Beberniss, T., Eason, T.G., Spottswood, S.M.: High-speed 3D digital image correlation measurement of long-duration random vibration; recent advancements and noted limitations. In: Proceedings of ISMA2012-USD2012 (2012)
Google Scholar
Beberniss, T.: Experimental Study on the Feasibility of High-Speed 3-Dimensional Digital Image Correlation for Wide-Band Random Vibration Measurement. Ph.D. thesis, University of Cincinnati (2018)
Google Scholar
Blevins, R.D., Holehouse, I., Wentz, K.R.: Thermoacoustic loads and fatigue of hypersonic vehicle skin panels. Journal of Aircraft 30(6), 971–978 (1993). https://doi.org/10.2514/3.46441
CrossRef
Google Scholar
Coe, C.F., Chyu, W.J.: Pressure-Fluctuation Inputs and Response of Panels Underlying Attached and Separated Supersonic Turbulent Boundary Layers. Tech. Rep. NASA TM X-62,189, NASA Ames Research Center (1972)
Google Scholar
Currao, G.M.D., McQuellin, L.P., Neely, A.J., Zander, F., Buttsworth, D., McNamara, J.J., Iahn, I.: Oscillating Shock Impinging on a Flat Plate at Mach 6. In: AIAA Aviation 2019 Forum. American Institute of Aeronautics and Astronautics (2019). https://doi.org/10.2514/6.2019-3077
Currao, G.M.D., Neely, A.J., Kennell, C.M., Gai, S.L., Buttsworth, D.R.: Hypersonic Fluid–Structure Interaction on a Cantilevered Plate with Shock Impingement. AIAA Journal pp. 1–16 (2019). https://doi.org/10.2514/1.j058375
Daub, D., Esser, B., Gülhan, A.: Experiments on High Temperature Hypersonic Fluid-Structure Interaction with Plastic Deformation. AIAA Journal (in press) (2020)
Google Scholar
Daub, D., Willems, S., Gülhan, A.: Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock. CEAS Space Journal 8(1), 3–12 (2016). https://doi.org/10.1007/s12567-015-0102-4
CrossRef
Google Scholar
Daub, D., Willems, S., Gülhan, A.: Experiments on the Interaction of a Fast-Moving Shock with an Elastic Panel. AIAA Journal 54(2), 670–678 (2016). https://doi.org/10.2514/1.J054233
CrossRef
Google Scholar
Daub, D., Esser, B., Willems, S., Gülhan, A.: Experiments on Thermomechanical Fluid-Structure Interaction in Supersonic Flows. In: Stemmer, C., Adams, N.A., Haidn, O.J., Radespiel, R., Sattelmayer, T., Schröder, W., Weigand, B. (eds.) SFB/TRR40 Annual Report, pp. 243–254. Technische Universität München, Garching bei München, Lehrstuhl für Aerodynamik und Strömungsmechanik (2017)
Google Scholar
Daub, D., Willems, S., Esser, B., Gülhan, A.: Experiments on Elastic Aerothermal Fluid/Structure Interaction in Supersonic Flows. In: Stemmer, C., Adams, N.A., Haidn, O.J., Radespiel, R., Sattelmayer, T., Schröder, W., Weigand, B. (eds.) SFB/TRR40 Annual Report, pp. 277–290. Technische Universität München, Garching bei München, Lehrstuhl für Aerodynamik und Strömungsmechanik (2019)
Google Scholar
Dolling, D.S.: Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? AIAA Journal 39(8), 1517–1531 (2001). https://doi.org/10.2514/2.1476
CrossRef
Google Scholar
Dowell, E.H.: Aeroelasticity of plates and shells. Noordhoff International Publishing (1975)
Google Scholar
Dowell, E.H.: Panel flutter - A review of the aeroelastic stability of plates and shells. AIAA Journal 8(3), 385–399 (1970). https://doi.org/10.2514/3.5680
CrossRef
Google Scholar
Drogoul, S.: From the Failure to the Success - The Return to Flight of the Ariane 5 ECA Launcher. In: 56th International Astronautical Congress. IAF (2005). https://doi.org/10.2514/6.iac-05-d2.2.08
