Skip to main content

Bioprospecting of Bioactive Secondary Metabolites of Endophytic Fungi of Carapichea ipecacuanha (Rubiaceae), a Neotropical Medicinal Species

  • Chapter
  • First Online:
Neotropical Endophytic Fungi

Abstract

The discovery of new bioactive metabolites has become a focus of study in the search for highly efficient methods for the prevention, control, and treatment of several tropical diseases, such as visceral leishmaniasis and Chagas disease. In addition to new medicinal products, bioactive molecules show promise as natural herbicides for use in agriculture and therefore represent an alternative to the synthetic herbicides, which are toxic to humans and animals and difficult to degrade. Endophytic fungi may produce bioactive metabolites of commercial interest for use in both medicine and agriculture. Carapichea ipecacuanha (Brot.) L. Andersson (Rubiaceae), found in the tropical forests of South America, is a medicinal plant with emetic and amebicidal properties and, therefore, a promising target for the study of its community of endophytic fungi. This study aimed to evaluate the secondary metabolites of endophytic fungi associated with C. ipecacuanha for activity against the causative parasites of neglected tropical diseases and herbicidal activity for potential use in agriculture. From 275 endophytic fungi obtained from the leaves, stems, and roots of C. ipecacuanha, 15 isolates of the genera Colletotrichum, Diaporthe, Leptobacillium, Calonectria, and Trichoderma showed promising activities against the parasites Trypanosoma cruzi and Leishmania amazonensis and herbicidal activities. The extract produced from the isolated fungal sp. UFMGCB 15290 showed leishmanicidal activity with 73% inhibition and IC50 of 0.3783 mg mL−1. The extract of fungal sp. UFMGCB 15290 showed IC50 of 42 μg mL−1 against an intracellular form of the parasite in THP-1 cells and IC50 of >100 μg mL−1 against the cells. Against T. cruzi, the extracts of Leptobacillium sp. UFMGCB 15183 and Diaporthe sp. UFMGCB 15195 showed the lowest IC50 values, 2.3 and 3.5 μg mL−1, respectively. The extract from Diaporthe sp. UFMGCB 15138 showed an IC50 of 7.5 μg mL−1 against the intracellular parasite and 40 μg mL−1 against the cells. The extract of Diaporthe sp. UFMGCB 15087 yielded the highest IC50 value in the host cell (80 μg mL−1) and the highest selectivity index (10.9). Additionally, the extract of Diaporthe sp. UFMGCB 15138 was characterized through fractionation using ultrahigh-pressure liquid chromatography-mass spectrometry. The active compound detected had the molecular formula C39H40O15 and molecular weight of 750.6987 g mol−1 and was identified as a xanthone dimer, either dicerandrol C or phomoxanthone B, which may be responsible for the biological activity. The results obtained in this study demonstrate that the plant C. ipecacuanha is a natural reservoir of endophytic fungi producing bioactive substances, especially those with herbicidal activities and acting against agents that cause NTDs. Therefore, endophytic fungi can be considered good candidates for in-depth chemical studies on the isolation and characterization of active substances capable of treating NTDs and for use as herbicides in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam J, Gurney KA, Pendlebury D (2012) Neglected tropical diseases. Global research report. Leeds: evidence 1–16

    Google Scholar 

  • Altschul SF, Madden TL, Schafer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  Google Scholar 

  • Araújo WL, Lima AOS, Azevedo JL, Marcon J, Kuklinsky SJ, Lacava PT (2002) Manual isolamento de microrganismos endofíticos. CALQ:1–86

    Google Scholar 

  • Araújo VRM, Pacheco D, Sá A, Santos J, Silva N (2010) Análise do impacto do uso público da Trilha do Vinhático, localizada no Parque Estadual do Rio Doce-MG. VI Congresso Nacional de Excelência em Gestão

    Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  Google Scholar 

  • Assis MC, Giulietti AM (1999) Diferenciação morfológica e anatômica em populações de “ipecacuanha”-Psychotria ipecacuanha (Brot.) Stokes (Rubiaceae). Rev Bras Bot 22:205–216

