Skip to main content

Neotropical Plant-Associated Endophytic Fungi: A Source of Promising Macromolecules for Use in Biotechnology

  • Chapter
  • First Online:
Neotropical Endophytic Fungi

Abstract

Endophytic fungi are microorganisms that inhabit plant tissues during at least one stage of their life cycle without causing any apparent disease symptoms or negative effects on their hosts. They have already been isolated from several plants, including bryophytes, pteridophytes, and angiosperms. Their diversity, ecology, and biotechnological applications from plants in temperate environments have been extensively studied; however, limited data are available on endophytic fungal communities from tropical and subtropical ecosystems. Although these microorganisms have been extensively studied in the past decades, reports on their ability to synthesize macromolecules are still limited. Majority of the studies performed so far have mainly focused on their ability to produce low-molecular-weight secondary metabolites. Macromolecules are large molecules, produced commonly via polymerization of smaller subunits. Macromolecules produced by fungi include nucleic acids, proteins, carbohydrates, and lipids, which may be used in agriculture, medicine, and various other fields. This chapter reviews the biological macromolecules produced by neotropical plant-associated endophytic fungi as well as the main studies performed to characterize and evaluate the potential biotechnological applications of these macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19

    CAS  Google Scholar 

  • Anisha C, Radhakrishnan E (2017) Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. Biotech 7:146–152

    CAS  Google Scholar 

  • Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotech 3:200–211

    Article  Google Scholar 

  • Avila P, Barrow J, Lucero M, Aaltonen R (2011) Relationship between plant lipid bodies and fungal endophytes. Terra Latinoam 30:12–27

    Google Scholar 

  • Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee D, Jana M, Mahapatra S (2009) Production of exopolysaccharide by endophytic Stemphylium sp. Micol Apl Int 21:57–62

    Google Scholar 

  • Bezerra JD, Santos MG, Svedese VM, Lima DM, Fernandes MJ, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficusindica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Burke RM, Cairney JWG (1997) Purification and characterization of a b-1,4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 35:345–352

    Article  Google Scholar 

  • Carvalho C, Ferreira M, Amorim S, Silva F, Raissa H, de Assis J, Zani C, Rosa L (2019) Bioactive compounds of endophytic fungi associated with medicinal plants. In: Yadav NA, Singh S, Mishra S, Gupta A. (Org.). Fungal biology, 1st edn. Springer International Publishing, Switzerland 2, pp 303–361

    Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chathurdevi G, Gowrie SU (2016) Endophytic fungi isolated from medicinal plant – a source of potential bioactive metabolites. Int J Curr Pharm Res 8:50–56

    Google Scholar 

  • Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102:8179–8184

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H (2016) Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 153:663–678

    Article  CAS  PubMed  Google Scholar 

  • Chow Y, Ting AS (2015) Endophytic L-asparaginase producing fungi from plants associated with anticancer properties. JAR 6:869–876

    CAS  PubMed  Google Scholar 

  • de Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DS, de Rezende ST (2012) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165:594–610

    Article  Google Scholar 

  • Dong QL, Lin TY, Xing XY, Chen B, Han Y (2014) Identification of asymbiotic fungus from blue-green alga and its extracellular polysaccharide. Lett Appl Microbiol 58:303–310

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullao VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, London, UK, pp 49–80

    Chapter  Google Scholar 

  • Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585

    Article  CAS  PubMed  Google Scholar 

  • Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51:589–598

    Article  CAS  Google Scholar 

  • Fouda AH, Hassan SE, Eid AM, Ewais EE (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104

    Article  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Gouda S, Das G, Sen SK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538–1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, Mao W, Li Y, Tian J, Xu J (2013) Structural elucidation of the exopolysaccharide produced by fungus Fusarium oxysporum Y24-2. Carbohydr Res 365:9–13

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Mao W, Yan M, Zhao C, Li N, Shan J (2014) Galactomannan with novel structure produced by the coral endophytic fungus Aspergillus ochraceus. Carbohydr Polym 105:325–333

    Article  CAS  PubMed  Google Scholar 

  • Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonc a-Previato L (2010) Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiol 20:338–347

    Article  CAS  Google Scholar 

  • Hallmann J, Qualt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Han B, McPhail KL, Ligresti A (2003) Semiplenamides A−G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Nat Prod 66:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Exp Purific 67:61–69

    Article  CAS  Google Scholar 

  • Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. Handb Met Aquatic Microb Ecol 28:423–431

    Google Scholar 

  • Indrianingsih AW, Tachibana S (2017) α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Sci Hum Wellness 6:88–95

    Article  Google Scholar 

  • Isshiki A, Akimitsu K, Nishio K, Tsukamoto M, Yamamoto H (1997) Purification and characterization of an endopolygalacturonase from the rough lemon pathotype of Alternaria alternata, the cause of citrus brown spot disease. Physiol Mol Plant Pathol 51:155–167

