Skip to main content

Advertisement

Log in

Investigational and Therapeutic Applications of Transcranial Magnetic Stimulation in Schizophrenia

  • Schizophrenia and Other Psychotic Disorders (AK Pandurangi, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This current review summarizes the investigational and therapeutic applications of transcranial magnetic stimulation (TMS) in schizophrenia.

Recent Findings

Fairly consistent findings of an impaired cortical excitation-inhibition balance, cortical plasticity, and motor resonance have been reported in schizophrenia. Cortical connectivity impairments have also been demonstrated in motor and prefrontal brain regions. In terms of treatment, the best support is for 1-Hz TMS to the left temporoparietal cortex for the short-term treatment of persistent auditory hallucinations. High-frequency TMS to the left prefrontal cortex improves negative and cognitive symptoms, but with inconsistent and small effects.

Summary

TMS combined with diverse brain mapping techniques and clinical evaluation can unravel critical brain-behavior relationships relevant to schizophrenia. These provide critical support to the conceptualization of schizophrenia as a connectopathy with anomalous cortical plasticity. Adaptive modulation of these aberrant brain networks in a neuroscience-informed manner drives short-term therapeutic gains in difficult-to-treat symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    PubMed  PubMed Central  Google Scholar 

  2. Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "just the facts" what we know in 2008. 2. Epidemiology and etiology. Schizophr Res. 2008;102:1–18.

    PubMed  Google Scholar 

  3. de Araujo AN, de Sena EP, de Oliveira IR, Juruena MF. Antipsychotic agents: efficacy and safety in schizophrenia. Drug Healthc Patient Saf. 2012;4:173–80.

    PubMed  PubMed Central  Google Scholar 

  4. McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A. Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry. 2011;70:19–27.

    PubMed  PubMed Central  Google Scholar 

  5. •• Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87. This is a state-of-the-art review of using neuromodulation techniques like TMS and others for investigating brain-behavior relationships over the last three decades.

    PubMed  Google Scholar 

  6. Dougall N, Maayan N, Soares-Weiser K, McDermott LM, McIntosh A. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD006081.pub2.

  7. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325:1106–7.

    Google Scholar 

  8. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation. 2008;1:151–63.

    PubMed  Google Scholar 

  10. • Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol. 2013;124:1309–20. This is the only meta-analysis of investigational TMS studies in schizophrenia and other psychiatric disorders.

    PubMed  Google Scholar 

  11. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol Lond. 1993;471:501–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85:355–64.

    PubMed  Google Scholar 

  13. Du X, Choa F-S, Chiappelli J, Wisner KM, Wittenberg G, Adhikari B, et al. Aberrant middle prefrontal-motor cortex connectivity mediates motor inhibitory biomarker in schizophrenia. Biol Psychiatry. 2019;85:49–59.

    PubMed  Google Scholar 

  14. Mehta UM, Thirthalli J, Basavaraju R, Gangadhar BN. Association of intracortical inhibition with social cognition deficits in schizophrenia: findings from a transcranial magnetic stimulation study. Schizophr Res. 2014;158:146–50.

    PubMed  Google Scholar 

  15. Takahashi S, Ukai S, Kose A, Hashimoto T, Iwatani J, Okumura M, et al. Reduction of cortical GABAergic inhibition correlates with working memory impairment in recent onset schizophrenia. Schizophr Res. 2013;146:238–43.

    PubMed  Google Scholar 

  16. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol. 2008;22:203–9.

    CAS  PubMed  Google Scholar 

  17. Liu SK, Fitzgerald PB, Daigle M, Chen R, Daskalakis ZJ. The relationship between cortical inhibition, antipsychotic treatment, and the symptoms of schizophrenia. Biol Psychiatry. 2009;65:503–9.

    PubMed  Google Scholar 

  18. Basavaraju R, Sanjay TN, Mehta UM, Muralidharan K, Thirthalli J. Cortical inhibition in symptomatic and remitted mania compared to healthy subjects: a cross-sectional study. Bipolar Disord. 2017;19:698–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91:176–80.

    PubMed  Google Scholar 

  20. Gallese V. Before and below “theory of mind”: embodied simulation and the neural correlates of social cognition. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362:659–69.

    Google Scholar 

  21. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995;73:2608–11.