    Article  Google Scholar 

  • Assunção MMC (2010) Fungos endofíticos isolados de folhas de bananeira (Musa spp.) e seleção de antagonistas a fitopatógenos dessa cultura. Tese Doutorado, Recife, Universidade Federal de Pernambuco 1–172

    Google Scholar 

  • Barreto RW, Nechet KL, Vieira BS (2007) Herbicida biológico para controle de plantas daninhas contendo propágulos do fungo Lewia chlamidosporiformans. Número de protocolo:PI0701556–PI0701559

    Google Scholar 

  • Bing LA, Lewis LC (1993) Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (Hübner). Agric Ecosyst Environ 45:147–156

    Article  Google Scholar 

  • Borges KN, Bautista H (2018) Etnobotânica de plantas medicinais na comunidade de Cordoaria, litoral norte do estado da Bahia, Brasil. Plurais-Rev Mult 1(2):153–174

    Google Scholar 

  • Calixto NO, Pinto MEF, Ramalho SD, Burger M, Bobey AF, Young MCM, Pinto AC (2016) The Genus Psychotria: phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. J Brazil Chem Soc 27:1355–1378

    CAS  Google Scholar 

  • Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello ALT, Alves TMA, Zani CL (2008) Leishmanicidal metabolites from Cochliobolus sp., an Endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). Plos Neglect Trop D 2(12):e348

    Article  Google Scholar 

  • Carvalho LB (2013) Plantas daninhas. Lages, SC. Brazil 1:82

    Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV et al (2012) Diversidade, atividade antimicrobiana e anticâncer de fungos endofíticos associados à planta medicinal Stryphnodendron adstringens (Mart.) Coville (Fabaceae) da savana brasileira. Simbiosis 57:95–107

    Article  Google Scholar 

  • Cota BB, Tunes LG, Maia DNB, Ramos JP, Oliveira DMD, Kohlhoff M, Alves TMA, Souza FEM, Campos FF, Zani CL (2018) Leishmanicidal compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood). Memo Inst Oswaldo Cruz 113:102–110

    Article  Google Scholar 

  • da Silva MAV (2014) A busca por herbicidas de base natural. Biotecnologia e biossegurança, Brasília DF, EMBRAPA. Available in: https://www.embrapa.br/busca-de-noticias/-/noticia/2219356/a-busca-por-herbicidas-de-base-natural Accessed in: 23 April 2020

  • Erbert C, Lopes AA, Yokoya NS, Furtado NAJC, Conti R, Pupo MT, Lopes JLC, Debonsi HM (2012) Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar 55:435–440

    Article  CAS  Google Scholar 

  • Ethur LZ, Blume E, Muniz MFB, Flores MGV (2007) Seleção de antagonistas fúngicos a Fusarium solani e Fusarium oxysporum em substrato comercial para mudas. Cienc Rural 37:1794–1797

    Article  Google Scholar 

  • Ferreira MC, Vieira MLA, Zani CL, Alves TMA, Sales PA, Silvane MF, Romanha AJ, Gil LHVG, Carvalho AGO, Zilli JE, Vital MJS, Rosa CA, Rosa LH (2015) Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem Syst Ecol 59:36–44

    Article  CAS  Google Scholar 

  • Ferreira MC, de Assis JCS, Rosa LH (2020) Diversity of endophytic fungi associated with Carapichea ipecacuanha from a native fragment of the Atlantic Rain Forest. S Afr J Bot, 1–5

    Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS, De Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  Google Scholar 

  • Goupil LS, McKerrow JH (2014) Introduction: drug discovery and development for neglected diseases. Chem Rev 114:11131–11137

    Article  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–5266

    Article  CAS  Google Scholar 

  • Hawksworth DL, Lüecking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr, Washington 5:1–17

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. Jo Nat Prod 64:1015–1018

    Article  CAS  Google Scholar 

  • Javaid A, Ali S (2011) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25:730–740

