Skip to main content

Trichoderma: A Globally Dominant Commercial Biofungicide

  • Chapter
  • First Online:
Trichoderma: Agricultural Applications and Beyond

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

Abstract

Biopesticides are the derived products prepared from the living microbes such as plants, animals, fungi, bacteria, viruses, and minerals or their bioproducts that are being widely used against devastating phytopathogens. The use of biopesticides in agricultural fields is a sustainable, economical, and eco-friendly approach compared to the synthetic fungicides because of its target-specificity, biodegradability, and environmental safety property. Among the different biocontrol agents (BCAs) used worldwide, Trichoderma spp. based biofungicides are presently considered as relatively potential and most dominating commercial biofungicide in the global biopesticide market. About 60% of all fungal-based BCAs are contributed by Trichoderma-based biopesticides which are available in different formulations. It is also more popular due to its diverse mechanisms of biocontrol that include antibiosis, colonization, competition, direct mycoparasitism, etc. against a wide range of soil (Sclerotium, Rhizoctonia, Fusarium, Macrophomina, Phytophthora spp.), foliar (Phyllactinia, Colletotrichum, Cladosporium spp.), and post-harvest phytopathogens (Penicillium, Aspergillus, Rhizopus, Botrytis spp.), etc. In this chapter, we have discussed the reasons behind the wide acceptance of Trichoderma sp. as a BCA and its dominance in the global biofungicides market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elgawad MM, Askary TH (2018) Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian J Biol Pest Control 28(1):74

    Article  Google Scholar 

  • Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol 100:5979–5987

    Article  CAS  PubMed  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C et al (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97(4):429–437

    Article  CAS  PubMed  Google Scholar 

  • Bigirimana J, de Meyer G, Poppe J et al (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Bisen K, Keswani C, Patel JS et al (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195

    Chapter  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer-Verlag, Berlin, pp 165–184

    Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V et al (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ et al (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microb Interact 19:838–853

    Article  CAS  Google Scholar 

  • Fraceto LF, Maruyama CR, Guilger M et al (2018) Trichoderma harzianum-based novel formulations: potential applications for management of next-gen agricultural challenges. J Chem Technol Biotechnol 93(8):2056–2063

    Article  CAS  Google Scholar 

  • Gajera H, Domadiya R, Patel S et al (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system – a review. Curr Res Microbiol Biotechnol 1:133–142

    Google Scholar 

  • Gilligan CA (2004) Modeling and analysis of disease induced host growth in the epidemiology of take all. Phytopathology 94:535–540

    Article  PubMed  Google Scholar 

  • Guillon ML (2003) Regulation of biological control agents in Europe. In: Roettger U, Reinhold M (eds) International symposium on biopesticides for developing countries. CATIE, Turrialba, pp 143–147

    Google Scholar 

  • Hahn M (2014) The rising threat of fungicide resistance in plant pathogenic fungi: botrytis as a case study. J Chem Biol 7(4):133–141. https://doi.org/10.1007/s12154-014-0113-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A (2004) Trichoderma species- opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I et al (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • IOBC (2008) International organization for biological control. IOBC Newsletter 84:5–7

    Google Scholar 

  • Jash S, Pan S (2007) Variability in antagonistic activity and root colonizing behavior of Trichoderma isolates. J Trop Agric 95(2):29–35

    Google Scholar 

  • Jayaraj J, Nv R, Velazhahan R (2006) Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Phytopathology and Plant Protection 39(1):1–8

    Article  Google Scholar 

  • Jayaraj J, Ramabadran R (1999) Rhizobium-Trichoderma interaction in vitro and in vivo. Indian Phytopath 52(2):190–192

    Google Scholar 

  • Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30

    Article  Google Scholar 

  • Khandelwal M, Datta S, Mehta J et al (2012) Isolation, characterization and biomass production of Trichoderma viride using various agro products- a biocontrol agent. Adv Appl Sci Res 3:3950–3955

    CAS  Google Scholar 

  • Koch E (1999) Evaluation of commercial products for microbial control of soil-borne plant diseases. Crop Prot 18(2):119–125

    Article  Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53(4):667–683

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE et al (2010) Translational research on Trichoderma: from ‘Omics to the field’. Annu Rev Phytopathol 48(1):395–417

    Article  CAS  PubMed  Google Scholar 

  • MacGregor JT (2006) Genetic toxicity assessment ofmicrobial pesticides: needs and recommended approaches. Intern Assoc environ mutagen Soc 1–17

    Google Scholar 

  • Maliszewska I, Aniszkiewicz L, Sadowski Z (2009) Biological synthesis of gold nanostructures using the extract of Trichoderma koningii. Acta Physica Pol A 116:163–165

    Article  Google Scholar 

  • Meher J, Kashyap P, Sonkar SS et al (2018a) Studies on native isolates of fungal and bacterial bio-agents against collar rot of chickpea. Int J Curr Microbiol Appl Sci 7(1):226–238

    Article  CAS  Google Scholar 

  • Meher J, Sonkar SS, Singh SN (2018b) Growth promotion of chickpea plant on treatment with native isolates of Trichoderma spp. J Pharmacognosy and Phytochemistry 7(4):1631–1636

    CAS  Google Scholar 

  • Moni RM, Rajput RS, Singh J et al (2019) Disease of aromatic grasses and their management. In: Pandey R, Mishra AK, Singh HB et al (eds) Diseases of medicinal and aromatic plants and their management. Today and Tomorrow Printers and Publisher, New Delhi, India, pp 47–65

    Google Scholar 

  • Mukherjee PK, Buensanteai N, Moran-Diez ME et al (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Haware MP, Raghu K (1997) Induction and evaluation of benomyl-tolerant mutants of Trichoderma viride for biological control of botrytis grey mould of chickpea. Indian Phytopath 50(4):485–489