    CAS  PubMed  Google Scholar 

  22. Mehta UM, Thirthalli J, Aneelraj D, Jadhav P, Gangadhar BN, Keshavan MS. Mirror neuron dysfunction in schizophrenia and its functional implications: a systematic review. Schizophr Res. 2014;160:9–19.

    PubMed  PubMed Central  Google Scholar 

  23. Mehta UM, Thirthalli J, Basavaraju R, Gangadhar BN, Pascual-Leone A. Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: evidence from a transcranial magnetic stimulation study. Schizophr Bull. 2014;40:1083–94.

    PubMed  Google Scholar 

  24. Mehta UM, Ashok AH, Thirthalli J, Keshavan MS. Early motor resonance differentiates schizophrenia patients from healthy subjects and predicts social cognition performance. Prog Brain Res. 2019. https://doi.org/10.1016/bs.pbr.2019.03.011.

    Google Scholar 

  25. Basavaraju R, Mehta UM, Pascual-Leone A, Thirthalli J. Elevated mirror neuron system activity in bipolar mania: evidence from a transcranial magnetic stimulation study. Bipolar Disord. 2019;21:259–69.

    PubMed  Google Scholar 

  26. Enticott PG, Hoy KE, Herring SE, Johnston PJ, Daskalakis ZJ, Fitzgerald PB. Reduced motor facilitation during action observation in schizophrenia: a mirror neuron deficit? Schizophr Res. 2008;102:116–21.

    PubMed  Google Scholar 

  27. Andrews SC, Enticott PG, Hoy KE, Thomson RH, Fitzgerald PB. No evidence for mirror system dysfunction in schizophrenia from a multimodal TMS/EEG study. Psychiatry Res. 2015;228:431–40.

    PubMed  Google Scholar 

  28. Bagewadi VI, Mehta UM, Naik SS, Govindaraj R, Varambally S, Arumugham SS, et al. Diminished modulation of motor cortical reactivity during context-based action observation in schizophrenia. Schizophr Res. 2019;204:222–9.

    PubMed  Google Scholar 

  29. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453:525–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen R, Yung D, Li J-Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 2003;89:1256–64.

    PubMed  Google Scholar 

  31. Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, et al. Interhemispheric facilitation of the hand motor area in humans. J Physiol. 2001;531:849–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S. Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry. 2002;59:347–54.

    PubMed  Google Scholar 

  33. Hoy KE, Georgiou-Karistianis N, Laycock R, Fitzgerald PB. A transcranial magnetic stimulation study of transcallosal inhibition and facilitation in schizophrenia. J Clin Neurosci. 2008;15:863–7.

    PubMed  Google Scholar 

  34. Fitzgerald PB, Brown TL, Daskalakis ZJ, deCastella A, Kulkarni J. A study of transcallosal inhibition in schizophrenia using transcranial magnetic stimulation. Schizophr Res. 2002;56:199–209.

    CAS  PubMed  Google Scholar 

  35. Koch G, Fernandez Del Olmo M, Cheeran B, Ruge D, Schippling S, Caltagirone C, et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci. 2007;27:6815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Koch G, Ribolsi M, Mori F, Sacchetti L, Codecà C, Rubino IA, et al. Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia. Biol Psychiatry. 2008;64:815–9.

    PubMed  Google Scholar 

  37. Ribolsi M, Mori F, Magni V, Codecà C, Kusayanagi H, Monteleone F, et al. Impaired inter-hemispheric facilitatory connectivity in schizophrenia. Clin Neurophysiol. 2011;122:512–7.

    PubMed  Google Scholar 

  38. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatry. 2005;162:1203–5.

    PubMed  Google Scholar 

  39. • Brady RO, Gonsalvez I, Lee I, Öngür D, Seidman LJ, Schmahmann JD, et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. AJP Appi Ajp. 2019;2018:18040429. This article demonstrates the role of the cerebellar-prefrontal resting state network in negative symptoms of schizophrenia by using TMS to alter the connectivity and hence symptoms.

  40. Guller Y, Ferrarelli F, Shackman AJ, Sarasso S, Peterson MJ, Langheim FJ, et al. Probing thalamic integrity in schizophrenia using concurrent transcranial magnetic stimulation and functional magnetic resonance imaging. Arch Gen Psychiatry. 2012;69:662–71.

    PubMed  PubMed Central  Google Scholar 

  41. Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: implications for risk, illness, and novel interventions. Dev Psychopathol. 2015;27:615–35.

