fraction of milk serum proteins by gel chromotography. J. Dairy Res., 41, 217–28.

    CAS  Google Scholar 

  • Davis, P.J. and Williams, S.C. (1998) Protein modification by thermal processing. Allergy, 53, 102–5.

    CAS  Google Scholar 

  • de Wit and Klarenbeek, G. (1981) A differential scanning calorimetric study of the thermal behaviour of bovine β-lactoglobulin at temperatures up to 160°C. J. Dairy Res., 48, 293–302.

    CAS  Google Scholar 

  • Deckmyn, H. and Preaux, G. (1978) Chain folding prediction of the bovine β-lactoglobulins. Arch. Int. Physiol. Biochim., 86, 938–9.

    Google Scholar 

  • DeFutos, M., Molina, E. and Amigo, L. (1996) Applicability of capillary electrophoresis to the study of bovine β-lactoglobulin polymorphism. Milchwissenschaft, 51, 374–8.

    Google Scholar 

  • Diaz de Villegas, M.C., Oria, R., Sala, F.J. and Calvo, M. (1987) Lipid binding by β-lactoglobulin of cow milk. Milchwissenschaft, 42, 357–8.

    CAS  Google Scholar 

  • Dib, R., Chobert, J.M., Dalgalarrondo, M. and Haertlé, T. (1996) Secondary structure changes and peptic hydrolysis of β-lactoglobulin induced by diols. Biopolymers, 39, 23–30.

    CAS  Google Scholar 

  • Dodin, G. Andrieux, M. and Alkabbani, H. (1990) Binding of ellipticine to β-lactoglobulin — a physicochemical study of the specific interaction of an antitumor drag with a transport protein. Eur. J. Biochem., 193, 697–700.

    CAS  Google Scholar 

  • Dong, A., Matsuura, J., Allison, S.D., Chrisman, E., Manning, M.C. and Carpenter, J.F. (1996) Infrared and circular-dichroism spectroscopic characterization of structural differences between β-lactoglobulin-A and β-lactoglobulin-B. Biochem., 35, 1450–7.

    CAS  Google Scholar 

  • Dufour, E., Bertrandharb, C. and Haertlé, T. (1993) Reversible effects of medium dielectric-constant on structural transformation of β-lactoglobulin and its retinol binding. Biopolymers, 33, 589–98.

    CAS  Google Scholar 

  • Dufour, E., Genot, C. and Haertlé, T. (1994) β-Lactoglobulin binding-properties during its folding changes studied by fluorescence spectroscopy. Biochim. Biophys. Acta, 1205, 105–12.

    CAS  Google Scholar 

  • Dufour, E. and Haertlé, T. (1990) Alcohol-induced changes of β-lactoglobulin retinol-binding stoichiometry. Protein Eng., 4, 185–90.

    CAS  Google Scholar 

  • Dufour, E. and Haertlé, T. (1993) Temperature-induced folding changes of β-lactoglobulin in hydro-methanolic solutions. Int. J. Biol. Macromol., 15, 293–7.

    CAS  Google Scholar 

  • Dufour, E., Marden, M.C. and Haertlé, T. (1990) β-Lactoglobulin binds retinol and protoporphyrin-IX at 2 different binding-sites. FEBS Lett., 277, 223–6.

    CAS  Google Scholar 

  • Dufour, E., Roger, P. and Haertlé, T. (1992) Binding of benzo(α)pyrene, ellipticine and cis-parinaric acid to β-lactoglobulin — influence of protein modifications. J. Prot. Chem., 11, 645–52.

    CAS  Google Scholar 

  • Dunnill, P. and Green, D.W. (1965) Sulphydryl groups and the N-R conformational change in β-lactoglobulin. J. Mol. Biol., 15, 147–51.

    Google Scholar 

  • Dunnill, P., Green, D.W. and Simmons, R.M. (1966) Heavy-atom sulphydryl derivatives of oxy haemoglobin and β-lactoglobulin; factors affecting isomorphism of native and derivative crystals. J. Mol. Biol., 22, 135–44.

    CAS  Google Scholar 

  • Dupont, M. (1965) Etude d’une etape reversible dans la thermo-denaturation de la β-lactoglobuline bovine A. Biochim. Biophys. Acta, 102, 500–13.

    CAS  Google Scholar 

  • Elofsson, U.M., Dejmek, P. and Paulsson, M.A. (1996a) Heat-induced aggregation of beta-lactoglobulin studied by dynamic light-scattering. Int. Dairy J., 6, 343–57.

    CAS  Google Scholar 

  • Elofsson, U.M., Paulsson, M.A., Sellers, P. and Arnebrant, T. (1996b) Adsorption during heat treatment related to the thermal unfolding aggregation of betalactoglobulins A and B. J. Coll. Interface Sci., 183, 408–15.

    CAS  Google Scholar 

  • Evans, T.R.J. and Kaye, S.B. (1999) Retinoids: present role and future potential Brit. J. Cancer, 80, 1–8.

    CAS  Google Scholar 

  • Farrell, H.M., Jr., Behe, M.J. and Enyaert, J.A. (1987) Binding of p-nitrophenyl phosphate and other aromatic compounds by β-lactoglobulin. J. Dairy Sci., 70, 252–8.

    CAS  Google Scholar 

  • Farrell, H.M., Jr. and Thompson, M.P. (1990) β-Lactoglobulin and α-lactalbumin as potential modulators of mammary cellular-activity — a Ca2+-responsive model system using acid phosphoprotein phosphatases. Protoplasma, 159, 157–67.

    CAS  Google Scholar 

  • Feligini, M., Parma, P., Aleandri, R., Greppi, G.F. and Enne, G. (1998) PCR-RFLP test for direct determination of β-lactoglobulin genotype in sheep. Animal Genetics, 29, 473–4.

    CAS  Google Scholar 

  • Fernandez, F.M. and Oliver, G. (1988) Proteins present in llama milk. I. Quantitative aspects and general characteristics. Milchwissenschaft, 43, 299–302.

    CAS  Google Scholar 

  • Fernandez-Espla, M.D., Lopez-Galvez, G. and Ramos, M. (1993) Isolation of ovine β-lactoglobulin genetic-variants by chromatofocusing — heterogeneity of β-lactoglobulin-A. Chromatographia, 37, 43–6.

    CAS  Google Scholar 

  • Ferry, J.D. and Oncley, J.L. (1941) Studies on the dielectric properties of protein solutions. III. Lactoglobulin. J. Amer. Chem. Soc., 63, 272–8.

    CAS  Google Scholar 

  • Flower, D.R. (1996) The lipocalin protein family — structure and function. Biochem. J., 318, 1–14.

    CAS  Google Scholar 

  • Fogolari, F., Ragona, L., Zetta, L., Romagnoli, S., Dekruif, K.G. and Molinari, H. (1998) Monomeric bovine β-lactoglobulin adopts a β-barrel fold at pH 2. FEBS Lett., 436, 149–54.

    CAS  Google Scholar 

  • Fogolari, F., Ragona, L., Licciardi, S., Romagnoli, S., Michelutti, R., Ugolini, R. and Molinari, H. (2000) Electrostatic properties of bovine β-lactoglobulin. Protein-Struct. Funct. Genet., 39, 317–30.

    CAS  Google Scholar 

  • Folch, J.M., Coll, A., Hayes, H.C. and Sanchez, A. (1996) Characterization of a caprine β-lactoglobulin pseudogene, identification and chromosomal localization by in-situ hybridization in goat, sheep and cow. Gene, 177, 87–91.

    CAS  Google Scholar 

  • Forge, V., Hoshino, M., Kuwata, K., Arai, M., Kuwajima, K., Batt, C.A. and Goto, Y. (2000) Is folding of β-lactoglobulin non-hierarchic? Intermediate with nativelike β-sheet and non-native β-helix. J. Mol. Bioi., 296, 1039–51.

    CAS  Google Scholar 

  • Fox, P.F. (1995) Heat-induced Changes in Milk, Special Issue, 9501, International Dairy Federation, Brussels.

    Google Scholar 

  • Frapin, D., Dufour, E. and Haertlé, T. (1993) Probing the fatty-acid-binding site of β-lactoglobulins. J. Prot. Chem., 12, 443–9.

    CAS  Google Scholar 

  • Frushour, B.G. and Koenig, L.J. (1975) Roman studies of the crystalline, solution and alkaline-denatured states of β-lactoglobulin. Biopolymers, 14, 649–62.

    CAS  Google Scholar 

  • Fugate, R.D. and Song, P.-S. (1980) Spectroscopic characterization of β-lactoglobulin-retinol complex. Biochim. Biophys. Acta, 625, 28–42.

    CAS  Google Scholar 

  • Fujiwara, K., Arai, M., Shimizu, A., Ikeguchi, M., Kuwajima, K. and Sugai, S. (1999) Folding-unfolding equilibrium and kinetics of equine β-lactoglobulin: equivalence between the equilibrium molten globule state and a burst-phase folding intermediate. Biochemistry, 38, 4455–63.

    CAS  Google Scholar 

  • Fukushima, Y., Kawata, Y., Onda, T. and Kitagawa, M. (1997) Consumption of cow milk and egg by lactating women and the presence of β-lactoglobulin and ovalbumin in breast milk. Amer. J. Clin. Nutr., 65, 30–5.

    CAS  Google Scholar 

  • Futterman, S. and Heller, J. (1972) The enhancement of fluorescence and the decreased susceptibility to enzymic oxidation of bovine serum albumin, β-lactoglobulin and the retinol-binding protein of human plasma. J. Biol. Chem., 247, 5168–72.

    CAS  Google Scholar 

  • Gallagher, D.P., Lynch, M.G. and Mulvihill, D.M. (1996) Porcine β-lactoglobulin does not undergo thermally-induced gelation. J. Dairy Res., 63, 479–82.

    CAS  Google Scholar 

  • Ganfornina, M.D., Gutierrez, G., Bastiani, M. and Sanchez, D. (2000) A phylogenetic analysis of the lipocalin protein family. Mol. Biol. Evol., 17, 114–26.

    CAS  Google Scholar 

  • Garde, J., Bell, S.C. and Eperon, I.C. (1991) Multiple forms of messenger-RNA encoding human pregnancy-associated endometrial α-2u-globulin, a β-lactoglobulin homolog. Proc. Natl. Acad. Sci. USA, 88, 2456–60.

    CAS  Google Scholar 

  • Gaye, P., Hue-Delahaie, D., Mercier, J.-C, Soulier, S., Vilotte, J.L. and Furet, J.P. (1986) Ovine β-lactoglobulin messenger RNA: nucleotide sequence and mRNA levels during functional differentiation of the mammary gland. Biochimie, 68, 1097–107.

    CAS  Google Scholar 

  • GayeSeye, M.D., Gadji, F., Dodin, G., Aaron, JJ. and Tine, A. (1997) Fluorescence studies of the binding of two natural alkaloids (cinchonine and cinchonidine) with β-lactoglobulin. J. Chim. Phys. Phys.-Chim. Biol., 94, 31–6.