Ecker, T., Karl, S., Dumont, E., Stappert, S., Krause, D.: Numerical Study on the Thermal Loads During a Supersonic Rocket Retropropulsion Maneuver. Journal of Spacecraft and Rockets (2019). https://doi.org/10.2514/1.a34486
CrossRef
Google Scholar
Ehrhardt, D.A., Virgin, L.N.: Experiments on the thermal post-buckling of panels, including localized heating. Journal of Sound and Vibration 439, 300–309 (2019). https://doi.org/10.1016/j.jsv.2018.08.043
CrossRef
Google Scholar
Fiedler, T., Rösler, J., Bäker, M., Hötte, F., v. Sethe, C., Daub, D., Haupt, M., Haidn, O., Esser, B., Gülhan, A.: Future Space-Transport-System Components under High Thermal and Mechanical Loads, chap. Mechanical Integrity of Thermal Barrier Coatings - Coating Development and Micromechanics. Springer (2020)
Google Scholar
Frey, M.: Behandlung von Strömungsproblemen in Raketendüsen bei Überexpansion. Dissertation, Universität Stuttgart (2001). https://doi.org/10.18419/opus-3650
Garrick, I.E., III, W.H.R.: Historical Development of Aircraft Flutter. Journal of Aircraft 18(11), 897–912 (1981). https://doi.org/10.2514/3.57579
Gogulapati, A., Deshmukh, R., Crowell A. R. McNamara, J.J., Vyas, V., Wang, X.Q., Mignolet, M., Beberniss, T., Spottswood, S.M., Eason, T.G.: Response of a Panel to Shock Impingement: Modeling and Comparison with Experiments. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, January. American Institute of Aeronautics and Astronautics (2014). https://doi.org/10.2514/6.2014-0148
Gogulapati, A., Deshmukh, R., McNamara, J.J., Vyas, V., Wang, X., Mignolet, M.P., Beberniss, T., Spottswood, S.M., Eason, T.G.: Response of a Panel to Shock Impingement: Modeling and Comparison with Experiments - Part 2. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, January. American Institute of Aeronautics and Astronautics, Kissimmee, Florida (2015). https://doi.org/10.2514/6.2015-0685
Grilli, M., Chen, L.S., Hickel, S., Adams, N., Willems, S., Gülhan, A.: Experimental and numerical investigation on shockwave/turbulent boundary layer interaction. In: 42nd AIAA Fluid Dynamics Conference and Exhibit (2012)
Google Scholar
Gülhan, A., Esser, B.: A Study on Heat Flux Measurements in High Enthalpy Flows. In: 35th AIAA Thermophysics Conference, Paper AIAA, June (2001). https://doi.org/10.2514/6.2001-3011
Gülhan, A., Esser, B.: Arc-Heated Facilities as a Tool to Study Aerothermodynamic Problems of Reentry Vehicles, Progress in Astronautics and Aeronautics, vol. 198, chap. 13, pp. 375–403. American Institute of Aeronautics and Astronautics, Reston (2002). https://doi.org/10.2514/5.9781600866678.0375.0403
Haidn, O.J., Adams, N.A., Sattelmayer, T., Stemmer, C., Radespiel, R., Schröder, W., Weigand, B.: Fundamental Technologies for the Development of Future Space Transportsystem Components under High Thermal and Mechanical Loads. In: 2018 Joint Propulsion Conference. American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.2514/6.2018-4466
Haupt, M., Niesner, R., Esser, B., Gülhan, A.: Model Configuration for the Validation of Aerothermodynamic Thermal-Mechnical Fluid-Structure-Interactions. In: Proceedings of the ASME 2012 11th Biennial Conference On Engineering Systems Design And Analysis, ESDA2012/82908. Nantes, France (2012)
Google Scholar
Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer-Verlag, Berlin Heidelberg New York (2009)
CrossRef
Google Scholar
Jenkins, J.M., Quinn, R.D.: A Historical Perspective of the YF-12A Thermal Loads and Structures Program. Tech. Rep. NASA Technical Memorandum 104317, NASA, Dryden Flight Research Center, Edwards, Ca (1996)
