Skip to main content

Research Pipeline I: Oral Therapeutics for Psoriasis

  • Chapter
  • First Online:
Advances in Psoriasis
  • 713 Accesses

Abstract

Over the last two decades, tremendous advances have been made in the treatment of psoriatic disease. Our understanding of the complex immunopathogenesis of this chronic inflammatory condition has led to the development of highly effective, safe, targeted monoclonal antibodies that result in clearance in the vast majority of treated patients. However, these recently approved therapies have multiple drawbacks and limitations that necessitate the development and testing of additional treatment modalities. To address this need, scientists and the pharmaceutical industry have pursued the identification and testing of several oral small molecules as novel treatments for plaque and psoriatic arthritis. These molecules in testing include JAK/TYK2 inhibitors, phosphodiesterase inhibitors, RORĪ³t inhibitors, fumarate esters, sphingosine 1 phosphate antagonists, neurokinin-1 receptor antagonists, adenosine A3 receptor agonists, H4 receptor antagonists, PRINS inhibitors, and spleen tyrosine kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkes JE, et al. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018;201(6):1605ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Babon JJ, et al. The molecular regulation of Janus kinase (JAK) activation. Biochem J. 2014;462(1):1ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Welsch K, et al. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol. 2017;47(7):1096ā€“107.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Igarashi K, et al. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J Biol Chem. 1994;269(20):14333ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Zhou YJ, et al. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation. Mol Cell Biol. 2000;20(12):4371ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Works MG, et al. Inhibition of TYK2 and JAK1 ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting IL-22 and the IL-23/IL-17 axis. J Immunol. 2014;193(7):3278ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Nicolas CS, et al. The role of JAK-STAT signaling within the CNS. JAKSTAT. 2013;2(1):e22925.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Notarangelo LD, et al. Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency. Hum Mutat. 2001;18(4):255ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Kreins AY, et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Sonbol MB, et al. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms. Ther Adv Hematol. 2013;4(1):15ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Papp KA, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266ā€“76.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. A study comparing Upadacitinib (ABT-494) to placebo in participants with active psoriatic arthritis who have a history of inadequate response to at least one biologic disease modifying anti-rheumatic drug (SELECTā€”PsA 2) (NCT03104374). https://clinicaltrials.gov/ct2/show/NCT03104374. Updated April 30, 2019. Accessed June 25 2019.

  14. A study comparing Upadacitinib (ABT-494) to placebo in participants with active psoriatic arthritis who have an inadequate response to at least one non-biologic disease modifying anti-rheumatic drug (SELECTā€”PsA 1) (NCT03104400). https://clinicaltrials.gov/ct2/show/NCT03104400. Updated June 28, 2019. Accessed June 25 2019.

  15. Mease P, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10162):2367ā€“77.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. An open-label, long-term extension study with filgotinib in active psoriatic arthritis (NCT03320876). https://clinicaltrials.gov/ct2/show/NCT03320876. Updated April 16, 2019. Accessed June 25 2019.

  17. Papp K, et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2015;173(3):767ā€“76.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Papp K, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. An investigational study to evaluate experimental medication BMS-986165 compared to placebo and a currently available treatment in participants with moderate to severe plaque psoriasis (POETYK-PSO-1) (NCT03624127). https://clinicaltrials.gov/ct2/show/NCT03624127. Updated June 24, 2019. Accessed June 25 2019.

  20. An investigational study to evaluate experimental medication BMS-986165 compared to placebo and a currently available treatment in participants with moderate-to-severe plaque psoriasis (POETYK-PSO-2) (NCT03611751). https://clinicaltrials.gov/ct2/show/NCT03611751. Updated July 1, 2019. Accessed July 1 2019.

  21. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Schafer PH, et al. Phosphodiesterase 4 in inflammatory diseases: effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell Signal. 2016;28(7):753ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Perez-Aso M, et al. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res Ther. 2015;17:249.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  24. Schafer PH, et al. The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J Immunol Res. 2015;2015:906349.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. LEO 32731 for the treatment of moderate to severe psoriasis vulgaris (NCT02888236). https://clinicaltrials.gov/ct2/show/NCT02888236. Updated August 28, 2017. Accessed June 25 2019.

  26. Castro G, et al. RORgammat and RORalpha signature genes in human Th17 cells. PLoS One. 2017;12(8):e0181868.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Xue X, et al. Pharmacologic modulation of RORgammat translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis. Sci Rep. 2016;6:37977.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. An ascending multiple dose study with VTP-43742 in healthy volunteers (NCT03724292). https://clinicaltrials.gov/ct2/show/NCT03724292. Updated October 30, 2018. Accessed June 25 2019.

  29. An ascending multiple dose study with VTP-43742 in healthy volunteers and psoriatic patients (NCT02555709). https://clinicaltrials.gov/ct2/show/NCT02555709. Updated October 30, 2018. Accessed June 25 2019.

  30. McGeehan GM, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of VTP-43742, a RORĪ³t inhibitor, in normal healthy volunteers. J Immunol. 2016;196(1 Suppl):71.4.

    ArticleĀ  Google ScholarĀ 

  31. Mrowietz U, et al. Clinical use of dimethyl fumarate in moderate-to-severe plaque-type psoriasis: a European expert consensus. J Eur Acad Dermatol Venereol. 2018;32(Suppl 3):3ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Bruck J, et al. A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol. 2018;27(6):611ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Pivotal efficacy and safety registration trial of FP187 in moderate to severe plaque psoriasis (NCT01230138). https://clinicaltrials.gov/ct2/show/NCT01230138. Updated December 11, 2012. Accessed June 25 2019.