    CAS  Google Scholar 

  • Georges, C. and Guinand, S. (1960) Sur la dissociation reversible de la β2-lactoglobuline, a des pH superieurs a 5.5. 1. Etude par la diffusion de la lumiere. J. Chim. Phys., 57, 606–14.

    CAS  Google Scholar 

  • Georges, C, Guinand, S. and Tonnelat, J. (1962) Etude thermodynamique de la dissociation reversible de la β-lactoglobuline B pour des pH superieurs a 5.5. Biochim. Biophys. Acta, 59, 737–9.

    CAS  Google Scholar 

  • Gestin, M., Desbois, C, LeHuerouLuron, I., Rome, V., LeDrean, G., Lengagne, T., Roger, L., Mendy, F. and Guilloteau, P. (1997) In vitro hydrolysis by pancreatic elastases i and ii reduces β-lactoglobulin antigenicity. Lait, 77, 399–409.

    CAS  Google Scholar 

  • Gezimati, J., Creamer, L.K. and Singh, H. (1997) Heat interactions and gelation of mixtures of β-lactoglobulin and α-lactalbumin. J. Agric. Food Chem., 45, 1130–6.

    CAS  Google Scholar 

  • Ghose, A.C., Chaudhuri, S. and Sen, A. (1968) Hydrogen ion equilibria and sedimentation behaviour of goat β-lactoglobulins. Arch. Biochem. Biophys., 126, 232–43.

    CAS  Google Scholar 

  • Gimel, J.C., Durand, D. and Nicolai, T. (1994) Structure and distribution of aggregates formed after heat-induced denaturation of globular-proteins. Macromolecules, 27, 583–9.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J. (1988) The strucural motif of β-lactoglobulin and retinol binding protein: a basic framework for binding and transport of small hydrophobic molecules? Trends Biochem. Sci., 13, 64–6.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A., James, L. and Napolitano, L. (1988) Microanalysis of the amino-acid sequence of monomeric β-lactoglobulin I from donkey (Equus asinus) milk. Biol. Chem. Hoppe-Seyler, 369, 171–9.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A., Liberatori, J. and Braunitzer, G. (1985a) Homology between the primary structures of β-lactoglobulins and human retinol binding protein: evidence for a similar biological function? Biol. Chem. Hoppe-Seyler, 366, 431–4.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A., Liberatori, J. and Braunitzer, G. (1985b) The amino acid sequence of β-lactoglobulin II from horse colostrum (Equus caballus, Perissodactyla): β-lactoglobulins are retinol-binding proteins. Biol. Chem. Hoppe-Seyler, 366, 601–8.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A. and Napolitano, L. (1987) The complete amino acid sequence of dimeric β-lactoglobulin from mouflon (Ovis ammon musimon) milk. Biol. Chem. Hoppe-Seyler, 368, 1313–9.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Buchberger, J., Weiss, G. and Kloster-meyer, H. (1990) Genetic-variants of bovine β-lactoglobulin — a novel wild-type β-lactoglobulin W and its primary sequence. Biol. Chem. Hoppe-Seyler, 371, 255–60.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Baranyi, M., FischerFruhholz, S., Juszczak, J., Erhardt, G., Buchberger, J. and Klostermeyer, H. (1996) Isolation and rapid sequence characterization of two novel bovine β-lactoglobulins I and J. J. Prot. Chem., 15, 743–50.

    CAS  Google Scholar 

  • Goetz, D.H., Willie, S.T., Armen, R.S., Bratt, T., Borregaard, N. and Strong, R.K. (2000) Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochem., 39, 1935–41.

    CAS  Google Scholar 

  • Gorbunoff, M.J. (1967) Exposure of tyrosine residues in proteins. Reaction of cyanuric fluoride with ribonuclease, α-lactalbumin and β-lactoglobulin. Biochem., 6, 1606–15.

    CAS  Google Scholar 

  • Green, D.W. and Aschaffenburg, R. (1959) Twofold symmetry of the β-lactoglobulin molecule in crystals. J. Mol. Biol., 1, 54–64.

    CAS  Google Scholar 

  • Green, D.W., Aschaffenburg, R., Camerman, A., Coppola, J.C., Diamand, R.D., Dunnill, P., Simmons, R.M., Komorowski, E.S., Sawyer, L., Turner, E.M.C. and Woods, K.F. (1979) Structure of bovine β-lactoglobulin at 6Å resolution. J. Mol. Biol., 131, 375–97.

    CAS  Google Scholar 

  • Green, D.W., North, A.C.T. and Aschaffenburg, R. (1956) Crystallography of β-lactoglobulin from cows’ milk. Biochim., Biophys. Acta, 21, 583–5.

    CAS  Google Scholar 

  • Greenberg, R. and Kalan, E.B. (1965) Studies on β-lactoglobulins A, B and C. II. Preparation of modified proteins by treatment with carboxypeptidase A. Biochem., 4, 1660–6.

    CAS  Google Scholar 

  • Greene, R.F. and Pace, C.N. (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin and β-lactoglobulin. J. Biol. Chem., 249, 5388–93.

    CAS  Google Scholar 

  • Griffin, W.G., Griffin, M.C.A., Martin, S.R. and Price, J. (1993) Molecular basis of thermal aggregation of bovine β-lactoglobulin-A. J. Chem. Soc. Farad. Trans., 89, 3395–406.

    CAS  Google Scholar 

  • Griko, Y.V. and Kutyshenko, V.P. (1994) Differences in the processes of β-lactoglobulin cold and heat denaturations. Biophys. J., 67, 356–63.

    CAS  Google Scholar 

  • Grosclaude, F., Mahe, M.-F., Mercier, J.-C, Bonnemarie, J. and Teissier, J.H. (1976) Polymorphisme des lactoproteines de bovines nepalais. Ann. Genet. Sel. Anim., 8, 461–79.

    CAS  Google Scholar 

  • Groves, M.L., Hipp, N.J. and McMeekin, T.L. (1951) Effect of pH on the denaturation of β-lactoglobulin and its dodecyl sulphate derivative. J. Amer. Chem. Soc., 73, 2790–3.

    CAS  Google Scholar 

  • Guo, M.R., Fox, P.F., Flynn, A. and Kindstedt, P.S. (1995) Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci., 78, 2336–44.

    CAS  Google Scholar 

  • Hallberg, R.K. and Dubin, P.L. (1998) Effect of pH on the binding of β-lactoglobulin to sodium polystyrenesulfonate. J. Phys. Chem., B, 102, 8629–33.

    CAS  Google Scholar 

  • Halliday, J.A., Bell, K. and Shaw, D.C. (1991) The complete amino-acid-sequence of feline β-lactoglobulin-II and a partial revision of the equine β-lactoglobulin-II sequence. Biochim. Biophys. Acta, 1077, 25–30.

    CAS  Google Scholar 

  • Halpin, M.I. and Richardson, T. (1985) Selected functionality changes of β-lactoglobulin upon esterification of side chain carboxyl groups. J. Dairy. Sci., 68, 3189–98.

    CAS  Google Scholar 

  • Hamada, D. and Goto, Y. (1997) The equilibrium intermediate of β-lactoglobulin with non-native a-helical structure. J. Mol. Biol., 269, 479–87.

    CAS  Google Scholar 

  • Hamada, D., Kuroda, Y., Tanaka, T. and Goto, Y. (1995) High helical propensity of the peptide-fragments derived from β-lactoglobulin, a predominantly β-sheet protein. J. Mol. Biol., 254, 737–46.

    CAS  Google Scholar 

  • Hamada, D., Segawa, S. and Goto, Y. (1996) Normative a-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nature Struct. Biol., 3, 868–73.

    CAS  Google Scholar 

  • Hambling, S.G., McAlpine, A.S. and Sawyer, L. (1992) β-Lactoglobulin. In: Advanced Dairy Chemistry I. Proteins, 2nd edn, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 140–91.

    Google Scholar 

  • Hattori, M., Aiba, Y., Nagasawa, K. and Takahashi, K. (1996) Functional improvement of alginic acid by conjugating with β-lactoglobulin. J. Food Sci., 61, 1171–6.

    CAS  Google Scholar 

  • Hattori, M., Ametani, A., Katakura, Y., Shimizu, M. and Kaminogawa, S. (1993) Unfolding/refolding studies on bovine β-lactoglobulin with monoclonal antibodies as probes — does a renatured protein completely refold. J. Biol. Chem., 268, 22414–9.

    CAS  Google Scholar 

  • Hattori, M., Nagasawa, K., Ametani, A., Kaminogawa, S. and Takahashi, K. (1994) Functional-changes in β-lactoglobulin by conjugation with carboxymethyl dextran. J. Agric. Food Chem., 42, 2120–5.

    CAS  Google Scholar 

  • Hayakawa, I., Linko, Y.Y. and Linko, P. (1996) Mechanism of high-pressure denaturation of proteins. Lebens.-Wissen. Technol., 29, 756–62.

    CAS  Google Scholar 

  • Heddleson, R.A., Alien, J.C., Wang, Q.W. and Swaisgood, H.E. (1997) Purity and yield of β-lactoglobulin isolated by an n-retinyl-celite bioaffinity column. J. Agric. Food Chem., 45, 2369–73.

    CAS  Google Scholar 

  • Hemley, R., Kohler, B.E. and Siviski, P. (1979) Absorption spectra for the complexes formed from vitamin-A and β-lactoglobulin. Biophys. J., 28, 447–55.

    CAS  Google Scholar 

  • Hennighausen, L.G. and Sippel, A.E. (1982) Mouse whey acidic protein is a novel member of the family of ‘four-disulphide core’ proteins. Nucl. Acid Res., 10, 2677–84.

    CAS  Google Scholar 

  • Herskovits, T.T., Townend, R. and Timasheff, S.N. (1964) Molecular interactions in β-lactoglobulin. IX. Optical rotatory dispersion of the genetic variants in different states of association.J. Amer. Chem. Soc., 86, 4445–52.

    CAS  Google Scholar 

  • Hill, A.R. (1989) The β-lactoglobulin-K-casein complex. Can. Inst. Food Sci. Technol. J., 11, 120–3.

    Google Scholar 

  • Hill, J.P., Boland, M.J., Creamer, L.K., Anema, S.G., Otter, D.E., Paterson, G.R., Lowe, R., Motion, R.L. and Thresher, W.C. (1996) Effect of the bovine β-lactoglobulin phenotype on the properties of β-lactoglobulin, milk composition and dairy products. In Macromolecular Interactions in Food Technology, (N. Parris, A. Kato, L.K. Creamer and J. Pearce eds.) ACS Symposium Series, 650, 281–94.

    Google Scholar 

  • Hill, R.M. and Briggs, D.R. (1956) A study of the interaction of n-octylbenzene-p-sulphonate with β-lactoglobulin. J. Amer. Chem. Soc., 78, 1590–7.

    CAS  Google Scholar 

  • Hilquist, A.J., Dan, M.O. and Kresheck, G.C. (1982) Influence of surfactants on the conformation of β-lactoglobulin B using circular dichroism. Biopolymers, 21, 895–908.

    Google Scholar 

  • Hui Bon Hoa, G., Douzou, P. and Pantaloni, C. (1973) Transformations alcalines de la β-lactoglobulies en milieau hydro-alcoolique a basses temperatures. Biochemie, 55, 269–76.