Google Scholar
Kontinos, D.: Coupled Thermal Analysis Method with Application to Metallic Thermal Protection Panels. Journal of Thermophysics and Heat Transfer 11(2), 173–181 (1997). https://doi.org/10.2514/2.6249
CrossRef
Google Scholar
Koschel, W.: Flight 157 - Ariane 5 ECA: Report of the Inquiry Board. Tech. rep, European Space Agency (2003)
Google Scholar
Kröplin, B.H., Kochendörfer, R., Reimer, T., Ullmann, T., Kornmann, R., Schäfer, R., Wallmersperger, T.: Basic Research and Technologies for Two-Stage-to-Orbit Vehicles: Final Report of the Collaborative Research Centres 253, 255 and 259, chap. Design and Evaluation of Fibre Ceramic Structures, pp. 549–580. Deutsche Forschungsgemeinschaft (2005)
Google Scholar
Mack, A.: Analyse von heißen Hyperschallströmungen um Steuerklappen mit Fluid-Struktur-Interaktion. Ph.D. thesis, DLR/Technische Universität Braunschweig (2005)
Google Scholar
Mack, A., Schäfer, R.: Fluid Structure Interaction on a Generic Body-Flap Model in Hypersonic Flow. Journal of Spacecraft and Rockets 42(5), 769–779 (2005). https://doi.org/10.2514/1.13001
CrossRef
Google Scholar
Maestrello, L., Linden, T.L.J.: Measurements of the response of a panel excited by shock boundary-layer interaction. Journal of Sound and Vibration 16(3), 385–391 (1971). https://doi.org/10.1016/0022-460X(71)90594-3
CrossRef
Google Scholar
Martin, K., Daub, D., Esser, B., Gülhan, A., Reese, S.: Future Space-Transport-System Components under High Thermal and Mechanical Loads, chap. Numerical modelling of fluid-structure interaction for thermal buckling in hypersonic flow. Springer (2020)
Google Scholar
Martin, K., Reese, S.: Thermo-Mechanically Coupled Fluid Structure Interaction for Thermal Buckling. In: VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering (2019)
Google Scholar
McNamara, J.J., Friedmann, P.P.: Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future. AIAA Journal 49(6), 1089–1122 (2011). https://doi.org/10.2514/1.j050882
CrossRef
Google Scholar
Mei, C., Abdel-Motagaly, K., Chen, R.: Review of Nonlinear Panel Flutter at Supersonic and Hypersonic Speeds. Applied Mechanics Reviews 52(10), 321–332 (1999). https://doi.org/10.1115/1.3098919
CrossRef
Google Scholar
Miller, B., McNamara, J., Spottswood, S., Culler, A.: The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. Journal of Sound and Vibration 330(23), 5736–5752 (2011). https://doi.org/10.1016/j.jsv.2011.06.028
CrossRef
Google Scholar
Nichols, J.: Final Report: Saturn V, S-IVB Panel Flutter Qualification Test. Tech. Rep. TN D-5439, NASA, George C. Marshall Space Flight Center, Marshall, Alabama (1969)
Google Scholar
Niesner, R.: Gekoppelte Simulation thermisch-mechanischer Fluid-Struktur-Interaktionen für Hyperschall-Anwendungen. Ph.D. thesis, Technische Universität Braunschweig (2009)
Google Scholar
Niezgodka, F.J.: Der Hyperschallwindkanal H2K des DLR in Köln-Porz (Stand 2000). DLR, Köln (2001)
Google Scholar
Pasquariello, V., Hickel, S., Adams, N., Hammerl, G., Wall, W.A., Daub, D., Willems, S., Gülhan, A.: Coupled simulation of shock-wave/turbulent boundary-layer interaction over a flexible panel. In: 6th European Conference for Aerospace Sciences. EUCASS, Krakow (2015)
Google Scholar
Pasquariello, V.: Analysis and Control of Shock-Wave/Turbulent Boundary-Layer Interactions on Rigid and Flexible Walls. Phd thesis, Technische Universität München, München (2018)
Google Scholar