    PubMed  PubMed Central  Google Scholar 

  42. Bhandari A, Voineskos D, Daskalakis ZJ, Rajji TK, Blumberger DM. A review of impaired neuroplasticity in schizophrenia investigated with non-invasive brain stimulation. Front Psychiatry. 2016;7. https://doi.org/10.3389/fpsyt.2016.00045.

  43. Hasan A, Falkai P, Wobrock T. Transcranial brain stimulation in schizophrenia: targeting cortical excitability, connectivity and plasticity. Curr Med Chem. 2013;20:405–13.

    CAS  PubMed  Google Scholar 

  44. Voineskos D, Rogasch NC, Rajji TK, Fitzgerald PB, Daskalakis ZJ. A review of evidence linking disrupted neural plasticity to schizophrenia. Can J Psychiatr. 2013;58:86–92.

    Google Scholar 

  45. Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain. 2006;129:1659–73.

    CAS  PubMed  Google Scholar 

  46. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999;402:421–5.

    CAS  PubMed  Google Scholar 

  47. • Mehta UM, Thanki MV, Padmanabhan J, Pascual-Leone A, Keshavan MS. Motor cortical plasticity in schizophrenia: a meta-analysis of transcranial magnetic stimulation – electromyography studies. Schizophr Res. 2019;207:37–47. This article reports a meta-analytic quantification of cortical plasticity impairments in schizophrenia as assessed using TMS-EMG studies.

    PubMed  Google Scholar 

  48. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    CAS  PubMed  Google Scholar 

  49. Oxley T, Fitzgerald PB, Brown TL, de Castella A, Jeff Daskalakis Z, Kulkarni J. Repetitive transcranial magnetic stimulation reveals abnormal plastic response to premotor cortex stimulation in schizophrenia. Biol Psychiatry. 2004;56:628–33.

    PubMed  Google Scholar 

  50. Meherwan Mehta U, Agarwal SM, Kalmady SV, Shivakumar V, Kumar CN, Venkatasubramanian G, et al. Enhancing putative mirror neuron activity with magnetic stimulation: a single-case functional neuroimaging study. Biol Psychiatry. 2013;74:e1–2.

    PubMed  Google Scholar 

  51. Mehta UM, Waghmare AV, Thirthalli J, Venkatasubramanian G, Gangadhar BN. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study. Asian J Psychiatr. 2015;17:71–7.

    PubMed  Google Scholar 

  52. •• Tremblay S, Rogasch NC, Premoli I, et al. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol. 2019;130:802–44. This manuscript is an up-to-date review on basic principles, clinical utility and future applications of TMS-EEG studies in brain disorders.

    PubMed  Google Scholar 

  53. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 1997;8:3537–40.

    CAS  PubMed  Google Scholar 

  54. Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40:146–9.

    PubMed  Google Scholar 

  55. Ferrarelli F, Massimini M, Peterson MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry. 2008;165:996–1005.

    PubMed  Google Scholar 

  56. Ferrarelli F, Sarasso S, Guller Y, Riedner BA, Peterson MJ, Bellesi M, et al. Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. Arch Gen Psychiatry. 2012;69:766–74.

    PubMed  PubMed Central  Google Scholar 

  57. Ferrarelli F, Kaskie RE, Graziano B, Reis CC, Casali AG. Abnormalities in the evoked frontal oscillatory activity of first-episode psychosis: a TMS/EEG study. Schizophr Res. 2019;206:436–9.

    PubMed  Google Scholar 

  58. Frantseva M, Cui J, Farzan F, Chinta LV, Perez Velazquez JL, Daskalakis ZJ. Disrupted cortical conductivity in schizophrenia: TMS-EEG study. Cereb Cortex. 2014;24:211–21.

    PubMed  Google Scholar 

  59. Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. J Neurophysiol. 2013;109:89–98.

    PubMed  Google Scholar 

  60. Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study. Neuropsychopharmacology. 2008;33:2860–9.

    PubMed  Google Scholar 

  61. Radhu N, Dominguez LG, Greenwood TA, Farzan F, Semeralul MO, Richter MA, et al. Investigating cortical inhibition in first-degree relatives and probands in schizophrenia. Sci Rep. 2017;7:43629.

    PubMed  PubMed Central  Google Scholar 

  62. Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, et al. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep. 2017;7:17106.