    CAS  Google Scholar 

  • Hodgkin, D.C. and Riley, D.P. (1968) Some ancient history of protein X-ray analysis. In Structural Chemistry and Molecular Biology, (A. Rich and N. Davidson eds.) Freeman, New York. pp. 15–28.

    Google Scholar 

  • Holt, C, McPhail, D., Nylander, T., Otte, J., Ipsen, R.H., Bauer, R., Ogendal, L., Olieman, K., Dekruif, C.G., Leonil, J., Molle, D., Henry, G., Maubois, J.L., Perez, M.D., Puyol, P., Calvo, M., Bury, S.M., Kontopidis, G., McNae, I., Sawyer, L., Ragona, L., Zetta, L., Molinari, H., Klarenbeek, B., Jonkman, M.J., Moulin, J. and Chatterton, D. (1999) Some physico-chemical properties of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. Int. J. Food Sci. Technol., 34, 587–601.

    CAS  Google Scholar 

  • Holt, C, Waninge, R., Sellers, P., Paulsson, M., Bauer, R., Ogendal, L., Roefs, S.P.F.M., van Mill, P., de Kruif, C.G., Leonil, J., Fauquant, J. and Maubois, J.L. (1998) Comparison of the effect of heating on the thermal denaturation of nine different β-lactoglobulin preparations of genetic variants A, B or A/B, as measured by microcalorimetry. Int. Dairy J., 8, 99–104.

    CAS  Google Scholar 

  • Horisberger, M. and Vauthey, M. (1984) Labelling of colloidal gold with protein: A quantitative study using β-lactoglobulin. Histochemistry, 22, 123–8.

    Google Scholar 

  • Huang, Q., Coleman, J.W. and Stanworth, D.R. (1985) Investigation of the allergenicity of β-lactoglobulin and its cleavage fragments. Int. Arch. All. Appl. Immun., 78, 337–45.

    CAS  Google Scholar 

  • Huber, R., Schneider, M., Mayer, I., Muller, R., Deutzmann, R., Suter, F., Zuber, H., Falk, H. and Kayser, H. (1987) Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å. J. Mol. Biol., 198, 499–513.

    CAS  Google Scholar 

  • Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E. and Pratt, L.R. (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci., USA, 95, 1552–5.

    CAS  Google Scholar 

  • Hunziker, H.G. and Tarassuk, N.P. (1965) Chromatographie evidence for heat induced interaction of α-lactalbumin and β-lactoglobulin. J. Dairy Sci., 48, 733–44.

    CAS  Google Scholar 

  • Hyttinen, J.M., Korhonen, V.P., Hiltunen, M.O., Myohanen, S. and Janne, J. (1998) High-level expression of bovine β-lactoglobulin gene in transgenic mice. J. Biotechnol., 61, 191–8.

    CAS  Google Scholar 

  • Iametti, S., Degregori, B., Vecchio, G. and Bonomi, F. (1996) Modifications occur at different structural levels during the heat denaturation of β-lactoglobulin. Eur. J. Biochem., 237, 106–12.

    CAS  Google Scholar 

  • Iametti, S., Scaglioni, L., Mazzini, S., Vecchio, G. and Bonomi, F. (1998) Structural features and reversible association of different quaternary structures of β-lactoglobulin. J. Agric. Food Chem., 46, 2159–66.

    CAS  Google Scholar 

  • Iametti, S., Transidico, P., Bonomi, F., Vecchio, G., Pittia, P., Rovere, P. and DallAglio, G. (1997) Molecular modifications of β-lactoglobulin upon exposure to high pressure. J. Agric. Food Chem., 45, 23–9.

    CAS  Google Scholar 

  • Ibanez, E., Folch, J.M., Vidal, F., Coll, A., Santalo, J., Egozcue, J. and Sanchez, A. (1997) Expression of caprine β-lactoglobulin in the milk of transgenic mice. Transgenic Res., 6, 69–74.

    CAS  Google Scholar 

  • Ikeguchi, M., Kato, S., Shimizu, A. and Sugai, S. (1997) Molten globule state of equine β-lactoglobulin. Proteins — Struct. Funct. and Genet., 27, 567–75.

    CAS  Google Scholar 

  • Ivanov, V.N., Judinkova, E.S. and Gorodetsky, S.I. (1988) Molecular cloning of bovine β-lactoglobulin cDNA. Biol. Chem. Hoppe-Seyler, 369, 425–9.

    CAS  Google Scholar 

  • Jadot, M., Laloux, J., Burny, A. and Kettmann, R. (1992) Detection of bovine β-lactoglobulin genomic variants by the polymerase chain-reaction method and molecular hybridization. Animal Genet., 23, 77–9.

    CAS  Google Scholar 

  • Jakob, E. and Puhan, Z. (1992) Technological properties of milk as influenced by genetic polymorphism of milk proteins — a review. Int. Dairy J., 2, 157–78.

    CAS  Google Scholar 

  • Jamieson, A.C., Vandeyar, M.A., Kang, Y.C., Kinsella, J.E. and Batt, C.A. (1987) Cloning and nucleotide-sequence of the bovine β-lactoglobulin gene. Gene, 61, 85–90.

    CAS  Google Scholar 

  • Jang, H.D. and Swaisgood, H.E. (1990) Analysis of ligand-binding and β-lactoglobulin denaturation by chromatography on immobilized trans-retinal. J. Dairy Sci., 73, 2067–74.

    CAS  Google Scholar 

  • Jenness, R. (1979) Comparative aspects of milk proteins. J. Dairy Res., 46, 197–210.

    CAS  Google Scholar 

  • Jenness, R. (1985) Biochemical and nutritional aspects of milk and colostrum. In Lactation, (B.L. Larson ed.) The Iowa State University Press, Ames, pp. 164–97.

    Google Scholar 

  • Jenness, R., Phillips, N.I. and Kalan, E.B. (1967) Immunochemical comparison of β-lactoglobulins. Fed. Proc., 26, 340.

    Google Scholar 

  • Jeyarajah, S. and Allen, J.C. (1994) Calcium binding and salt-induced structural changes of native and preheated β-lactoglobulin. J. Agric. Food Chem., 42, 80–5.

    CAS  Google Scholar 

  • Jones, M.N. and Wilkinson, A. (1976) The interaction between β-lactoglobulin and sodium n-dodecyl sulphate. Biochem. J., 153, 713–8.

    CAS  Google Scholar 

  • Joss, L.A. and Ralston, G.B. (1996) β-Lactoglobulin-B — a proposed standard for the study of reversible self-association reactions in the analytical ultracentrifuge. Anal. Biochem., 236, 20–6.

    CAS  Google Scholar 

  • Kalan, E.B. and Basch, J.J. (1969) Preparation of goat β-Lactoglobulin. J. Dairy Sci., 49, 406–9.

    Google Scholar 

  • Kalan, E.B., Greenberg, R. and Walter, M. (1965) β-Lactoglobulins A, B and C. L. Comparison of chemical properties. Biochem., 4, 991–7.

    CAS  Google Scholar 

  • Kalan, E.B., Kraeling, R.R. and Gerrits, R.J. (1971) Isolation and partial characterization of a polymorphic swine whey protein. Int. J. Biochem., 2, 232–44.

    CAS  Google Scholar 

  • Kamata, N., Enomoto, A., Ishida, S., Nakamura, K., Kurisaki, J.I. and Kaminogawa, S. (1996) Comparison of pH and ionic-strength dependence of interactions between monoclonal-antibodies and bovine β-lactoglobulin. Biosci. Biotechnol. and Biochem., 60, 25–9.

    CAS  Google Scholar 

  • Kaminogawa, S. (1996) Food allergy, oral tolerance and immunomodulation — their molecular and cellular mechanisms. Biosci. Biotechnol. Biochem., 60, 1749–56.

    CAS  Google Scholar 

  • Kaminogawa, S., Shimizu, M., Ametani, A., Hattori, M., Ho, O., Hachimura, S., Nakamura, Y., Totsuka, M. and Yamauchi, K. (1989) Monoclonal-antibodies as probes for monitoring the denaturation process of bovine β-lactoglobulin. Biochim. Biophys. Acta, 998, 50–6.

    CAS  Google Scholar 

  • Karlsson, C.A.C., Wahlgren, M.C. and Tragardh, A.C. (1996) β-Lactoglobulin fouling and its removal upon rinsing and by SDS as influenced by surface characteristics, temperature and adsorption time. J. Food Eng., 30, 43–60.

    Google Scholar 

  • Katakura, Y., Ametani, A., Totsuka, M., Nagafuchi, S. and Kaminogawa, S. (1999) Accelerated secretion of mutant β-lactoglobulin in Saccharomyces cerevisiae resulting from a single ammo acid substitution. Biochim. Biophys. Acta, 1432, 302–12.

    CAS  Google Scholar 

  • Katakura, Y., Totsuka, M., Ametani, A. and Kaminogawa, S. (1994) Tryptophan-19 of β-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim. Biophys. Acta, 1207, 58–67.

    CAS  Google Scholar 

  • Katakura, Y., Totsuka, M., Ametani, A. and Kaminogawa, S. (1997) A small variance in the antigenicity but not function of recombinant β-lactoglobulin purified from the culture supernatant of transformed yeast cells. Cytotechnology, 23, 133–41.

    CAS  Google Scholar 

  • Kessler, E. and Brew, K. (1970) The whey proteins of pig’s milk isolation and characterization of a β-lactoglobulin. Biochim. Biophys. Acta, 200, 449–58.

    CAS  Google Scholar 

  • Kiddy, C.A., Rollins, R.E. and Zikakis, J.P. (1972) Discontinuous polyacrylamide electrophoresis for β-lactoglobulin of cow milk. J. Dairy Sci., 55, 1506–7.

    CAS  Google Scholar 

  • Kim, J.C. and Lund, D.B. (1998) Milk protein stainless steel interaction relevant to the initial stage of fouling in thermal processing. J. Food Process Eng., 21, 369–86.

    Google Scholar 

  • Kim, S.C., Olson, N.F. and Richardson, T. (1990) Thiolation of β-lactoglobulin with N-acetylhomocysteine thiolactone (n-AHTL) and S-acetylmercaptosuccinic anhydride. Milchwissenschaft, 45, 580–3.

    CAS  Google Scholar 

  • Kim, T.R., Goto, Y., Hirota, N., Kuwata, K., Denton, H., Wu, S.Y., Sawyer, L. and Batt, C.A. (1997) High-level expression of bovine β-lactoglobulin in Pichia pastoris and characterisation of its physical properties. Protein Eng., 10, 1339–45.

    CAS  Google Scholar 

  • Kinsella, J.E. and Whitehead, D.M. (1989) Proteins in whey: chemical, physical and functional properties. Adv. Food Nutr. Res., 33, 343–438.

    CAS  Google Scholar 

  • Kobayashi, T., Ikeguchi, M. and Sugai, S. (2000) Molten globule structure of equine β-lactoglobulin by hydrogen exchange. J. Mol. Biol., 299, 757–70.

    CAS  Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2002) The ligand-binding site of bovine β-lactoglobulin: Evidence for a function? J. Mol., Biol., 318, 1043–55.

