Skip to main content

Shocks and Post-shock Plasma Processes

  • Chapter
  • First Online:
Physics and Evolution of Supernova Remnants

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1209 Accesses

Abstract

Shocks are transition layers in which the flow and thermodynamic properties of the plasma/gas rapidly change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bale, S. D., Mozer, F. S., & Horbury, T. S. (2003). Physical Review Letters, 91, 265004

    Article  ADS  Google Scholar 

  2. Balogh, A., & Treumann, R. A. (2013). Physics of collisionless shocks. New York, NY: Springer.

    Book  Google Scholar 

  3. Book, D. L. (2013). NRL (Naval Research Laboratory) plasma formulary, revised, Tech. rep.

    Google Scholar 

  4. Broersen, S., Vink, J., Miceli, M., Bocchino, F., Maurin, G., & Decourchelle, A. (2013). Astronomy & Astrophysics, 552, A9.

    Article  ADS  Google Scholar 

  5. Burgess, D., & Scholer, M. (2015). Collisionless shocks in space plasmas.

    Book  Google Scholar 

  6. Chernoff, D. F. (1987). The Astrophysical Journal, 312, 143.

    Article  ADS  Google Scholar 

  7. Cowie, L. L., & McKee, C. F. (1977). The Astrophysical Journal, 211, 135.

    Article  ADS  Google Scholar 

  8. Draine, B. T. (1980). The Astrophysical Journal, 241, 1021.

    Article  ADS  Google Scholar 

  9. Draine, B. T. (2011). Physics of the interstellar and intergalactic medium. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  10. Edmiston, J. P., & Kennel, C. F. (1984). Journal of Plasma Physics, 32, 429.

    Article  ADS  Google Scholar 

  11. Ghavamian, P., Laming, J. M., & Rakowski, C. E. (2007). The Astrophysical Journal, 654, L69.

    Article  ADS  Google Scholar 

  12. Ghavamian, P., Schwartz, S. J., Mitchell, J., Masters, A., & Laming, J. M. (2013). Space Science Reviews, 178, 633.

    Article  ADS  Google Scholar 

  13. Guainazzi, M., & Tashiro, M. S. (2020). In K. Asada, E. de Gouveia Dal Pino, M. Giroletti, H. Nagai, & R. Nemmen (Eds.), IAU Symposium (Vol. 342, pp. 29–36).

    Google Scholar 

  14. Heiles, C., & Crutcher, R. (2005). In R. Wielebinski & R. Beck (Eds.), Magnetic fields in diffuse HI and molecular clouds (Vol. 664, p. 137).

    Google Scholar 

  15. Itoh, H. (1984). The Astrophysical Journal, 285, 601.

    Article  ADS  Google Scholar 

  16. Lynden-Bell, D. (1967). Monthly Notices of the Royal Astronomical Society, 136, 101.

    Article  ADS  Google Scholar 

  17. McKee, C. F., & Hollenbach, D. J. (1980). Annual Review of Astronomy and Astrophysics, 18, 219.

    Article  ADS  Google Scholar 

  18. Mullan, D. J. (1971). Monthly Notices of the Royal Astronomical Society, 153, 145.

    Article  ADS  Google Scholar 

  19. Raymond, J. C. (1979). The Astrophysical Journal Supplement Series, 39, 1.

    Article  ADS  Google Scholar 

  20. Raymond, J. C., Blair, W. P., & Long, K. S. (1995). The Astrophysical Journal, 454, L31.

    Article  ADS  Google Scholar 

  21. Schmitz, H., Chapman, S. C., & Dendy, R. O. (2002). The Astrophysical Journal, 579, 327.

    Article  ADS  Google Scholar 

  22. Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. (2009). Astronomy & Astrophysics, 508, 751.

    Article  ADS  Google Scholar 

  23. Sollerman, J., Ghavamian, P., Lundqvist, P., & Smith, R. C. (2003). Astronomy & Astrophysics, 407, 249.

    Article  ADS  Google Scholar 

  24. Spitzer, L. (1965). Physics of fully ionized gases (2nd Edn.). New York, NY: Interscience.

    MATH  Google Scholar 

  25. Tidman, D. A., & Krall, N. A. (1971). Shock waves in collisionless plasmas. New York, NY: Wiley.

    Google Scholar 

  26. Treumann, R. A. (2009). The Astronomy and Astrophysics Review, 17, 409.

    Article  ADS  Google Scholar 

  27. van Adelsberg, M., Heng, K., McCray, R., & Raymond, J. C. (2008). The Astrophysical Journal, 689, 1089.

    Article  ADS  Google Scholar 

  28. Vink, J., Broersen, S., Bykov, A., & Gabici, S. (2015). Astronomy & Astrophysics, 579, A13.

    Article  ADS  Google Scholar 

  29. Vink, J., Laming, J. M., Gu, M. F., Rasmussen, A., & Kaastra, J. (2003). ApJ, 587, 31.

    Article  ADS  Google Scholar 

  30. Zel’dovich, Y., & Raizer, Y. P. (1966). In W. D. Hayes, R. F. Probstein (Eds.), Elements of gasdynamics and the classical theory of shock waves. New York, NY: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vink, J. (2020). Shocks and Post-shock Plasma Processes. In: Physics and Evolution of Supernova Remnants. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-55231-2_4

Download citation

Publish with us

Policies and ethics