Pasquariello, V., Hickel, S., Adams, N.A.: Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. Journal of Fluid Mechanics 823, 617–657 (2017). https://doi.org/10.1017/jfm.2017.308
MathSciNet
CrossRef
MATH
Google Scholar
Pozefsky, P.: Identifying Sonic Fatigue Prone Structures on a Hypersonic Transatmospheric Vehicle (ATV). In: AIAA 12th Aeroacoustics Conference. AIAA, San Antonio, TX (1989)
Google Scholar
Schäfer, R.: Thermisch-mechanisches Verhalten heißer Strukturen in der Wechselwirkung mit einem umströmenden Fluid. Ph.D. thesis, DLR/Universität Kassel (2005)
Google Scholar
Shahriar, A., Shoele, K., Kumar, R.: Aero-thermo-elastic Simulation of Shock-Boundary Layer Interaction over a Compliant Surface. In: 2018 Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.2514/6.2018-3398
Spottswood, S.M., Beberniss, T.J., Eason, T.G.: Full-field, dynamic pressure and displacement measurements of a panel excited by shock boundary-layer interaction. 19th AIAA/CEAS Aeroacoustics Conference AIAA (2013). https://doi.org/10.2514/6.2013-2016
Spottswood, S.M., Eason, T.G., Beberniss, T.J.: Influence of shock-boundary layer interactions on the dynamic response of a flexible panel. Proceedings of the International Conference on Noise and Vibration Engineering ISMA 2012, 603–616 (2012)
Google Scholar
Spottswood, S.M., Beberniss, T.J., Eason, T.G., Perez, R.A., Donbar, J.M., Ehrhardt, D.A., Riley, Z.B.: Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions. Journal of Sound and Vibration 443, 74–89 (2019). https://doi.org/10.1016/j.jsv.2018.11.035
CrossRef
Google Scholar
Thornton, E.A.: Thermal structures: Four decades of progress. Journal of Aircraft 29(3), 485–498 (1992). https://doi.org/10.2514/3.46187
CrossRef
Google Scholar
Thornton, E.A., Dechaumphai, P.: Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels. Journal of Aircraft 25(11), 1052–1059 (1988). https://doi.org/10.2514/3.45702
CrossRef
Google Scholar
Thornton, E.A., Oden, J.T., Tworzydlo, W.W., Youn, S.K.: Thermoviscoplastic Analysis of Hypersonic Structures Subjected to Severe Aerodynamic Heating. Journal of Aircraft 27(9), 826–835 (1990). https://doi.org/10.2514/3.45943
CrossRef
Google Scholar
Visbal, M.: On the interaction of an oblique shock with a flexible panel. Journal of Fluids and Structures 30, 219–225 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.02.002
CrossRef
Google Scholar
Visbal, M.: Viscous and inviscid interactions of an oblique shock with a flexible panel. Journal of Fluids and Structures 48, 27–45 (2014). https://doi.org/10.1016/j.jfluidstructs.2014.02.003
CrossRef
Google Scholar
Watts, J.D.: TM X-1669: Flight Experience with Shock Impingement and Interference Heating on the X-15-2 Research Airplane. Tech. rep, National Aeronautics and Space Administration (1968)
Google Scholar
Willems, S., Gülhan, A., Esser, B.: Shock induced fluid structure interaction on a flexible wall in supersonic turbulent flow. In: Progress in Flight Physics - Volume 5, vol. 5, pp. 285–308 (2013). https://doi.org/10.1051/eucass/201305
Willems, S.: Strömungs-Struktur-Wechselwirkung in Überschallströmungen. Ph.D. thesis, DLR/RWTH Aachen University (2017). URL https://elib.dlr.de/116735/
Willems, S., Esser, B., Gülhan, A.: Experimental and numerical investigation on thermal fluid-structure interaction on ceramic plates in high enthalpy flow. CEAS Space Journal 7(4), 483–497 (2015). https://doi.org/10.1007/s12567-015-0101-5
CrossRef
Google Scholar