    Article  CAS  Google Scholar 

  • Jadulco RC, Koch M, Kakule TB (2014) Isolation of pyrrolocins A–C: cis-and trans-decalin tetramic acid antibiotics from an endophytic fungal-derived pathway. J Nat Prod 77:2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurynelliz R-V, David P, Gloria O, Carlos R, Jesus-Bonilla D, Walleska (2016) Enzymatic and bacterial activity of fungal strains isolated from Alpinia zerumbet. Abstracts of Papers, 251st ACS National Meeting & Exposition, San Diego, CA, United States, March 13–17, CHED-1130

    Google Scholar 

  • Kalyanasundaram I, Nagamuthu J, Srinivasan B, Pachayappan A, Muthukumarasamy S (2015) Production, purification and characterization of extracellular L-asparaginase from salt marsh fungal endophytes. World J Pharm Pharmaceut Sci 4:663–677

    CAS  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharwar RNG, Surendra KKA, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Article  Google Scholar 

  • Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Larsson K, Quinn P, Sato K, Tiberg F (2006) Lipids: structure, physical properties and functionality, vol 19. The Oily Press, PJ Barnes and Associates, Bridgwater, UK, pp 1–15

    Book  Google Scholar 

  • Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Gupta VK, Saikia R, Sonawane VC, Singh BP (2016) A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front Microbiol 7:54–62

    Article  Google Scholar 

  • Levitz SM (2004) Interactions of toll-like receptors with fungi. Microbes Infect 6:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Li P, Mou Y, Shan T, Xu J, Li Y, Lu S (2011) Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis. Molecules 16:9003–9016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lu S, Shan T, Mou Y, Li Y, Sun W (2012b) Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology. Int J Mol Sci 13:5441–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Guo S, Zhu H (2016) Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleucaand its antitumor effect in vitro. EXCLI J 15:211–220

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78:275–281

    Article  CAS  Google Scholar 

  • Lupo S, Tiscornia S, Bettucci L (2001) Endophytic fungi from flowers, capsules and seeds of Eucalyptus globules. Rev Iberoam Micol 18:38–41

    CAS  PubMed  Google Scholar 

  • Luz JS, Silva RLO, Silveira EB, Cavalcante UMT (2006) Atividade enzimática de fungos endofíticos e efeito na promoção do crescimento de mudas de maracujazeiro-amarelo. Caatinga 19:128–134

    Google Scholar 

  • Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90:683–689

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Banerjee D (2013a) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Banerjee D (2013b) Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 97:627–634

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Banerjee D (2016) Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55. Int J Biol Macromol 82:182–191

    Article  CAS  PubMed  Google Scholar 

  • Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80

    Google Scholar 

  • Mayerhofer MS, Fraser E, Kernaghan G (2015) Acid protease production in fungal root endophytes. Mycologia 107:101-112

    Google Scholar 

  • Meijer M, Houbraken JAMP, Dalhuijsen S, Samson RA, Vries RP (2011) Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilla. Stud Mycol 69:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith B (2011) The Fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98 (3): 426–438

    Google Scholar 

  • Meng X, Liang H, Luo L (2016) Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 424:30–41

    Article  CAS  PubMed  Google Scholar 

  • Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012–1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulloy B, Hart GW, Stanley P (2009) Structural analysis of glycans. Chap. 47. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Nelson DL, Cox MM (2018) Princípios de bioquímica de Lehninger. Artmed, Porto Alegre

    Google Scholar 

  • Nimrichter L, Rodrigues ML, Rodrigues EG, Travassos LR (2005) The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect 7:789–798

    Article  CAS  PubMed  Google Scholar 

  • Nimrichter L, Frases S, Cinelli LP, Viana NB, Nakouzi A, Travassos LR, Casadevall A, Rodrigues ML (2007) Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot Cell 6:1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandelli RC, Vasconcelos AFD, Azevedo JL, da Silva MLC, Pamphile JA (2016) Biochimie Open 2:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil MG, Pagare J, Patil SN, Sidhu AK (2015) Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int J Curr Microbiol App Sci 4:1035–1042

    CAS  Google Scholar 

  • Peng XW, Chen HZ (2007) Microbial oil accumulation and cellulose secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242

    Article  CAS  Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratledge C (2001) Microorganisms as sources of polyunsaturated fatty acids. In: Gunstone FD (ed) Structured and modified lipids. Marcel Dekker, NY, pp 351–399

    Google Scholar 

  • Ratledge C, Wilkinson S (1989) Microbial lipids, vol 2. Academic Press, London, pp 112–126

    Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  PubMed  Google Scholar 

  • Roller S, Dea ICM (1992) Biotechnology in the production and modification of biopolymers for foods. Crit Rev Biotechnol 12:261–277

    Article  CAS  Google Scholar 

  • Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factories 5:20–25

    Article  Google Scholar 

  • Sáenz-de-Santamaría M, Guisantes JA, Martínez J (2016) Enzymatic activities of Alternaria alternata allergenic extracts and its major allergen (Alt a 1). Mycoses 49:288–292

    Article  Google Scholar 

  • Sancholle M, Laurelle F, Lösel D, Muchembled J (2003) Biotechnological potential of fungal lipids. In: Arora DK (ed) Handbook of fungal biotechnology. CRC Press, pp 586–606