  34. A study to assess the efficacy and safety of XP23829 in subjects with moderate-to-severe chronic plaque-type psoriasis (NCT02173301). https://clinicaltrials.gov/ct2/show/NCT02173301. Updated March 5, 2019. Accessed June 25 2019.

  35. Mrowietz U, et al. Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm((R))- and placebo-controlled trial (BRIDGE). Br J Dermatol. 2017;176(3):615ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Park SJ, Im DS. Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol Ther (Seoul). 2017;25(1):80ā€“90.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Stepanovska B, Huwiler A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol Res. 2020;154:104170.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Ohtani R, et al. Risk factors for fingolimod-induced lymphopenia in multiple sclerosis. Mult Scler J Exp Transl Clin. 2018;4(1):2055217318759692.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. ACT-128800 in patients with moderate to severe chronic plaque psoriasis (NCT01208090). https://clinicaltrials.gov/ct2/show/NCT01208090. Updated January 24, 2013. Accessed June 25 2019.

  41. Dā€™Ambrosio D, Freedman MS, Prinz J. Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther Adv Chronic Dis. 2016;7(1):18ā€“33.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  42. Dose-finding study of MT-1303 in subjects with moderate to severe chronic plaque psoriasis (NCT01987843). https://clinicaltrials.gov/ct2/show/NCT01987843. Updated December 18, 2014. Accessed June 25 2019.

  43. Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci. 2011;1217:83ā€“95.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-negative regulation of substance P signaling. J Leukoc Biol. 2018;103:1043ā€“51.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Mashaghi A, et al. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Aziz F. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting. Ann Palliat Med. 2012;1(2):130ā€“6.

    PubMedĀ  Google ScholarĀ 

  47. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Study of the efficacy, safety and tolerability of Serlopitant for the treatment of pruritus (itch) with plaque psoriasis (NCT03343639). Updated June 27, 2019. Accessed July 1 2019.

    Google ScholarĀ 

  49. Study of the long term safety of serlopitant for the treatment of pruritus (itch) (NCT03540160). https://clinicaltrials.gov/ct2/show/NCT03540160. Updated June 19, 2019. Accessed July 1 2019.

  50. Borea PA, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015;67(1):74ā€“102.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Jacobson KA, et al. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. 2018;38(4):1031ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Fishman P, et al. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today. 2012;17(7ā€“8):359ā€“66.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. David M, et al. Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J Eur Acad Dermatol Venereol. 2012;26(3):361ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Trial of CF101 to treat patients with psoriasis (NCT01265667). https://clinicaltrials.gov/ct2/show/NCT01265667. Updated September 20, 2017. Accessed June 25 2019.

  55. CF101 therapy in patients with moderate-to-severe plaque psoriasis (NCT03168256). https://clinicaltrials.gov/ct2/show/NCT03168256. Updated June 10, 2019. Accessed June 25 2019.

  56. Zampeli E, Tiligada E. The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol. 2009;157(1):24ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Gutzmer R, et al. The histamine H4 receptor is functionally expressed on T(H)2 cells. J Allergy Clin Immunol. 2009;123(3):619ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Han SH, et al. Preliminary study of histamine H4 receptor expressed on human CD4(+) T cells and its immunomodulatory potency in the IL-17 pathway of psoriasis. J Dermatol Sci. 2017;88(1):29ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Mommert S, et al. Human memory Th17 cells express a functional histamine H4 receptor. Am J Pathol. 2012;180(1):177ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. A study to determine the efficacy of ZPL-3893787 in subjects with plaque psoriasis (NCT02618616). https://clinicaltrials.gov/ct2/show/NCT02618616. Updated January 23, 2018. Accessed June 252019.

  61. Danis J, et al. PRINS non-coding RNA regulates nucleic acid-induced innate immune responses of human keratinocytes. Front Immunol. 2017;8:1053.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  62. Efficacy and safety of Prurisol administered orally for active mild to moderate chronic plaque psoriasis (NCT02494479). https://clinicaltrials.gov/ct2/show/NCT02494479. Updated July 19, 2017. Accessed June 25 2019.

  63. Efficacy and safety of Prurisol administered orally for active moderate to severe chronic plaque psoriasis (NCT02949388). https://clinicaltrials.gov/ct2/show/NCT02949388. Updated February 13, 2018. Accessed June 25 2019.

  64. Yi YS, et al. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediat Inflamm. 2014;2014:270302.

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387ā€“402.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Tasher D, Dalal I. The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet. 2012;5:67ā€“80.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. Scott DL. Role of spleen tyrosine kinase inhibitors in the management of rheumatoid arthritis. Drugs. 2011;71(9):1121ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Alzahrani KS, et al. Inhibition of spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed Pharmacother. 2019;111:347ā€“58.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Platt AM, et al. The active metabolite of spleen tyrosine kinase inhibitor fostamatinib abrogates the CD4(+) T cell-priming capacity of dendritic cells. Rheumatology (Oxford). 2015;54(1):169ā€“77.

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in autoimmune rheumatic diseases. Front Immunol. 2016;7:78.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  71. Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol. 2017;10(1):145.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  72. Newland A, et al. Fostamatinib for persistent/chronic adult immune thrombocytopenia. Immunotherapy. 2018;10(1):9ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Hawkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grand, D., Navrazhina, K., Frew, J.W., Hawkes, J.E. (2021). Research Pipeline I: Oral Therapeutics for Psoriasis. In: Weinberg, J.M., Lebwohl, M. (eds) Advances in Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-030-54859-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54859-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54858-2

  • Online ISBN: 978-3-030-54859-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics