Skip to main content

Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Modulating Brainwave Abnormalities and Behaviors

  • Chapter
  • First Online:
Modern Approaches to Augmentation of Brain Function

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Neuropathological studies in autism spectrum disorder (ASD) suggest the presence of a neuronal migrational disorder that alters the excitatory–inhibitory bias of the cerebral cortex. More specifically, in ASD, there appears to be widespread loss of parvalbumin (PV)-positive interneurons manifested as abnormalities in gamma oscillations (neural network instabilities), epileptogenesis, and impaired cognitive functions. Transcranial magnetic stimulation (TMS) is one of the first treatment to target this putative core pathological feature of ASD. Studies show that low-frequency TMS over the dorsolateral prefrontal cortex (DLPC) of individuals with ASD decreases the power of gamma activity while improving both executive function skills related to self-monitoring behaviors as well as the ability to apply corrective actions. Studies from our group have also shown that low-frequency TMS in ASD provides a reduction of stimulus-bound behaviors and diminished sympathetic arousal. Results become more significant with an increasing number of sessions and bear synergism when used along with neurofeedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey A, Luthert P, Dean A et al (1998) A clinicopathological study of autism. Brain 121:889–905

    PubMed  Google Scholar 

  • Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ (2018) Repetitive transcranial magnetic stimulation for treatment of autism spectrum disorder: a systematic review and meta-analaysis. Front Integr Neurosci 12:27

    PubMed  PubMed Central  Google Scholar 

  • Baruth J, Casanova MF, El-Baz A (2010) Low-frequency repetitive transcranialmagnetic stimulation modulates evoked-gamma frequency oscillations in autismspectrum disorders. J Neurother 14:179–9

    Google Scholar 

  • Brown CC, Gruber T, Boucher J, Rippon G, Brock J (2005) Gamma abnormalities during perception of illusory figures in autism. Cortex 41:364–376

    PubMed  Google Scholar 

  • Casanova MF (2007) The neuropathology of autism. Brain Pathol 17(4):422–433

    PubMed  PubMed Central  Google Scholar 

  • Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A (2010) A topographical study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20(2):451–458

    PubMed  Google Scholar 

  • Casanova MF, Baruth JM, El-Baz A, Tasman A, Sears L, Sokhadze E (2012) Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Transl Neurosci 3:170–180

    PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Kamat SS et al (2013a) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1:67

    PubMed  PubMed Central  Google Scholar 

  • Casanova MF, Baruth J, El-Baz AS, Sokhadze GE, Hensley M, Sokhadze ES (2013b) Evoked and induced gamma frequency oscillations in autism. In: Casanova MF, El-Baz AS, Suri JS (eds) Imaging the brain in autism. Springer, New York, pp 87–106

    Google Scholar 

  • Casanova MF, Hensley MK, Sokhadze EM, El-Baz AS, Wang Y, Li X, Sears L (2014) Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Front Hum Neurosci 8:851

    PubMed  PubMed Central  Google Scholar 

  • Casanova MF, Sokhadze E, Opris I, Wang Y, Li X (2015) Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatr 104(4):346–355

    PubMed  Google Scholar 

  • Casanova MF, Sokhadze EM, Opris I, Li X (2019) Autism, transcranial magnetic stimulation and gamma frequencies. In: Sokhadze EM, Casanova MF (eds) Autism spectrum disorder: neuromodulation, neurofeedback, and sensory integration approaches to research and treatment. FNNR & BMED Press, Murfreesboro, TN, pp 49–65

    Google Scholar 

  • Cole EJ, Enticott PG, Oberman LM (2019) rTMS in ASD Consensus Group. Thepotential of repetitive transcranial magnetic stimulation for autism spectrum disorder: a consensus statement. Biol Psychiatry 85(4):e21–2

    Google Scholar 

  • Finisguerra A, Borgatti R, Urgesi C (2019) Non-invasive brain stimulation for the rehabilitation of children and adolescents with neurodevelopmental disorders: a systematic review. Front Psychol 10:135

    PubMed  PubMed Central  Google Scholar 

  • Fox PT, Narayana S, Tandon N, Sandoval H, Fox SP, Kochunov P, Lancaster JL (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–16

    PubMed  PubMed Central  Google Scholar 

  • Garvey MA, Gilbert DL (2004) Transcranial magnetic stimulation in children. Eur J Paediatr Neurol 8:7–19

    PubMed  Google Scholar 

  • Gómez L, Vidal B, Morales L, Berrillo S, Baez M, Maragoto C, Vera H (2019) Non-invasive brain stimulation in children with autism spectrum disorder. In: Sokhadze EM, Casanova MF (eds) Autism spectrum disorder: neuromodulation, neurofeedback, and sensory integration approaches to research and treatment. FNNR & BMED Press, Murfreesboro, TN, pp 89–114

    Google Scholar 

  • Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, Johnson MH (2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12:2697–2700

    CAS  PubMed  Google Scholar 

  • Hashemi E, Ariza J, Rogers H et al (2017) The number of parvalbumin-expressing interneurons is decreased in the medial prefrontal cortex in autism. Cereb Cortex 27(3):1931–1943

    PubMed  Google Scholar 

  • Hensley MK, El-Baz AS, Sokhadze E, Sears L, Casanova MF (2014) Effects of 18 session TMS therapy on gamma coherence in autism. Psychophysiology 51:S16. (Abstract)

    Google Scholar 

  • Hoffman RE, Cavus I (2002) Slow transcranial magnetic stimulation, long-term potentiation, and brain hyperexcitability disorders. Am J Psychiatry 159:1093–1102