    CAS  Google Scholar 

  • Korhonen, V.P., Tolvanen, M., Hyttinen, J.M., UusiOukari, M., Sinervirta, R., Alhonen, L., Jauhiainen, M., Janne, O.A. and Janne, J. (1997) Expression of bovine β-lactoglobulin human erythropoietin fusion protein in the milk of transgenic mice and rabbits. Eur. J. Biochem., 245, 482–9.

    CAS  Google Scholar 

  • Koritz, T.N., Suzuki, S. and Coomb, R.R.A. (1987) Antigenic stimulation with proteins of cows’ milk via the oral route in guinea-pigs and rats. 1. Measurement of antigenically intact β-lactoglobulin and casein in the gastrointestinal contents of duodenum, jejunum and ileum. Int. Arch. Allergy Appl. Immunol., 82, 72–5.

    CAS  Google Scholar 

  • Kraulis, P.J. (1991) MOLSCRIPT — a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24, 946–50.

    Google Scholar 

  • Kristensen, A., Nylander, T., Paulsson, M. and Carlsson, A. (1997) Calorimetric studies of interactions between β-lactoglobulin and phospholipids in solutions. Int. Dairy J., 7, 87–92.

    CAS  Google Scholar 

  • Kristiansen, K.R., Otte, J., Ipsen, R. and Qvist, K.B. (1998) Large-scale preparation of β-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int. Dairy J., 8, 113–8.

    CAS  Google Scholar 

  • Kunz, C. and Lönnerdal, B. (1994) Isolation and characterization of a 21 kDa wheyprotein in rhesus-monkey (Macaca mulatta) milk. Comp. Biochem. Physiol. B, 108, 463–9.

    CAS  Google Scholar 

  • Kurisaki, J., Nakamura, S., Kaminogawa, S. and Yamauchi, K. (1982) The antigenic properties of β-lactoglobulin examined with mouse IgE antibody. Agric. Biol. Chem., 46, 2069–75.

    CAS  Google Scholar 

  • Kurisaki, J., Nakamura, S., Kaminogawa, S., Yamauchi, K., Watanabe, S., Hotta, K. and Hattori, M. (1985) Antigenicity of modified β-lactoglobulin examined by three different assays. Agric. Biol. Chem., 49, 1733–7.

    CAS  Google Scholar 

  • Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. and Nagamura, T. (1987) Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular-dichroism. FEBS Lett., 221, 115–8.

    CAS  Google Scholar 

  • Kuwata, K., Hoshino, M., Era, S., Batt, C.A. and Goto, Y. (1998) α → β transition of β-lactoglobulin as evidenced by heteronuclear NMR. J. Mol. Biol., 283, 731–9.

    CAS  Google Scholar 

  • Kuwata, K., Hoshino, M., Forge, V., Era, S., Batt, C.A. and Goto, Y. (1999) Solution structure and dynamics of bovine β-lactoglobulin A. Protein Sci., 8, 2541–5.

    CAS  Google Scholar 

  • Kuzmanoff, K.M. and Beattie, C.W. (1991) Isolation of monoclonal-antibodies monospecific for bovine β-lactoglobulin. J. Dairy Sci., 74, 3731–40.

    CAS  Google Scholar 

  • Laligant, A., Marti, J., Cheftel, J.C., Dumay, E. and Cuq, J.L. (1995) Detection of conformational modifications of heated β-lactoglobulin by immunochemical methods. J. Agric. Food Chem., 43, 2896–903.

    CAS  Google Scholar 

  • Lamiot, E., Dufour, E. and Haertlé, T. (1994) Insect sex-pheromone binding by bovine β-lactoglobulin. J. Agric. Food Chem., 42, 695–9.

    CAS  Google Scholar 

  • Lange, D.C., Kothari, R., Patel, R.C. and Patel, S.C. (1998) Retinol and retinoic acid bind to a surface cleft in bovine β-lactoglobulin: a method of binding site determination using fluorescence resonance energy transfer. Biophys. Chem., 74, 45–51.

    CAS  Google Scholar 

  • Larson, B.L. and Jenness, R. (1952) Characterization of the sulphydryl groups and the kinetics of the heat denaturation of crystalline β-lactoglobulin. J. Amer. Chem. Soc., 74, 3090–3.

    CAS  Google Scholar 

  • Law, A.J.R. (1995) Heat denaturation of bovine, caprine and ovine whey proteins. Milchwissenschaft, 50, 384–8.

    CAS  Google Scholar 

  • Lebenthal, E., Laor, J., Lewitus, Z., Matoth, Y. and Freier, S. (1970) Gastrointestinal protein loss in allergy to cows’ milk β-lactoglobulin. Isr. J. Med. Sci., 6, 506–10.

    CAS  Google Scholar 

  • Lee, S.P., Cho, Y.J. and Batt, C.A. (1993) Enhancing the gelation of β-lactoglobulin. J. Agric. Food Chem., 41, 1343–8.

    CAS  Google Scholar 

  • Lee, S.P., Kim, D.S., Watkins, S. and Batt, C.A. (1994) Reducing whey syneresis in yogurt by the addition of a thermolabile variant of β-lactoglobulin. Biosci. Biotechnol. Biochem., 58, 309–13.

    CAS  Google Scholar 

  • Leonil, J., Molle, D., Fauquant, J., Maubois, J.L., Pearce, R.J. and Bouhallab, S. (1997) Characterization by ionization mass spectrometry of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site. J. Dairy Sci., 80, 2270–81.

    CAS  Google Scholar 

  • Li, C.H. (1946) Electrophoretic inhomogeneity of crystalline β-lactoglobulin. J. Amer. Chem. Soc., 68, 2746–7.

    CAS  Google Scholar 

  • Li, H., Hardin, C.C. and Foegeding, E.A. (1994) NMR-studies of thermaldenaturation and cation-mediated aggregation of β-lactoglobulin. J. Agric. Food Chem., 42, 2411–20.

    CAS  Google Scholar 

  • Liberatori, J., Guidetti, L.M. and Conti, A. (1979) Immunochemical studies on β-lactoglobulins. Precipitin reactions of sow’s and mare’s mammary secretions against anti-bovine β-lactoglobulin antiserum. Boll. Soc. It. Biol. Sper., 55, 815–21.

    CAS  Google Scholar 

  • Liberatori, J., Morisio, L., Guetti, I.D., Conti, A. and Napolitano, L. (1979) β-Lactoglobulins in the mammary secretions of camel (Camelus dromedarius) and she-ass. Immunological detection and preliminary physico-chemical characterization. Boll. Soc. It. Biol. Sper., 55, 1369–73.

    CAS  Google Scholar 

  • Lien, S., Alestrom, P., Steine, T., Langsrud, T., Vegarud, G. and Rogne, S. (1990) A method for β-lactoglobulin genotyping of cattle. Livestock Prod. Sci., 25, 173–6.

    Google Scholar 

  • Lontie, R. and Préaux, G. (1966) Polarimetric investigation of β-lactoglobulin A and B and of the reactivity of their thiol groups. Protides Biol. Fluids, 14, 475–82.

    Google Scholar 

  • Lovrien, R. and Anderson, W.F. (1969) Resolution of binding sites in β-lactoglobulin. Arch. Biochem. Biophys., 131, 139–44.

    CAS  Google Scholar 

  • Lowe, R., Anema, S.G., Paterson, G.R. and Hill, J.P. (1995) Simultaneous separation of the β-lactoglobulin-A, β-lactoglobulin-B and β-lactoglobulin-C variants using polyacrylamide-gel electrophoresis. Milchwissenschaft, 50, 663–6.

    CAS  Google Scholar 

  • Lyster, R.L.J. (1972) Reviews of the progress of dairy science. Section C. Chemistry of milk proteins. J. Dairy Res., 39, 279–318.

    CAS  Google Scholar 

  • Lyster, R.L.J. and Wheelock, J.V. (1967) Occurrence of milk proteins in urine of cows during an extended milking interval. J. Dairy Res., 34, 27–30.

    Google Scholar 

  • MacLeod, A., Fedio, W.M., Chu, L. and Ozimek, L. (1996) Binding of retinoic acid to β-lactoglobulin variant-A and variant-B — effect of peptic and tryptic digestion on the protein ligand complex. Milchwissenschaft, 51, 3–7.

    CAS  Google Scholar 

  • Mailliart, P. and Ribadeau-Dumas, B. (1988) Preparation of β-lactoglobulin and β-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH. J. Food Sci., 53, 743–5,52.

    CAS  Google Scholar 

  • Mainferme, F., Préaux, G. and Lontie, R. (1971) Location of the disulphide bridges in the sequence of β-lactoglobulin A with CNBr and thermolysin. Arch. Int. Physiol. Biochim., 79, 840–1.

    CAS  Google Scholar 

  • Manderson, G.A., Hardman, M.J. and Creamer, L.K. (1998) Effect of heat treatment on the conformation and aggregation of β-lactoglobulin A, B and C. J. Agric. Food Chem., 46, 5052–61.

    CAS  Google Scholar 

  • Manderson, G.A., Hardman, M.J. and Creamer, L.K. (1999a) Effect of heat treatment on bovine β-lactoglobulin A, B and C explored using thiol availability and fluorescence. J. Agric. Food Chem., 47, 3617–27.

    CAS  Google Scholar 

  • Manderson, G.A., Creamer, L.K. and Hardman, M.J. (1999b) Effect of heat treatment on the circular dichroism spectra of bovine β-lactoglobulin A, B and C. J. Agric. Food Chem., 47, 4557–67.

    CAS  Google Scholar 

  • Marden, M.C., Dufour, E., Christova, P., Huang, Y., Leclerc-Lhostis, E. and Haertlé, T. (1994) Binding of heme-CO to bovine and porcine β-lactoglobulins. Arch. Biochem. Biophys., 311, 258–62.

    CAS  Google Scholar 

  • Martial, J., Preaux, G. and Lontie, R. (1971) Location of the thiol group and of the disulphide bridges in the sequence of β-lactoglobulin B. Arch. Int. Physiol. Biochim., 79, 842–3.

    CAS  Google Scholar 

  • Mata, L., Sanchez, L. and Calvo, M. (1996) Cadmium uptake by Caco-2 cells, effect of some milk components. Chemico-Biolog. Interact., 100, 277–88.

    CAS  Google Scholar 

  • Mata, L., Sanchez, L. and Calvo, M. (1997) Interaction of mercury with human and bovine milk. Biosci. Biotechnol. Biochem., 61, 1641–5.

    CAS  Google Scholar 

  • Mattarella, N.L. and Richardson, T.L. (1983) Physicochemical and functional properties of positively charged derivatives of bovine β-lactoglobulin. J. Agric. Food Chem., 31, 972–8.

    CAS  Google Scholar 

  • Maubois, J.L., Leonil, J., Bouhallab, S., Molle, D. and Pearce, J.R. (1995) Characterisation by ionisation mass spectrometry of a lactosyl-β-lactoglobulin conjugate occurring during milk heating of whey. J. Dairy Sci., 78(Suppl.1), 133.