    Article  CAS  Google Scholar 

  • Jayawardena RS, Li XH, Liu M, Zhang W, Yan JY (2016) Mycosphere essay 16: Colletotrichum: biological control, biocatalyst, secondary metabolites and toxins. Mycosphere 7:1164–1176

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi. CAB International, Wallingford

    Google Scholar 

  • Kubicek CP, Zelzazowska MK, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sc 9:753–763

    Article  Google Scholar 

  • Melo IS (1996) Trichoderma e Gliocladium como bioprotetores de plantas. Rev Anu Patol Plantas 4:261–296

    Google Scholar 

  • Melo MSC, Rosa LE, Brunharo CADCG, Nicolai M, Christoffoleti PJ (2017) Alternativas para o controle químico de capim-amargoso (Digitaria insularis) resistente ao glyphosate. RBH 11:195–203

    Google Scholar 

  • Oliveira FC (2017) Estudo químico de fungos endofíticos associados a plantas do bioma caatinga. Dissertação (Doutorado em química) – Universidade Federal do Ceará. Fortaleza

    Google Scholar 

  • Oliveira RC, Frassson APZ, Santos TCB, Soares MA, Santos MV, Santos FR (2017) Extratos de fungos endofíticos isolados de Paullinia cupana demonstram promissora atividade tripanocida. In: 57° Congresso brasileiro de química, Gramado

    Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkeman NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge, UK: Cambridge University Press, pp 175–187

    Google Scholar 

  • Pimentel IC, Kuczkowski FR, Chime MA, Auer CG, Junior AG (2006) Fungos endofíticos em folhas de erva-mate (Ilex paraguariensis A. St.-Hil.). Floresta 36:123–128

    Article  Google Scholar 

  • Romanha AJ, Castro SL, Soeiro MNC, Lannes VJ, Ribeiro I, Talvani A, Bourdin B, Blum B, Oliveira B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustsmante JM, Freitas JLH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong T, Degrave W, Andrade ZA (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  Google Scholar 

  • Romoff P (2018) Análise de extratos brutos produzidos por fungos endofíticos associados à Pentacalia desiderabilis (Asteraceae). Research Report. Universidade Presbiteriana Mackenzie, São Paulo, Brazil

    Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Queiroz SCN, Moraes RM, Wang X, Techen N, Pan Z, Cantrell CL, Wedge DE (2013) Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae). Symbiosis 60:133–142

    Article  Google Scholar 

  • Rufino MP (2011) Avaliação química e biológica do fungo endofítico Colletotrichum sp. isolado de Senna spectabilis. Msc Dissertation. Universidade Estadual Paulista, São Paulo, Brazil

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Silva HAF, Wedge DE, Cantrell CL, Carvalho CR, Panb Z, Moraes RM, Madoxxe VL, Rosa LH (2015) Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol Res 175:67–77

    Article  Google Scholar 

  • Souza AQL, Souza ADL, Astolfi FS, Belém PML, Sarquis MIM, Pereira JO (2004) Atividade antimicrobiana de fungos endofíticos isolados de plantas tóxicas da Amazônia: Palicourea longiflora (Aubl.) Rich e Strychnos cogens Bentham. Acta Amazônica 34:185–195

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from Endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  Google Scholar 

  • Vieira MLA, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with the medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60:847–856

    Article  CAS  Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. San Diego: Academic press, vol 18, pp 315–322

    Google Scholar 

  • World Health Organization (2017) World malaria report. Geneve. In: Licence CC BY-NC-SA 3.0 IGO, 196

    Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Azevedo, R.N. et al. (2021). Bioprospecting of Bioactive Secondary Metabolites of Endophytic Fungi of Carapichea ipecacuanha (Rubiaceae), a Neotropical Medicinal Species. In: Rosa, L.H. (eds) Neotropical Endophytic Fungi. Springer, Cham. https://doi.org/10.1007/978-3-030-53506-3_14

Download citation

Publish with us

Policies and ethics