    Google Scholar 

  • Serrato RV, Meneses C, Vidal MS, Santana-Filho AP, Iacomini M, Sassaki GL (2013) Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus Pal5. Carbohydr Polym 98:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Shaaban M, Nasr H, Hassan AZ (2013) Bioactive secondary metabolites from endophytic Aspergillus fumigatus: structural elucidation and bioactivity studies. Rev Latinoam Quim 41:50–60

    CAS  Google Scholar 

  • Shiono Y, Tsuchinari M, Shimanuki K (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot 60:309–316

    Article  CAS  Google Scholar 

  • Shu R, Wang F, Yang Y (2004) Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis. Lipids 39:667–673

    Article  CAS  PubMed  Google Scholar 

  • Silva RLO, Luz JS, Silveira EB, Cavalcante UMT (2006) Fungos endofíticos em Annona spp.: isolamento, caracterização enzimática e promoção do crescimento em mudas de pinha (Annona squamosa L.). Acta Bot Bras 20:649–655

    Article  Google Scholar 

  • Sinsabaugh RS (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    Article  CAS  Google Scholar 

  • Siriwach R, Kinoshita H, Kitani S (2014) Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34. J Antibiot 67:167–170

    Article  CAS  Google Scholar 

  • Smol’Kina ON, Shishonkova NS, Yurasov NA, Ignatov VV (2012) Capsularand extracellular polysaccharides of the diazotrophic rhizobacterium Herbaspirillum seropedicae Z78. Microbiology 81:317–323

    Article  Google Scholar 

  • Soares DA, Rosa LH, Silva JF, Pimenta RS (2017) A review on bioactive compounds produced by endophytic fungi associated with medicinal plants. Bol Mus Para Emilio Goeldi 12:331–352

    Google Scholar 

  • Sorgatto M, Guimarães NCA, Zanoelo FF, Marques MR, Peixoto-Nogueira SC, Giannesi GG (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084

    Article  CAS  Google Scholar 

  • Sridhar KR, Raviraja NS (1995) Endophytes – a crucial issue. Curr Sci 69:570–574

    Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Ver Env Sci Tec 41:34–42

    Google Scholar 

  • Sunitha VH, Devi DN, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. WJAS 9:1–9

    CAS  Google Scholar 

  • Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90

    Article  CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–449

    Article  CAS  PubMed  Google Scholar 

  • Tanapichatsakul C, Monggoot S, Gentekaki E (2018) Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Curr Microbiol 75:476–483

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90(1):135–159

    Google Scholar 

  • Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MLA, Hughes AFS, Gil VB, Vaz ALBM, Alves TMA, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58:54–66

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    Article  CAS  Google Scholar 

  • Wang Y, Li S, Li M (2019) Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: production conditions, purification, and antioxidant properties. Int J Biol Macromol 12:1123–1132

    Google Scholar 

  • Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbial 58:1–75

    Article  Google Scholar 

  • Weete J (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, London

    Book  Google Scholar 

  • Wei DL, Chang SC, Wei YH, Lin YW, Chuang CL, Jong SC (1992) Production of cellulolytic enzymes from the Xylaria and Hypoxylon species of Xylariaceae. World J Microbiol Biotechnol 8:141–146

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (2012) Microbial extracellular polymeric substances: characterization, structure and function. Springer Science & Business Media

    Google Scholar 

  • Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius roxb. Afr J Microbiol 5:5697–5712

    CAS  Google Scholar 

  • Wynn J, Hamid A, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpine. Microbiology 147:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Yeh CW, Zang CZ, Lin CC, Kan SC, Chang WF, Shieh CJ (2014) Quantitative and morphologic analysis on exopolysaccharide and biomass production from a truffle endophytic fungus Hypocreales sp. NCHU01. J Taiwan Inst Chem Engrs 45:108–114

    Article  CAS  Google Scholar 

  • Yunarliza J, Jamilah I (2015) Isolation and identification of exopolysaccharide-producing endophytic fungi from leaf midribs of oil palm. Department of Biology, Faculty Mathematics and Natural Sciences, Universitas Sumatera Utara, Indonesia

    Google Scholar 

  • Zaher AM, Moharram AM, Davis R (2015) Characterization of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat Prod Res 29:2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68:1033–1046

    Google Scholar 

  • Zeng Y-B, Wang H, Zuo W-J (2012) A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant Scyphiphora hydrophyllacea. Mar Drugs 10:598–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HW, Chun YS, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang S, Li X-M (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xue X, Zhang Z (2017) Structural, physicochemical, antioxidant and antitumor property of an acidic polysaccharide from polygonum multiflorum. Int J Biol Macromol 96:494–500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana de Lourdes Almeida Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lourdes Almeida Vieira, M., Rosa, L.H. (2021). Neotropical Plant-Associated Endophytic Fungi: A Source of Promising Macromolecules for Use in Biotechnology. In: Rosa, L.H. (eds) Neotropical Endophytic Fungi. Springer, Cham. https://doi.org/10.1007/978-3-030-53506-3_13

Download citation

Publish with us

Policies and ethics