    Google Scholar 

  • Maubois, J.L., Pion, R. and Ribadeau-Dumas, B. (1965) Preparation et etude de la β-lactoglobulin de brebis crystallisee B. Biochim. Biophys. Acta, 107, 501–10.

    CAS  Google Scholar 

  • McAipine, A.S. and Sawyer, L. (1990) β-Lactoglobulin: a protein drug carrier? Biochem. Soc. Trans., 18, 879.

    Google Scholar 

  • McClenaghan, M., Hitchin, E., Stevenson, E.M., Clark, A.J., Holt, C. and Leaver, J. (1999) Insertion of a casein kinase recognition sequence induces phosphorylation of ovine β-lactoglobulin in transgenic mice. Protein Eng., 12, 259–64.

    CAS  Google Scholar 

  • McDougall, E.I. and Stewart, J.C. (1977) The state of aggregation of red deer (Cervus elaphus L.) β-lactoglobulin preparations near neutral pH. Biochem. J., 167, 45–51.

    CAS  Google Scholar 

  • McKenzie, H.A. (1967) Milk proteins. Adv. Prot. Chem., 22, 234.

    Google Scholar 

  • McKenzie, H.A. (1971) β-Lactoglobulins. In Milk Proteins: Chemistry and Molecular Biology, Volume II. (H.A. McKenzie ed.) Academic Press, New York, pp. 257–330.

    Google Scholar 

  • McKenzie, H.A., Muller, V.J. and Treacy, G.B. (1983) “Whey” proteins of milk of the red (Macropus rufus) and Eastern grey (Macropus giganteus) kangaroo. Comp. Biochem. Physiol., 748, 259–71.

    Google Scholar 

  • McKenzie, H.A. and Ralston, G.B. (1971) The denaturation of proteins: two states? reversible or irreversible?. Experientia, 27, 617–24.

    CAS  Google Scholar 

  • McKenzie, H.A. and Ralston, G.B. (1973) Nature of products formed by the action of urea on bovine β-lactoglobulins. Aust. J. Biol. Sci., 26, 859–70.

    CAS  Google Scholar 

  • McKenzie, H.A., Ralston, G.B. and Shaw, D.C. (1972) Location of sulphydryl and disulphide groups in bovine β-lactoglobulins and effects of urea. Biochem., 11, 4539–47.

    CAS  Google Scholar 

  • McKenzie, H.A. and Sawyer, W.H. (1967) Effect of pH on β-lactoglobulins. Nature, 214, 1101–4.

    CAS  Google Scholar 

  • McKenzie, H.A. and Shaw, D.C. (1972) Alternative positions for the sulphydryl group in β-lactoglobulin: the significance for sulphydryl location in other proteins. Nature, 238, 147–9.

    CAS  Google Scholar 

  • Mendieta, J., Folque, H. and Tauler, R. (1999) Two-phase induction of the nonnative α-helical form of β-lactoglobulin in the presence of trifluoroethanol. Biophys. J., 76, 451–7.

    CAS  Google Scholar 

  • Mercier, J.C. and Vilotte, J.L. (1993) Structure and function of milk protein genes. J. Dairy Sci., 76, 3079–98.

    CAS  Google Scholar 

  • Mepham, T.B., Gayer., Martin, P. and Mercier, J.C. (1992) Biosynthesis of milk protein. In Advanced Dairy Chemistry I. Proteins, 2nd edn, (P.F. Fox ed.) Elsevier, Amsterdam and New York, pp. 491–543.

    Google Scholar 

  • Mercier, J.C, Gaye, P., Soulier, S., Hue-Delahaie, D. and Vilotte, J.L. (1985) Construction and identification of recombinant plasmids carrying cDNAs coding for ovine αs1-, αS2-, β-, K-casein and β-lactoglobulin. Nucleotide sequence of αs1-casein cDNA. Biochemie., 67, 959–71.

    CAS  Google Scholar 

  • Mills, O.E. (1976) Effect of temperature on tryptophan fluorescence of β-lactoglobulin B. Biochim. Biophys. Acta, 434, 324–32.

    CAS  Google Scholar 

  • Mills, O.E. and Creamer, L.K. (1975) Conformational changes of bovine β-lactoglobulin at low pH. Biochim. Biophys. Acta, 379, 618–26.

    CAS  Google Scholar 

  • Miranda, G. and Pelissier, J.-P. (1983) Kinetic studies of in vivo digestion of bovine unheated skim-milk proteins in rat stomach. J. Dairy Res., 50, 27–36.

    CAS  Google Scholar 

  • Mohammadzadeh-K., A., Feeney, R.E. and Smith, L.M. (1969) Hydrophobic binding of hydrocarbons by proteins. I. Relationship of hydrocarbon structure. Biochim. Biophys. Acta, 194, 246–55.

    Google Scholar 

  • Molinari, H., Ragona, L., Varani, L., Musco, G., Consonni, R., Zetta, L. and Monaco, H.L. (1996) Partially folded structure of monomeric bovine β-lactoglobulin. FEBS Lett., 381, 237–43.

    CAS  Google Scholar 

  • Monaco, H.L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L. and Eliopoulos, E.E. (1987) Crystal-structure of the trigonal form of bovine β-lactoglobulin and of its complex with retinol at 2.5 Å resolution. J. Mol. Biol., 197, 695–706.

    CAS  Google Scholar 

  • Monti, J.C., Mermoud, A.-F. and Jolies, P. (1989) Anti-bovine β-lactoglobulin antibodies react with a human lactoferrin fragment and bovine β-lactoglobulin present in human milk. Experientia, 45, 178–80.

    CAS  Google Scholar 

  • Moreaux, V. and Birlouez-Aragon, I. (1997) Degradation of tryptophan in heated β-lactoglobulin-lactose mixtures is associated with intense Maillard reaction. J. Agric. Food Chem., 45, 1905–10.

    CAS  Google Scholar 

  • Morgan, F., Leonil, J., Molle, D. and Bouhallab, S. (1997) Nonenzymatic lactosylation of bovine β-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem. Biophys. Res. Commun., 236, 413–7.

    CAS  Google Scholar 

  • Morgan, F., Molle, D., Henry, G., Venien, A., Leonil, J., Peltre, G., Levieux, D., Maubois, J.L. and Bouhallab, S. (1999) Glycation of bovine β-lactoglobulin: effect on the protein structure. Int. J. Food Sci. Technol., 34, 429–35.

    CAS  Google Scholar 

  • Mullally, M.M., Meisel, H. and Fitzgerald, R.J. (1996) Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme-inhibitory activity. Biol. Chem. Hoppe-Seyler, 377, 259–60.

    CAS  Google Scholar 

  • Murray, B.S. and Cros, L. (1998) Adsorption of β-lactoglobulin and β-casein to metal surfaces and their removal by a non-ionic surfactant, as monitored via a quartz crystal microbalance. Colloid. Surfaces B, 10, 227–41.

    CAS  Google Scholar 

  • Narayan, M. and Berliner, L.J. (1997) Fatty acids and retinoids bind independently and simultaneously to β-lactoglobulin. Biochem., 36, 1906–11.

    CAS  Google Scholar 

  • Narayan, M. and Berliner, L.J. (1998) Mapping fatty acid binding to β-lactoglobulin: ligand binding is restricted by modification of Cys 121. Protein Sci., 7, 150–7.

    CAS  Google Scholar 

  • Nath, N.C., Hussain, A. and Rahman, F. (1993) Milk characteristics of a captive Indian rhinoceros (Rhinoceros unicornis) J. Zoo Wildlife Med., 24, 528–33.

    Google Scholar 

  • Neurath, A.R., Jiang, S.B., Strick, N., Lin, K., Li, Y.Y. and Debnath, A.K. (1996) Bovine β-lactoglobulin modified by 3-hydroxyphthalic anhydride blocks the CD4 cell-receptor for HIV. Nature Medicine, 2, 230–4.

    CAS  Google Scholar 

  • Neuteboom, B., Giuffrida, M.G., Cantisani, A., Napolitano, L., Alessandri, A., Fabris, C, Bertino, E. and Conti, A. (1992) Human-milk components cross-reacting with antibodies against bovine β-lactoglobulin. Acta Paediatr., 81, 469–74.

    CAS  Google Scholar 

  • Newcomer, M.E. (1993) Structure of the epididymal retinoic acid-binding protein at 2.1 A resolution. Structure, 1, 7–18.

    CAS  Google Scholar 

  • Newcomer, M.E., Jones, T.A., Aqvist, J., Sundelin, J., Erikkson, U., Rask, L. and Peterson, P.A. (1984) The three dimensional structure of retinol-binding protein. EMBO J., 3, 1451–4.

    CAS  Google Scholar 

  • North, A.C.T. (1989) 3-D arrangement of conserved amino acids in a superfamily of specific ligand-binding proteins. Int. J. Biol. Macromol., 7, 56–8.

    Google Scholar 

  • North, A.C.T. (1991) Structural homology in ligand specific transport proteins. Biochem. Soc. Symp., 57, 35–48.

    Google Scholar 

  • O’Neill, T.E. and Kinsella, J.E. (1987) Binding of alkanone flavors to β-lactoglobulin: effects of conformational and chemical modification. J. Agri. Food Chem., 35, 770–4.

    CAS  Google Scholar 

  • Ochirkhuyag, B., Chobert, J.M., Dalgalarrondo, M., Choiset, Y. and Haertlé, T. (1998) Characterization of whey proteins from mongolian yak, khainak and bactrian camel. J. Food Biochem., 22, 105–24.

    CAS  Google Scholar 

  • Ono, J., Doi, K., Ogasa, K. and Nagasawa, T. (1975) Discrimination of carcinogenic activity and inactivation of transforming activity of hydrocarbons by β-lactoglobulin. Agric. Biol. Chem., 39, 2149–55.

    CAS  Google Scholar 

  • Otte, J.A.H.J., Kristiansen, K.R., Zakora, M. and Qvist, K.B. (1994) Separation of individual whey proteins and measurement of α-lactalbumin and β-lactoglobulin by capillary zone electrophoresis. Neth. Milk Dairy J., 48, 81–97.

    CAS  Google Scholar 

  • Ouwehand, A.C., Salminen, S.J., Skurnik, M. and Conway, P.L. (1997) Inhibition of pathogen adhesion by β-lactoglobulin. Int. Dairy J., 7, 685–92.

    CAS  Google Scholar 

  • Pace, N.C. and Tanford, C. (1968) Thermodynamics of the unfolding of β-lactoglobulin A in aqueous urea solutions between 5 and 55°C. Biochem., 7, 198–208.

    CAS  Google Scholar 

  • Paesen, G.C., Adams, P.L., Harlos, K., Nuttall, P.A. and Stuart, D.I. (1999) Tick histamine-binding proteins: Isolation, cloning, and three-dimensional structure. Molecular Cell, 3, 661–71.

    CAS  Google Scholar 

  • Palmer, A.H. (1934) The preparation of a crystalline globulin from the albumin fraction of cow’s milk. J. Biol. Chem., 104, 359–72.

    CAS  Google Scholar 

  • Panick, G., Malessa, R. and Winter, R. (1999) Differences between the pressure-and temperature-induced denaturation and aggregation of β-lactoglobulin A, B and AB monitored by FTIR spectroscopy and small-angle X-ray scattering. Biochem., 38, 6512–9.