    PubMed  Google Scholar 

  • Hutsler JJ, Casanova MF (2016) Cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 42(2):115–134

    PubMed  Google Scholar 

  • Lerner AJ, Wassermann EM, Tamir DI (2019) Seizures from transcranial magnetic stimulation 2012–2016: Results of a survey of active laboratories and clinics. Clin Neurophysiol 130(8):1409–1416

    Google Scholar 

  • Lorente de Nó R (1938) Architectonics and structure of the cerebral cortex. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, New York, pp 291–330

    Google Scholar 

  • Marin-Padilla M (2011) The human brain: prenatal development and structure. Springer, Berlin

    Google Scholar 

  • Masuda F, Nakajima S, Miyazaki T et al (2019) Clinical effectiveness of repetitive transcranial magnetic stimulation treatment in children and adolescents with neurodevelopmental disorders: a systematic review. Autism 20:1362361318822502. https://doi.org/10.1177/1362361318822502

    Article  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain: cortical organization and the group-selective theory of higher brain function. MIT Press, Cambridge, MA, pp 7–51

    Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex [review]. Brain 120:701–722

    PubMed  Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Nakamura T, Matsumoto J, Takamura Y et al (2015) Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-B knock-out and control mice. PLoS One 10(3). https://doi.org/10.1371/journal.pone.0119258

  • Ni H-C, Huang Y-Z (2019) Theta burst stimulation in autism. In: Sokhadze EM, Casanova MF (eds) Autism spectrum disorder: neuromodulation, neurofeedback, and sensory integration approaches to research and treatment. FNNR & BMED Press, Murfreesboro, TN, pp 67–87

    Google Scholar 

  • Oberman LM, Enticott PG, Casanova MF, Rotenberg A, Pascual-Leone A, McCracken JT, TMS in ASD Consensus Group (2016) Transcranial magnetic stimulation in autism spectrum disorder: challenges, promise, and roadmap for future research. Autism Res 9(2):184–203

    PubMed  Google Scholar 

  • Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, Takeda M (2004) Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett 358:193–196

    CAS  PubMed  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumns: from executive control to disrupted cognitive processing. Brain 137(Pt 7):1863–1875

    PubMed  PubMed Central  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012) Columnar processing in primate PFC: evidence for executive control microcircuits. J Cogn Neurosci 24:2334–2337

    PubMed  PubMed Central  Google Scholar 

  • Quintana H (2005) Transcranial magnetic stimulation in persons younger than the age of 18. J ECT 21:88–95

    PubMed  Google Scholar 

  • Rippon G (2017) Gamma abnormalities in autism spectrum disorders, ch. 22. In: Casanova MF, El-Baz A, Suri JS (eds) Autism imaging and devices. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp 457–496

    Google Scholar 

  • Saunders JA, Tatard-Leitman VM, Suh J et al (2013) Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes. Autism Res 6(2):69–77

    PubMed  PubMed Central  Google Scholar 

  • Sokhadze E, El-Baz A, Baruth J, Mathai G, Sears L, Casanova MF (2009a) Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39:619–634

    PubMed  Google Scholar 

  • Sokhadze EM, Baruth JM, Tasman A, Sears L et al (2009b) Event-related potential study of novelty processing abnormalities in autism. Appl Psychophysiol Biofeedback 34:37–51

    PubMed  Google Scholar 

  • Sokhadze EM, El-Baz AS, Sears LL, Opris I, Casanova MF (2014a) rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Front Syst Neurosci 8:134

    PubMed  PubMed Central  Google Scholar 

  • Sokhadze EM, El-Baz AS, Tasman A, Sears LL et al (2014b) Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback 39(304):237–257

    PubMed  PubMed Central  Google Scholar 

  • Sokhadze EM, El-Baz AS, Tasman A, Sears LL, Wang Y, Lamina EV (2014c) Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback 39:237–257

    PubMed  PubMed Central  Google Scholar 

  • Sokhadze G, Casanova MF, Kelly D, Casanova E, Russell B, Sokhadze EM (2017) Neuromodulation based on rTMS affects behavioral measures and autonomic nervous system activity in children with autism. NeuroRegulation 4(2):65

    Google Scholar 

  • Szentàgothai J (1975) The “module concept” in cerebral cortex architecture. Brain Res 95(2–3):475–496

    PubMed  Google Scholar 

  • Wang Y, Hensley MK, Tasman A, Sears L, Casanova MF, Sokhadze EM (2016) Heart rate variability and skin conductance during repetitive TMS course in children with autism. Appl Psychophysiol Biofeedback 41(1):47–60

    PubMed  Google Scholar 

  • Wassermann EM, Wedegaertner FR, Ziemann U et al (1998) Crossed reduction of motor cortex excitability by 1 Hz transcranial magnetic stimulation. Neurosci Lett 250:141–144

    CAS  PubMed  Google Scholar 

  • Wegiel J, Kuchna I, Nowicki K et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 11:755–770

    Google Scholar 

  • Wöhr M, Orduz D, Gregory P et al (2015) Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl Psychiatry 5(3):e525

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is based on several studies partially supported by a grant from the National Institutes of Health (MH86784) awarded to Manuel F. Casanova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casanova, M.F., Opris, I., Sokhadze, E.M., Casanova, E.L., Li, X. (2021). Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Modulating Brainwave Abnormalities and Behaviors. In: Opris, I., A. Lebedev, M., F. Casanova, M. (eds) Modern Approaches to Augmentation of Brain Function. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-54564-2_14

Download citation

Publish with us

Policies and ethics