    PubMed  PubMed Central  Google Scholar 

  63. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523:503–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Noda Y, Barr MS, Zomorrodi R, Cash RFH, Rajji TK, Farzan F, et al. Reduced short-latency afferent inhibition in prefrontal but not motor cortex and its association with executive function in schizophrenia: a combined TMS-EEG study. Schizophr Bull. 2018;44:193–202.

    PubMed  Google Scholar 

  65. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    CAS  PubMed  Google Scholar 

  66. Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry. 2000;57:1033–8.

    CAS  PubMed  Google Scholar 

  67. Hoffman RE, Boutros NN, Berman RM, Roessler E, Belger A, Krystal JH, et al. Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices.”. Biol Psychiatry. 1999;46:130–2.

    CAS  PubMed  Google Scholar 

  68. • He H, Lu J, Yang L, Zheng J, Gao F, Zhai Y, et al. Repetitive transcranial magnetic stimulation for treating the symptoms of schizophrenia: a PRISMA compliant meta-analysis. Clin Neurophysiol. 2017;128:716–24. This is one of the recent meta-analysis of therapeutic value of TMS in schizophrenia.

    PubMed  Google Scholar 

  69. Slotema CW, Blom JD, van Lutterveld R, Hoek HW, Sommer IEC. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–10.

    PubMed  Google Scholar 

  70. Otani VHO, Shiozawa P, Cordeiro Q, Uchida RR. A systematic review and meta-analysis of the use of repetitive transcranial magnetic stimulation for auditory hallucinations treatment in refractory schizophrenic patients. Int J Psychiatry Clin Pract. 2015;19:228–32.

    PubMed  Google Scholar 

  71. •• Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: a meta-analysis of randomized controlled trials. Eur Psychiatry. 2018;49:69–77. This is the most recent meta-analysis of therapeutic value of TMS in schizophrenia.

    PubMed  Google Scholar 

  72. Aleman A, Sommer IE, Kahn RS. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. J Clin Psychiatry. 2007;68:416–21.

    PubMed  Google Scholar 

  73. Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res. 2009;108:11–24.

    PubMed  PubMed Central  Google Scholar 

  74. Dollfus S, Lecardeur L, Morello R, Etard O. Placebo response in repetitive transcranial magnetic stimulation trials of treatment of auditory hallucinations in schizophrenia: a meta-analysis. Schizophr Bull. 2016;42:301–8.

    PubMed  Google Scholar 

  75. Thirthalli J, Bharadwaj B, Kulkarni S, Gangadhar BN, Kharawala S, Andrade C. Successful use of maintenance rTMS for 8 months in a patient with antipsychotic-refractory auditory hallucinations. Schizophr Res. 2008;100:351–2.

    PubMed  Google Scholar 

  76. Koops S, Slotema CW, Kos C, Bais L, Aleman A, Blom JD, et al. Predicting response to rTMS for auditory hallucinations: younger patients and females do better. Schizophr Res. 2018;195:583–4.

    PubMed  Google Scholar 

  77. Nathou C, Simon G, Dollfus S, Etard O. Cortical anatomical variations and efficacy of rTMS in the treatment of auditory hallucinations. Brain Stimulation. 2015;8:1162–7.

    PubMed  Google Scholar 

  78. Homan P, Kindler J, Hauf M, Hubl D, Dierks T. Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry. 2012;2:e189–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoffman RE, Wu K, Pittman B, Cahill JD, Hawkins KA, Fernandez T, et al. Transcranial magnetic stimulation of Wernicke’s and right homologous sites to curtail “voices”: a randomized trial. Biol Psychiatry. 2013;73:1008–14.

    PubMed  PubMed Central  Google Scholar 

  80. de Weijer AD, Sommer IEC, Lotte Meijering A, Bloemendaal M, Neggers SFW, Daalman K, et al. High frequency rTMS; a more effective treatment for auditory verbal hallucinations? Psychiatry Res. 2014;224:204–10.

    PubMed  Google Scholar 

  81. Blumberger DM, Christensen BK, Zipursky RB, Moller B, Chen R, Fitzgerald PB, et al. MRI-targeted repetitive transcranial magnetic stimulation of Heschl’s gyrus for refractory auditory hallucinations. Brain Stimulation. 2012;5:577–85.

    PubMed  Google Scholar 

  82. Dollfus S, Jaafari N, Guillin O, Trojak B, Plaze M, Saba G, et al. High-frequency neuronavigated rTMS in auditory verbal hallucinations: a pilot double-blind controlled study in patients with schizophrenia. Schizophr Bull. 2018;44:505–14.