    CAS  Google Scholar 

  • Pantaloni, D. (1962) Role des groupes SH dans la structure de la β-lactoglobuline. Compt. Rend. Acad. Sci., (Paris)., 254, 1884–6.

    CAS  Google Scholar 

  • Pantaloni, D. (1964) Etude de la transition R-S de la β-lactoglobuline par spectropolarimetrie et par spectrophotometrie de differences. Compt. Rend. Acad. Sci., (Paris)., 258, 5753–6.

    CAS  Google Scholar 

  • Pantaloni, D. (1965) Structure et Changements de Conformations de la β-Lactoglobuline en Solution. Doctoral Thesis, University of Paris, France.

    Google Scholar 

  • Papiz, M.Z., Sawyer, L., Eliopoulos, E.E., North, A.C.T., Findlay, J.B.C., Sivaprasadarao, R., Jones, T.A., Newcomer, M.E. and Kraulis, P.J. (1986) The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature, 324, 383–5.

    CAS  Google Scholar 

  • Park, K.H. and Lund, D.B. (1984) Calorimetric study of the thermal denaturation of β-lactoglobulin. J. Dairy. Sci., 67, 1699–706.

    CAS  Google Scholar 

  • Passey, R.J. and Mackinlay, A.G. (1995) Characterization of a second, apparently inactive, copy of the bovine β-lactoglobulin gene. Eur. J. Biochem., 233, 736–43.

    CAS  Google Scholar 

  • Paterson, G.R., Otter, D.E. and Hill, J.P. (1995) Application of capillary electrophoresis in the identification of phenotypes containing the β-lactoglobulin-C variant. J. Dairy Sci., 78, 2637–44.

    CAS  Google Scholar 

  • Peitsch, M.C. and Boguski, M.S. (1990) Is apolipoprotein D a mammalian bilinbinding protein? New Biologist, 2, 197–206.

    CAS  Google Scholar 

  • Pelletier, E., Sostmann, K. and Guichard, E. (1998) Measurement of interactions between β-lactoglobulin and flavor compounds (esters, acids and pyrazines) by affinity and exclusion size chromatography. J. Agric. Food Chem., 46, 1506–9.

    CAS  Google Scholar 

  • Pena, R.N., Sanchez, A., Coll, A. and Folch, J.M. (1999) Isolation, sequencing and relative quantitation by fluorescent-ratio PCR of feline β-lactoglobulin I, II and III cDNAs. Mammalian Genome, 10, 560–4.

    CAS  Google Scholar 

  • Pérez, M.D. and Calvo, M. (1995) Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J. Dairy Sci., 78, 978–88.

    Google Scholar 

  • Pérez, M.D., Devillegas, C.D., Sanchez, L., Aranda, P., Ena, J.M. and Calvo, M. (1989) Interaction of fatty-acids with β-lactoglobulin and albumin from ruminant milk. J. Biochem., 106, 1094–7.

    Google Scholar 

  • Pérez, M.D., Sanchez, L., Aranda, P., Ena, J.M., Oria, R. and Calvo, M. (1992) Effect of β-lactoglobulin on the activity of pregastric lipase — a possible role for this protein in ruminant milk. Biochim. Biophys. Acta, 1123, 151–5.

    Google Scholar 

  • Pérez-Gomez, G., Préaux, G. and Lontie, R. (1971) Location of the disulphide bridges in β-lactoglobulin B with pepsin and trypsin after CNBr cleavage. Arch. Int. Physiol. Biochim., 79, 843–4.

    Google Scholar 

  • Pervaiz, S. and Brew, K. (1985) Homology of β-lactoglobulin, serum retinol-binding protein and protein HC. Science, 228, 335–7.

    CAS  Google Scholar 

  • Pervaiz, S. and Brew, K. (1986) Purification and characterization of the major whey proteins from the milks of the bottlenose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris) and the beagle (Canis familiaris). Arch. Biochem. Biophys., 246, 846–54.

    CAS  Google Scholar 

  • Pervaiz, S. and Brew, K. (1987) Homology and structure-function correlations between α-1-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J., 1, 209–14.

    CAS  Google Scholar 

  • Pessen, H., Purcell, J.M. and Farrell, H.M., Jr. (1985) Proton relaxation rates of water in dilute solutions of β-lactoglobulin: Determination of cross relaxation and correlation with structural changes by the use of two genetic variants of a selfassociating globular protein. Biochim. Biophys. Acta, 828, 1–12.

    CAS  Google Scholar 

  • Phelan, P. and Malthouse, J.P.G. (1994) C-13 NMR of the cyanylated β-lactoglobulins — evidence that Cys-121 provides the thiol group of β-lactoglobulins A and B. Biochem. J., 302, 511–6.

    CAS  Google Scholar 

  • Pierce, A.E. (1960) β-Lactoglobulins in the urine of the new-born suckled calf. Nature, 186, 940–1.

    Google Scholar 

  • Piez, K.A., Davie, E.W., Folk, J.E. and Gladner, J.A. (1961) β-Lactoglobulins A and B. J. Biol. Chem., 236, 2912–6.

    CAS  Google Scholar 

  • Piotte, C.P., Hunter, A.K., Marshall, C.J. and Grigor, M.R. (1998) Phylogenetic analysis of three lipocalin-like proteins present in the milk of Trichosurus vulpecula (Phalangeridae, Marsupialid). J. Mol. Evol., 46, 361–9.

    CAS  Google Scholar 

  • Pittia, P., Wilde, P.J., Husband, F. and Clark, D.C. (1996) Functional and structural properties of β-lactoglobulin as affected by high pressure treatment. J. Food Sci., 61, 1123–8.

    CAS  Google Scholar 

  • Polis, P.D., Schmuckler, H.W., Custer, J.H. and McMeekin, T.L. (1950) Isolation of an electrophoretically homogeneous crystalline component of β-lactoglobulin. J. Amer. Chem. Soc., 72, 4965–8.

    CAS  Google Scholar 

  • Préa ux, G., Braunitzer, G., Schrank, B. and Stangl, A. (1979) The amino acid sequence of goat β-lactoglobulin. Hoppe Seyler’s Z. Physiol. Chem., 360, 1595–604.

    Google Scholar 

  • Préaux, G. and Lontie, R. (1972) Revised number of the free cysteine residues and of the disulphide bridges in the sequence of β-lactoglobulins A and B. Arch. Int. Physiol. Biochim., 80, 980–1.

    Google Scholar 

  • Presnell, B., Conti, A., Erhardt, G., Krause, I. and Godovac-Zimmermann, J. (1990) A rapid microbore HPLC method for determination of primary structure of β-lactoglobulin genetic-variants. J. Biochem. Biophys. Meth., 20, 325–33.

    CAS  Google Scholar 

  • Prinzenberg, E.M. and Erhardt, G. (1999) Molecular genetic characterization of ovine β-lactoglobulin C allele and detection by PCR-rflp. J. Anim. Breeding Gen. Z. Tier. Zuch., 116, 9–14.

    CAS  Google Scholar 

  • Prutz, W.A., Butler, J., Land, E.J. and Swallow, A.J. (1980) Direct demonstration of electron transfer between tryptophan and tyrosine in proteins. Biochem. Biophys. Res. Commun., 96, 408–14.

    CAS  Google Scholar 

  • Purcell, J.M. and Susi, H. (1984) Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy. J. Biochem. Biophys. Meth., 9, 193–9.

    CAS  Google Scholar 

  • Puyol, P., Pérez, M.D., Ena, J.M. and Calvo, M. (1991) Interaction of bovine β-lactoglobulin and other bovine and human whey proteins with retinol and fatty/ acids. Agric. Biol. Chem., 55, 2515–20.

    CAS  Google Scholar 

  • Puyol, P., Pérez, M.D., Peiro, J.M. and Calvo, M. (1994) Effect of binding of retinol and palmitic acid to bovine β-lactoglobulin on its resistance to thermal denaturation. J. Dairy Sci., 77, 1494–502.

    CAS  Google Scholar 

  • Puyol, P., Pérez, M.D., Sanchez, L., Ena, J.M. and Calvo, M. (1995) Uptake and passage of β-lactoglobulin, palmitic acid and retinol across the caco-2 monolayer. Biochim. Biophys. Acta, 1236, 149–54.

    Google Scholar 

  • Qi, X.L., Brownlow, S., Holt, C. and Sellers, P. (1995) Thermal-denaturation of β-lactoglobulin — effect of protein-concentration at pH 6.75 and pH 8.05. Biochim. Biophys. Acta, 1248, 43–9.

    Google Scholar 

  • Qi, X.L., Holt, C, McNulty, D., Clarke, D.T., Brownlow, S. and Jones, G.R. (1997) Effect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem. J., 324, 341–6.

    CAS  Google Scholar 

  • Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, E.N., a.:d Jameson G.B. (1999) Functional implications of structural differences between variants A and B of bovine β-lactoglobulin. Prot. Sci., 8, 75–83.

    CAS  Google Scholar 

  • Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, E.M., Baker, E.N. and Jameson, G.B. (1998a) Structural basis of the Tanford transition of bovine β-lactoglobulin. Biochem., 37, 14014–23.

    CAS  Google Scholar 

  • Qin, B.Y., Creamer, L.K., Baker, E.N. and Jameson, G.B. (1998b) 12-Bromododecanoic acid binds inside the calyx of bovine β-lactoglobulin. FEBS Lett., 438, 272–8.

    CAS  Google Scholar 

  • Ragona, L., Fogolari, F., Romagnoli, S., Zetta, L., Maubois, J.L. and Molinari, H. (1999) Unfolding and refolding of bovine β-lactoglobulin monitored by hydrogen exchange measurements. J. Mol. Biol., 293, 953–69.

    CAS  Google Scholar 

  • Ragona, L., Fogolari, F., Zetta, L., Pérez, M.D., Puyol, P., de Kruif, K., Löhr, F., Röterjans, H. and Molinari, H. (2000) Bovine β-lactoglobulin: interaction studies with palmitic acid. Protein Science, 9, 1347–56.

    CAS  Google Scholar 

  • Ragona, L., Pusteria, F., Zetta, L., Monaco, H.L. and Molinari, H. (1997) Identification of a conserved hydrophobic cluster in partially folded bovine β-lactoglobulin at pH 2. Folding Design, 2, 281–90.

    CAS  Google Scholar 

  • Ray, A. and Chatterjee, R. (1967) Interactions of β-lactoglobulins with large organic ions. In Conformation of Biopolymers, Vol. 1. (G.N. Ramachandran ed.) Academic Press, London, pp. 235–52.

    Google Scholar 

  • Relkin, P. (1996) Thermal unfolding of β-lactoglobulin, α-lactalbumin and bovine serumlbumin — a thermodynamic approach. Crit. Rev. Food Sci. Nutr., 36, 565–601.

    CAS  Google Scholar 

  • Renard, D., Lefebvre, J., Griffin, M.C.A. and Griffin, W.G. (1998) Effects of pH and salt environment on the association of β-lactoglobulin revealed by intrinsic fluorescence studies. Int. J. Biol. Macromol., 22, 41–9.