    Google Scholar 

  • Pandya JR, Sabalpara AN, Chawda SK et al (2012) Grain substrate evaluation for mass cultivation of Trichoderma harzianum. J Pure Appl Microbiol 6:2029–2032

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23(1):23–54

    Article  Google Scholar 

  • Perazzolli M, Dagostin S, Ferrari A et al (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol Control 47(2):228–234

    Article  CAS  Google Scholar 

  • Persoon CH (1794) Neuer Veersuch einer systematischen Eintheilung der Schwamme (Disposition methodica fungorum). Romer’s news magazine 84:63–128

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battle-field for soil-borne pathogens and beneficial microorganisms. Plant Soil 21:341–361

    Article  CAS  Google Scholar 

  • Rajput RS, Singh J, Moharana DP et al. (2018) Indian Biopesticide Industry: An Analytical Study of Current Scenario In: Singh J, Nigam R, Hasan W (eds.) Advances in Biodiversity Conservation for Sustainable Development. Parmar Publishers and Distributors, Jharkhand, India, pp 105–109

    Google Scholar 

  • Rani A, Singh R, Kumar P et al (2017) Pros and cons of fungicides: an overview. Int J Eng Sci Res Tech 6(1)

    Google Scholar 

  • Redda ET, Ma J, Mei J et al (2018) Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani and Botrytis cinerea. Eur. Exp Biol 8(2):12

    Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Potential of Trichoderma spp. as bio-control agents of pathogens involved in wilt complex of chickpea (Cicer arietinum L.). J Biol Control 19(2):157–166

    Google Scholar 

  • Sandhya C, Adapa LKK, Nampoothri M et al (2004) Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J Basic Microbiol 44:49–58

    Article  CAS  PubMed  Google Scholar 

  • Sarrocco S, Guidi L, Fambrini S et al (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  • Seidi V, Marchetti M, Schandl R et al (2006) EPL1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  Google Scholar 

  • Sharma DD, Gupta VP, Chandrashekhar DS (1999) Compatibility of certain biocontrol agents with chemical pesticides and fertilizers. Indian J Sericulture 38:79–82

    Google Scholar 

  • Sharma P, Sharma M, Raja M et al (2014) Status of Trichoderma research in India: a review. Indian Phytopathol 14(67):1–19

    CAS  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Maharshi A, Singh DP et al (2018) Role of microbial seed priming and microbial Phytohormone in modulating growth promotion and defense responses in plants. In: Rakshit A, Singh HB (eds) Advances in seed priming. Springer, Singapore, pp 115–126

    Google Scholar 

  • Singh J, Rajput RS, Bisen K et al (2017a) Role of Trichoderma secondary metabolites in plant growth promotion and biological control. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, New York, USA, pp 411–426

    Chapter  Google Scholar 

  • Singh V, Ray S, Bisen K et al (2017b) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, UK, pp 364–374

    Chapter  Google Scholar 

  • Singh A, Shahid M, Srivastava M et al (2014) Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol 3:1–7

    Google Scholar 

  • Singh HB, Singh BN, Singh SP et al (2009) Biological control of plant diseases: current status and future prospects. In: Johri JK (ed) Recent advances in biopesticides: biotechnological applications. New India Pub, New Delhi, p 322

    Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK et al (2016) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 193:74–86

    Article  PubMed  Google Scholar 

  • Staley ZR, Harwood VJ, Rohr JR (2015) A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit Rev Toxicol 45(10):813–836. https://doi.org/10.3109/10408444.2015.1065471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swathi B, Patibanda AK, Prasuna RP (2015) Antagonistic efficacy of Trichoderma spp. on Sclerotium Rolfsii in vitro. IOSR Journal of Agriculture and Veterinary Science 8(7):19–22

    Google Scholar 

  • Teixeira H, Júnior P, Vieira RF et al (2012) Trichoderma spp. decrease Fusarium root rot in common bean. Summa Phytopathol 38(4):334–336

    Article  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:192–208

    Article  Google Scholar 

  • Thakur AK, Norris RV (1928) A biochemical study of some soil fungi with special reference to ammonia production. Journal of Indian Institute of Science 18:141–160

    Google Scholar 

  • Tjamos EC, Papavizas GC, Cook RJ (1922) In: biological control of plant diseases. Progress and challenges for the future. Plenum press, New York: 222

    Google Scholar 

  • USEPA (2008) What are biopesticides? http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei: a route for large scale production of AgNPs. Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD et al (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: Progress, problems and potential. CABI, Bristol, UK, pp 311–346

    Chapter  Google Scholar 

  • Vinale F, Marra R, Scala F et al (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43(2):143–148

    CAS  PubMed  Google Scholar 

  • Waghunde R, Shelake R, Ambalal SN (2016b) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1960

    Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016a) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11(22):1952–1965. https://doi.org/10.5897/AJAR2015.10584

    Article  Google Scholar 

  • Woo SL, Ruocco M, Vinale F et al (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8(1):71–126

    Article  Google Scholar 

  • Yadav RN, Rashid MM, Zaidi NW et al (2019) Secondary metabolites of Metarhizium spp. and Verticillium spp. and their agricultural applications. In: Secondary metabolites of plant growth promoting Rhizomicroorganisms. Springer, Singapore pp, pp 27–58

    Chapter  Google Scholar 

  • Yoon MY, Cha B, Kim JC (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Galhaup C, Payer K et al (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to DST-INSPIRE and UGC-RET scholarship for providing financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meher, J., Rajput, R.S., Bajpai, R., Teli, B., Sarma, B.K. (2020). Trichoderma: A Globally Dominant Commercial Biofungicide. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_9

Download citation

Publish with us

Policies and ethics