    PubMed  Google Scholar 

  83. Diederen KMJ, Charbonnier L, Neggers SFW, van Lutterveld R, Daalman K, Slotema CW, et al. Reproducibility of brain activation during auditory verbal hallucinations. Schizophr Res. 2013;146:320–5.

    CAS  PubMed  Google Scholar 

  84. Koops S, Dellen E van Schutte MJL, Nieuwdorp W, Neggers SFW, Sommer IEC (2015) Theta burst transcranial magnetic stimulation for auditory verbal hallucinations: negative findings from a double-blind-randomized trial. Schizophrenia Bulletin sbv100.

  85. Plewnia C, Zwissler B, Wasserka B, Fallgatter AJ, Klingberg S. Treatment of auditory hallucinations with bilateral theta burst stimulation: a randomized controlled pilot trial. Brain Stimulation. 2014;7:340–1.

    PubMed  Google Scholar 

  86. Rosenberg O, Gersner R, Klein LD, Kotler M, Zangen A, Dannon P. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study. Ann General Psychiatry. 2012;11:13.

    Google Scholar 

  87. •• Aleman A, Enriquez-Geppert S, Knegtering H, Dlabac-de Lange JJ. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: meta-analysis of controlled trials. Neurosci Biobehav Rev. 2018;89:111–8. This study is a recent meta-analysis of TMS and TES treatments in negative symptoms of schizophrenia.

    Google Scholar 

  88. • Hasan A, Wobrock T, Guse B, et al. Structural brain changes are associated with response of negative symptoms to prefrontal repetitive transcranial magnetic stimulation in patients with schizophrenia. Mol Psychiatry. 2017;22:857–64. This study identifies structural brain markers (hippocampus and precuneus) that predict improvement in negative symptoms of schizophrenia.

    PubMed  Google Scholar 

  89. Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125:2150–206.

    PubMed  Google Scholar 

  90. • Wobrock T, Guse B, Cordes J, et al. Left prefrontal high-frequency repetitive transcranial magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: a sham-controlled, randomized multicenter trial. Biol Psychiatry. 2015;77:979–88. This is a large multi-center trial of rTMS to the prefrontal cortex for treating negative symptoms in schizophrenia.

    PubMed  Google Scholar 

  91. Zhao S, Kong J, Li S, Tong Z, Yang C, Zhong H. Randomized controlled trial of four protocols of repetitive transcranial magnetic stimulation for treating the negative symptoms of schizophrenia. Shanghai Arch Psychiatry. 2014;26:15–21.

    PubMed  PubMed Central  Google Scholar 

  92. Rabany L, Deutsch L, Levkovitz Y. Double-blind, randomized sham controlled study of deep-TMS add-on treatment for negative symptoms and cognitive deficits in schizophrenia. J Psychopharmacol. 2014;28:686–90.

    PubMed  Google Scholar 

  93. Dlabac-de Lange JJ, Bais L, van Es FD, Visser BGJ, Reinink E, Bakker B, et al. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: results of a multicenter double-blind randomized controlled trial. Psychol Med. 2015;45:1263–75.

    CAS  PubMed  Google Scholar 

  94. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100.

    PubMed  PubMed Central  Google Scholar 

  95. Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. Psychiatry Res. 2016;243:413–20.

    PubMed  Google Scholar 

  96. Basavaraju R, Ithal D, Thanki M, Hr A, Thirthalli J, Pascual-Leone A, et al. T79. Intermittent theta burst stimulation of cerebellar vermis in schizophrenia: impact on negative symptoms and brain connectivity. Schizophr Bull. 2019;45:S234–4.

    PubMed Central  Google Scholar 

  97. Mehta UM, Thirthalli J, Subbakrishna DK, Gangadhar BN, Eack SM, Keshavan MS. Social and neuro-cognition as distinct cognitive factors in schizophrenia: a systematic review. Schizophr Res. 2013;148:3–11.

    PubMed  Google Scholar 

  98. Mehta UM, Thirthalli J, Naveen Kumar C, Keshav KJ, Gangadhar BN, Keshavan MS. Schizophrenia patients experience substantial social cognition deficits across multiple domains in remission. Asian J Psychiatr. 2013;6:324–9.