    CAS  Google Scholar 

  • Restani, P., Gaiaschi, A., Plebani, A., Beretta, B., Cavagni, G., Fiocchi, A., Poiesi, C, Velona, T., Ugazio, A.G. and Galli, C.L. (1999) Cross-reactivity between milk proteins from different animal species. Clin. Exptl. Allergy, 29, 997–1004.

    CAS  Google Scholar 

  • Richards, F.M. (1991) The protein folding problem. Scientific American, 264, 54–62.

    CAS  Google Scholar 

  • Robillard, K.A. and Wishnia, A. (1972) Hydrophobic interactions between small molecules and β-lactoglobulin A. Aromatic hydrophobes and β-lactoglobulin A. Kinetics of binding by nuclear magnetic resonance. Biochemistry, 11, 3841–5.

    CAS  Google Scholar 

  • Rocha, T.L., Brownlow, S., Saddler, K.N., Fothergill-Gilmore, L.A. and Sawyer, L. (1996a) New crystal form of β-lactoglobulin. J. Dairy Res., 63, 575–84.

    CAS  Google Scholar 

  • Rocha, T.L., Paterson, G., Crimmins, K., Boyd, A., Sawyer, L. and Fothergill-Gilmore, L.A. (1996b) Expression and secretion of recombinant ovine β-lactoglobulin in Saccharomyces cerevisiae and Kluyveromyces lactis. Biochem. J., 313, 927–32.

    CAS  Google Scholar 

  • Roefs, S.P.F.M. and de Kruif, K.G. (1994) A model for the denaturation and aggregation of β-lactoglobulin. Eur. J. Biochem., 226, 883–9.

    CAS  Google Scholar 

  • Roels, H., Préaux, G. and Lontie, R. (1966) Stabilization of β-lactoglobulin A and B at pH 8.9 by blocking the thiol groups. Arch. Int. Biochem., 74, 522–3.

    Google Scholar 

  • Roscoe, S.G. and Fuller, K.L. (1993) Fouling of model surfaces — adsorption and removal of K-casein and β-lactoglobulin. Food Res. Int., 26, 343–53.

    CAS  Google Scholar 

  • Rouhana, R., Budge, S.M., Macdonald, S.M. and Roscoe, S.G. (1997) Electrochemical studies of the interfacial behaviour of α-lactalbumin and bovine serum albumin. Food Res. Int., 30, 13–20.

    CAS  Google Scholar 

  • Rouvinen, J., Rautiainen, J., Virtanen, T., Zeiler, T., Kauppinen, J., Taivainen, A. and Mantyjarvi, R. (1999) Probing the molecular basis of allergy — threedimensional structure of the bovine lipocalin allergen Bos-d2. J. Biol. Chem., 274, 2337–43.

    CAS  Google Scholar 

  • Rüegg, M., Moor, U. and Blanc, B. (1975) Hydration and thermal denaturation of β-lactoglobulin. A calorimetric study. Biochim. Biophys. Acta, 400, 334–42.

    Google Scholar 

  • Said, H.M., Ong, D.E. and Shingleton, J.L. (1989) Intestinal uptake of retinol, enhancement by bovine milk β-lactoglobulin. Amer. J. Clin. Nutr., 49, 690–4.

    CAS  Google Scholar 

  • Sawyer, L. (1987) One fold among many. Nature, 327, 659 (1 page).

    CAS  Google Scholar 

  • Sawyer, L. and Green, D.W. (1979) The reaction of cow β-lactoglobulin with tetracyanoaurate(III). Biochim. Biophys. Acta, 579, 234–9.

    CAS  Google Scholar 

  • Sawyer, L. and James, M.N.G. (1982) Carboxyl-carboxylate interactions in proteins. Nature, 295, 79–80.

    CAS  Google Scholar 

  • Sawyer, L., Brownlow, S., Polikarpov, I. and Wu, S.Y. (1998) β-Lactoglobulin: structural studies, biological clues. Int. Dairy J., 8, 65–72.

    CAS  Google Scholar 

  • Sawyer, L., Papiz, M.Z., North, A.C.T. and Eliopoulos, E.E. (1985) Structure and function of bovine β-lactoglobulin. Biochem. Soc. Trans., 13, 265–6.

    CAS  Google Scholar 

  • Sawyer, L., Barlow, P.N., Boland, M.J., Creamer, L.K., Denton, H., Edwards, P.J.B., Holt, C, Jameson, G.B., Kontopidis, G., Norris, G.E., Uhrinov, S. and Wu, S.-Y. (2002) Milk protein structure—what can it tell the diary industry? Int. Dairy J., 12, 299–310.

    CAS  Google Scholar 

  • Sawyer, W.H. (1969) Complex between β-lactoglobulin and K-casein. A review. J. Dairy Sci., 52, 1347–55.

    CAS  Google Scholar 

  • Schlee, P., Krause, I. and Rottmann, O. (1993) Genotyping of ovine β-lactoglobulin alleles A and B using the polymerase chain-reaction. Archiv. Für Tierzucht., 36, 519–23.

    Google Scholar 

  • Seibles, T.S. (1969) Interaction of dodecyl sulphate with native and modified β-lactoglobulin. Biochemistry, 8, 2949–54.

    CAS  Google Scholar 

  • Sélo, I., Negroni, L., Creminon, C, Yvon, M., Peltre, G. and Wal, J.M. (1998) Allergy to bovine β-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Int. Arch. Allergy Immunol., 117, 20–8.

    Google Scholar 

  • Senti, F.R. and Warner, R.C. (1948) X-Ray molecular weight of β-lactoglobulin. J. Amer. Chem. Soc., 70, 3318–20.

    CAS  Google Scholar 

  • Seppala, M., Bohn, H. and Tatarinov, Y. (1998) Glycodelins. Tumor Biology, 19, 213–20.

    CAS  Google Scholar 

  • Shimoyamada, M., Yoshimura, H., Tomida, K. and Watanabe, K. (1996) Stabilities of bovine β-lactoglobulin/retinol or retinoic acid complexes against tryptic hydrolysis, heating and light-induced oxidation. Food Sci. Technol.-Lebens. Wiss. Technol., 29, 763–6.

    CAS  Google Scholar 

  • Shortle, D., Stites, W.E. and Meeker, A.K. (1990) Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochem., 29, 8033–41.

    CAS  Google Scholar 

  • Simons, J.P., McClenaghan, M. and Clark, AJ. (1987) Alteration of the quality of milk by expression of sheep β-lactoglobulin in transgenic mice. Nature, 328, 530–2.

    CAS  Google Scholar 

  • Sitohy, M., Chobert, J.M. and Haertlé, T. (1995a) Phosphorylation of β-lactoglobulin using amino-acids as the sole base and nucleophile of the reaction. J. Prot. Chem., 14, 145–50.

    CAS  Google Scholar 

  • Sitohy, M., Chobert, J.M. and Haertlé, T. (1995b) Amino acid grafting of β-lactoglobulin mediated by phosphorus oxychloride. Int. J. Biol. Macromol., 17, 269–72.

    CAS  Google Scholar 

  • Smith, L.M., Fantozzi, P. and Creveling, R.K. (1983) Study of triglyceride-protein interaction using a microemulsion-filtration method. J. Amer. Oil Chem. Soc., 60, 960–7.

    CAS  Google Scholar 

  • Sorva, R., Makinen-Kiljunen, S. and Juntunen-Backman, K. (1994) β-Lactoglobulin secretion in human milk varies widely after cows milk ingestion in mothers of infants with cows’ milk allergy. J. Allergy Clin. Immunol., 93, 787–92.

    CAS  Google Scholar 

  • Spector, A.A. and Fletcher, J.E. (1970) Binding of long chain fatty acids to β-lactoglobulin. Lipids, 5, 403–11.

    CAS  Google Scholar 

  • Stapelfeldt, H., Olsen, C.E. and Skibsted, L.H. (1999) Spectrofluorometric characterization of β-lactoglobulin B covalently labeled with 2-(4′-maleimidylanilino) naphthalene-6-sulfonate. J. Agric. Food Chem., 47, 3986–90.

    CAS  Google Scholar 

  • Steinrauf, L.K. (1959) Preliminary X-ray data for some new crystalline forms of β-lactoglobulin and hen egg-white lysozyme. Acta Cryst., 12, 77–9.

    CAS  Google Scholar 

  • Stone, W.L. and Wishnia, A. (1978) Binding of iodomercurates to sulphydryl-blocked β-lactoglobulin-A,-B and-C. Bioinorg. Chem., 8, 517–29.

    CAS  Google Scholar 

  • Strange, E.D., Malin, E.L. and Vanhekken, D.L. (1992) Chromatographic and electrophoretic methods used for analysis of milk-proteins. J. Chromatogr., 624, 81–102.

    CAS  Google Scholar 

  • Su, Y.T. and Jirgensons, B. (1977) Further studies on detergent-induced conformational transitions in proteins. Circular dichroism of ovalbumin, bacterial α-amylase, papain and β-lactoglobulin at various pH values. Arch. Biochem. Biophys., 181, 137–46.

    CAS  Google Scholar 

  • Subirade, M., Loupil, F., Allain, A.F. and Paquin, P. (1998) Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by fourier transform infrared spectroscopy. Int. Dairy J., 8, 135–40.

    CAS  Google Scholar 

  • Subramaniam, V., Gafni, A. and Steel, D. (1996) Restoration of biological function upon refolding does not ensure return of a proteins native structure — room temperature phosphorescence studies of bovine β-lactoglobulin. Prot. Sci., 5, 2089–94.

    CAS  Google Scholar 

  • Sugai, S., Ikeguchi, M. and Shimizu, A. (1999) Characteristic properties of equine milk proteins. Int. J. Food Sci. Technol., 34, 437–43.

    CAS  Google Scholar 

  • Suzuki, S., Koritz, T.N. and Coomb, R.R.A. (1987) Antigenic stimulation with proteins of cows’ milk via the oral route in guinea-pigs and rats. 2. Antibodies to β-lactoglobulin secreted into the alimentary canal and serum. Int. Arch. All. Appl. Immun., 82, 76–82.

    CAS  Google Scholar 

  • Svedberg, T. and Pedersen, K.O. (1940) The Ultracentrifuge. Oxford University Press, London.

    Google Scholar 

  • Swaisgood, H.E. (1982) Chemistry of milk proteins. In Developments in Dairy Chemistry, (P.F. Fox ed.) Applied Science Publishers, London, pp. 1–59.

    Google Scholar 

  • Takahashi, T., Yamauchi, K. and Kaminogawa, S. (1990) Comparison between the antigenicity of native and unfolded β-lactoglobulin. Agric. Biol. Chem., 54, 691–7.

    CAS  Google Scholar 

  • Tanford, C, Bunville, L.G. and Nozaki, Y. (1959) The reversible transformation of β-lactoglobulin at pH 7.5. J. Amer. Chem. Soc., 81, 4032–6.

    CAS  Google Scholar 

  • Tanford, C. and De, P.K. (1961) The unfolding of β-lactoglobulin at pH 3 by urea, formamide and other organic substances. J. Biol. Chem., 236, 1711–5.