    PubMed  Google Scholar 

  99. Fett AK, Viechtbauer W, Dominguez MD, Penn DL, van Os J, Krabbendam L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev. 2011;35:573–88.

    PubMed  Google Scholar 

  100. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.

    CAS  PubMed  Google Scholar 

  101. Brown P. Shocking safety concerns. Lancet. 1996;348:959.

    CAS  PubMed  Google Scholar 

  102. Hoy KE, Fitzgerald PB. Brain stimulation in psychiatry and its effects on cognition. Nat Rev Neurol. 2010;6:267–75.

    PubMed  Google Scholar 

  103. Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm. 2010;117:105–22.

    PubMed  Google Scholar 

  104. Mogg A, Purvis R, Eranti S, Contell F, Taylor JP, Nicholson T, et al. Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: a randomized controlled pilot study. Schizophr Res. 2007;93:221–8.

    PubMed  Google Scholar 

  105. Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A, Noll DC, et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry. 2001;58:280–8.

    CAS  PubMed  Google Scholar 

  106. Barr MS, Farzan F, Rajji TK, Voineskos AN, Blumberger DM, Arenovich T, et al. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiatry. 2013;73:510–7.

    PubMed  Google Scholar 

  107. Barr MS, Farzan F, Arenovich T, Chen R, Fitzgerald PB, Daskalakis ZJ. The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PLoS One. 2011;6:e22627.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Francis MM, Hummer TA, Vohs JL, Yung MG, Visco AC, Mehdiyoun NF, et al. Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study. Brain Imaging Behav. 2018;13:852–61. https://doi.org/10.1007/s11682-018-9902-4.

    Article  Google Scholar 

  109. Hasan A, Guse B, Cordes J, Wölwer W, Winterer G, Gaebel W, et al. Cognitive effects of high-frequency rTMS in schizophrenia patients with predominant negative symptoms: results from a multicenter randomized sham-controlled trial. Schizophr Bull. 2016;42:608–18.

    PubMed  Google Scholar 

  110. Wolwer W, Lowe A, Brinkmeyer J, Streit M, Habakuck M, Agelink MW, et al. Repetitive transcranial magnetic stimulation (rTMS) improves facial affect recognition in schizophrenia. Brain stimul. 2014;7:559–63.

    PubMed  Google Scholar 

  111. • Jiang Y, Guo Z, Xing G, He L, Peng H, Du F, et al. Effects of high-frequency transcranial magnetic stimulation for cognitive deficit in schizophrenia: a meta-analysis. Front Psychiatry. 2019;10:135. This is the only meta-analysis to examine the beneficial effects of rTMS in the treatment of cognitive deficits of schizophrenia.

  112. • Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345:1054–7. This elegant study describes how engaging parietal-hippocampal connectivity using rTMS can improve associative memory in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sathappan AV, Luber BM, Lisanby SH. The dynamic duo: combining noninvasive brain stimulation with cognitive interventions. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:347–60.

    Google Scholar 

  114. Mehta UM, Keshavan MS (2015) Cognitive rehabilitation and modulating neuroplasticity with brain stimulation: promises and challenges. Journal of Psychosocial Rehabilitation and Mental Health 2:5–7.

    Google Scholar 

  115. Navarro de Lara LI, Windischberger C, Kuehne A, Woletz M, Sieg J, Bestmann S, et al. A novel coil array for combined TMS/fMRI experiments at 3 T. Magn Reson Med. 2015;74:1492–501.

    PubMed  Google Scholar 

  116. Du X, Hong LE. Test-retest reliability of short-interval intracortical inhibition and intracortical facilitation in patients with schizophrenia. Psychiatry Res. 2018;267:575–81.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

UMM was supported by the Wellcome Trust/DBT India Alliance Early Career Fellowship, Grant/Award Number: IA/E/12/1/500755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urvakhsh Meherwan Mehta.

Ethics declarations

Conflict of Interest

Urvakhsh Meherwan Mehta serves as an Associate Editor at Schizophrenia Research and receives an honorarium from Elsevier for the same.

Shalini S Naik, Milind Vijay Thanki, and Jagadisha Thirthalli each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, U.M., Naik, S.S., Thanki, M.V. et al. Investigational and Therapeutic Applications of Transcranial Magnetic Stimulation in Schizophrenia. Curr Psychiatry Rep 21, 89 (2019). https://doi.org/10.1007/s11920-019-1076-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-019-1076-2

Keywords

Navigation