    CAS  Google Scholar 

  • Tanford, C. and Taggart, V.G. (1961) Ionization-linked changes in protein conformation, II. The N-R transition in β-lactoglobulin. J. Amer. Chem. Soc., 83, 1634–8.

    CAS  Google Scholar 

  • Tedford, L.A., Kelly, S.M., Price, N.C. and Schaschke, C.J. (1999) Interactive effects of pressure, temperature and time on the molecular structure of β-lactoglobulin. J. Food Sci., 64, 396–9.

    CAS  Google Scholar 

  • Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. and Cambillau, C. (1996) Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nature Struct. Biol., 3, 863–7.

    CAS  Google Scholar 

  • Thompson, M.P. and Farrell, H.M., Jr. (1974) Genetic variants of milk proteins. In Lactation: A Comprehensive Treatise. Vol. III. (B.L. Larson and V.R. Smith eds.) Academic Press, New York, pp. 109–34.

    Google Scholar 

  • Thresher, W. and Hill, J.P. (1997) Thermodynamic characterisation of β-lactoglobulin A, B and C subunit interactions using analytical affinity chromatography. In Milk Protein Polymorphism, (J.P. Hill and M. Boland eds.) Special Issue, 9702, International Dairy Federation, Brussels, pp. 189–93.

    Google Scholar 

  • Tilley, J.M.A. (1960) The chemical and physical properties of bovine β-lactoglobulin. Dairy. Sci. Abstr., 22, 111–25.

    CAS  Google Scholar 

  • Timasheff, S.N., Mescanti, L., Basch, J.J. and Townend, R. (1966a) Conformational transitions of bovine β-lactoglobulins A, B and C. J. Biol. Chem., 241, 2496–501.

    CAS  Google Scholar 

  • Timasheff, S.N. and Susi, H. (1966) Infrared investigation of the secondary structure of β-lactoglobulins. J. Biol. Chem., 241, 249–51.

    CAS  Google Scholar 

  • Timasheff, S.N. and Townend, R. (1961) Molecular interactions in β-lactoglobulin. V. The association of the genetic species of β-lactoglobulin below the isoelectric point. J. Amer. Chem. Soc., 83, 464–9.

    CAS  Google Scholar 

  • Timasheff, S.N. and Townend, R. (1964) Structure of the β-lactoglobulin tetramer. Nature, 203, 517–9.

    CAS  Google Scholar 

  • Timasheff, S.N., Townend, R. and Mescanti, L. (1966b) The optical rotatory dispersion of β-lactoglobulins. J. Biol. Chem., 241, 1863–70.

    CAS  Google Scholar 

  • Townend, R., Herskovits, T.T., Timasheff, S.N. and Gorbunoff, M.J. (1969) The state of amino acid residues in β-lactoglobulin. Arch. Biochem. Biophys., 129, 567–80.

    CAS  Google Scholar 

  • Townend, R., Kumosinski, T.F. and Timasheff, S.N. (1967) The circular dichroism of variants of β-lactoglobulin. J. Biol. Chem., 242, 4538–45.

    CAS  Google Scholar 

  • Townend, R. and Timasheff, S.N. (1960) Molecular interactions in β-lactoglobulin. III. Light scattering investigation of the stoichiometry of the association between pH 3.7 and 5.2. J. Amer. Chem. Soc., 82, 3168–74.

    CAS  Google Scholar 

  • Townend, R., Weinberger, L. and Timasheff, S.N. (1960b) Molecular interactions in β-lactoglobulin. IV. The dissociation of β-lactoglobulin below pH 3.5. J. Amer. Chem. Soc., 82, 3175–9.

    CAS  Google Scholar 

  • Townend, R., Winterbottom, R.J. and Timasheff, S.N. (1960a) Molecular interactions in β-lactoglobulin. II. Ultracentrifugal and electrophoretic studies of the association of β-lactoglobulin below its isoelectric point. J. Amer. Chem. Soc., 82, 3161–8.

    CAS  Google Scholar 

  • Treece, J.M., Sheinson, R.S. and McMeekin, T.L. (1964) The solubilities of β-lactoglobulins A, B and AB. Arch. Biochem. Biophys., 108, 99–108.

    CAS  Google Scholar 

  • Tsuji, N.M., Kurisaki, J., Mizumachi, K. and Kaminogawa, S. (1993) Localization of T-cell determinants on bovine β-lactoglobulin. Immunol. Lett., 37, 215–21.

    CAS  Google Scholar 

  • Uhrinova, S., Smith, M.H., Jameson, G.B., Uhrin, D., Sawyer, L. and Barlow, P.N. (2000) Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer. Biochem., 39, 1113–23.

    Google Scholar 

  • Urade, Y. and Hayaishi, O. (2000) Prostaglandin D synthase: structure and function. Vitamins and Hormones — Adv. Res. Appl., 58, 89–120.

    CAS  Google Scholar 

  • ValenteMesquita, V.L., Botelho, M.M. and Ferreira, S.T. (1998) Pressure-induced subunit dissociation and unfolding of dimeric β-lactoglobulin. Biophys. J., 75, 471–6.

    CAS  Google Scholar 

  • Venien, A., Levieux, D., Astier, C, Briand, L., Chobert, J.M. and Haertlé, T. (1997) Production and epitopic characterization of monoclonal antibodies against bovine β-lactoglobulin. J. Dairy Sci., 80, 1977–87.

    CAS  Google Scholar 

  • Verheul, M., Pedersen, J.S., Roefs, S.P.F.M. and deKruif, K.G. (1999) Association behaviour of native β-lactoglobulin. Biopolymers, 49, 11–20.

    CAS  Google Scholar 

  • Waissbluth, M.D. and Grieger, R.A. (1973) Activation volumes of fast protein reactions: the binding of bromophenol blue to β-lactoglobulin. Arch. Biochem. Biophys., 159, 639–45.

    CAS  Google Scholar 

  • Wang, Q.W., Alien, J.C. and Swaisgood, H.E. (1997) Binding of vitamin D and cholesterol to β-lactoglobulin. J. Dairy Sci., 80, 1054–9.

    CAS  Google Scholar 

  • Wang, Q.W. and Swaisgood, H.E. (1993) Characteristics of β-lactoglobulin binding to the all-trans-retinal moiety covalently immobilized on Celite. J. Dairy Sci., 76, 1895–901.

    CAS  Google Scholar 

  • Wang, Q.W.Q., Alien, J.C. and Swaisgood, H.E. (1998) Protein concentration dependence of palmitate binding to β-lactoglobulin. J. Dairy Sci., 81, 76–81.

    CAS  Google Scholar 

  • Waninge, R., Paulsson, M., Nylander, T., Ninham, B. and Sellers, P. (1998) Binding of sodium dodecyl sulphate and dodecyl trimethyl ammonium chloride to β-lactoglobulin: a calorimetric study. Int. Dairy., 8, 141–8.

    CAS  Google Scholar 

  • Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A. and Montfort, W.R. (1998) Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nature Struct. Biol., 5, 304–9.

    CAS  Google Scholar 

  • Weissman, J.S. and Kim, P.S. (1993) Efficient catalysis of disulfide bond rearrangements by protein disulfide-isomerase. Nature, 365, 185–8.

    CAS  Google Scholar 

  • Westphal, U. and Ashley, B.D. (1958) Steroid-protein interactions: 4. Influence of functional groups in delta 4-3-ketosteroids on interaction with serum albumin and β-lactoglobulin. J. Biol. Chem., 233, 57–62.

    CAS  Google Scholar 

  • Whitelaw, B. (1999) Toward designer milk. Nature Biotechnol., 17, 135–6.

    CAS  Google Scholar 

  • Whitelaw, C.B.A., Harris, S., McClenaghan, M., Simons, J.P. and Clark, A.J. (1992) Position-independent expression of the ovine β-lactoglobulin gene in transgenic mice. Biochem. J., 286, 31–9.

    CAS  Google Scholar 

  • Williams, S.C., Badley, R.A., Davis, P.J., Puijk, W.C. and Meloen, R.H. (1998) Identification of epitopes within β-lactoglobulin recognised by polyclonal antibodies using phage display and pepscan. J. Immunol. Meth., 213, 1–17.

    CAS  Google Scholar 

  • Willis, I.M., Stewart, A.F., Caputo, A., Thompson, A.R. and Mackinlay, A.G. (1982) Construction and identification by partial nucleotide sequence analysis of bovine casein and β-lactoglobulin cDNA clones. DNA, 1, 375–86.

    CAS  Google Scholar 

  • Wishnia, A. and Pinder, T.W., Jr. (1966) Hydrophobie interactions in proteins. The alkane binding site of β-lactoglobulins A and B. Biochem., 5, 1534–42.

    CAS  Google Scholar 

  • Witz, J., Timasheff, S.N. and Luzzati, V. (1964) Molecular interaction in β-lactoglobulin. VIII Small-angle X-ray scattering investigation of the geometry of β-lactoglobulin A tetramerisation. J. Amer. Chem. Soc., 86, 168–73.

    CAS  Google Scholar 

  • Woo, S.L., Creamer, L.K. and Richardson, T. (1982) Chemical phosphorylation of bovine β-lactoglobulin. J. Agri. Food Chem., 30, 65–70.

    CAS  Google Scholar 

  • Woodlee, G.L., Gooley, A.A., Collet, C. and Cooper, D.W. (1993) Origin of late lactation protein from β-lactoglobulin in the tammar wallaby. J. Heredity, 84, 460–5.

    CAS  Google Scholar 

  • Workman, R.J., McKown, M.M. and Gregerman, R.I. (1974) Renin: inhibition by proteins and peptides. Biochem., 13, 3029–35.

    CAS  Google Scholar 

  • Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. and Colman, A. (1991) High-level expression of active human α-1-antitrypsin in the milk of transgenic sheep. Bio-Technol., 9, 830–4.

    CAS  Google Scholar 

  • Wu, S.Y., Pérez, M.D., Puyol, P. and Sawyer, L. (1999) β-Lactoglobulin binds palmitate within its central cavity. J. Biol. Chem., 274, 170–4.

    CAS  Google Scholar 

  • Yoshida, S., Ye-Xiuyun, and Nishiumi, T. (1991) The binding ability of α-lactalbumin and β-lactoglobulin to mutagenic heterocyclic amines. J. Dairy Sci., 74, 3741–5.

    CAS  Google Scholar 

  • Zanotti, G., Panzalorto, M., Marcato, A., Malpeli, G., Folli, C. and Berni, R. (1998) Structure of pig plasma retinol-binding protein at 1.65 Å resolution. Acta Cryst., D54, 1049–52.

    CAS  Google Scholar 

  • Zappacosta, F., Diluccia, A., Ledda, L. and Addeo, F. (1998) Identification of C-terminally truncated forms of β-lactoglobulin in whey from Romagnola cows’ milk by two dimensional electrophoresis coupled to mass spectrometry. J. Dairy Res., 65, 243–52.

    CAS  Google Scholar 

  • Zimmerman, J.K., Barlow, G.H. and Klotz, I.M. (1970) Dissociation of β-lactoglobulin near neutral pH. Arch. Biochem. Biophys., 138, 101–9.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sawyer, L. (2003). β-Lactoglobulin. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics