Skip to main content

Renal Replacement Therapies

  • Chapter
  • First Online:
Pediatric Critical Care
  • 2867 Accesses

Abstract

Renal replacement therapy (RRT) is an important component in the care of critically ill children with acute kidney injury (AKI), inborn errors of metabolism, and certain intoxications that respond inadequately to conservative measures. There are several modalities of RRT including peritoneal dialysis (PD), continual flow peritoneal dialysis (CFPD), hemodialysis (HD), sustained low-efficiency dialysis (SLED), and continuous renal replacement therapy (CRRT). Each of these modalities has its own inherent advantages and risks, and the clinical situation will help guide the most appropriate approach for the individual patient. Peritoneal dialysis allows for both solute clearance and ultrafiltration. However, PD is suboptimal therapy for patients with life-threatening hyperkalemia, severe volume overload, or intoxications that would benefit from rapid ultrafiltration or solute clearance. In those settings, intermittent HD would provide a more effective modality. CRRT is a common mode of RRT utilized in the pediatric intensive care unit. There are three primary forms of CRRT including continuous veno-venous hemofiltration (CVVH; convective clearance), continuous veno-venous hemodialysis (CVVHD; diffusive clearance), and continuous veno-venous hemodiafiltration (CVVHDF) which is a combination of convective (CVVH) and diffusive (CVVHD) clearance. CRRT is frequently used in conjunction with extracorporeal membrane oxygenation (ECMO) therapy. Sustained low-efficiency dialysis (SLED) represents a hybrid between HD and CRRT. Although it has been used commonly in adults for over two decades, there is very little experience in pediatrics. A sound understanding of the various forms of RRT and their use in critical illness is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 April 2022

    https://doi.org/10.1007/978-3-030-53363-2

Suggested Reading

  • Amerling R, Glezerman I, Savransky E, Dubrow A, Ronco C. Continuous flow peritoneal dialysis: principles and applications. Semin Dial. 2003;16:335–40.

    Article  PubMed  Google Scholar 

  • Brophy PD, Mottes TA, Kudelka TL, et al. AN-69 membrane reactions are pH-dependent and preventable. Am J Kidney Dis. 2001;38:173–8.

    Article  CAS  PubMed  Google Scholar 

  • Brophy PD, Somers MJ, Baum MA, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20:1416–21.

    Article  PubMed  Google Scholar 

  • Bunchman TE. Acute peritoneal dialysis access in infant renal failure. Perit Dial Int. 1996;16(Suppl 1):S509–11.

    Article  PubMed  Google Scholar 

  • Bunchman TE, Donckerwolcke RA. Continuous arterial-venous diahemofiltration and continuous veno-venous diahemofiltration in infants and children. Pediatr Nephrol. 1994;8:96–102.

    Article  CAS  PubMed  Google Scholar 

  • Bunchman TE, Ferris ME. Management of toxic ingestions with the use of renal replacement therapy. Pediatr Nephrol. 2011;26:535–41.

    Article  PubMed  Google Scholar 

  • Bunchman TE, Meldrum MK, Meliones JE, Sedman AB, Walters MB, Kershaw DB. Pulmonary function variation in ventilator dependent critically ill infants on peritoneal dialysis. Adv Perit Dial. 1992;8:75–8.

    CAS  PubMed  Google Scholar 

  • Bunchman TE, Gardner JJ, Kershaw DB, Maxvold NJ. Vascular access for hemodialysis or CVVH(D) in infants and children. Dial Transplant. 1994;23:314–8.

    Google Scholar 

  • Bunchman TE, Valentini RP, Gardner J, Mottes T, Kudelka T, Maxvold NJ. Treatment of vancomycin overdose using high-efficiency dialysis membranes. Pediatr Nephrol. 1999;13:773–4.

    Article  CAS  PubMed  Google Scholar 

  • Bunchman TE, Barletta GM, Winters JW, Gardner JJ, Crumb TL, McBryde KD. Phenylacetate and benzoate clearance in a hyperammonemic infant on sequential hemodialysis and hemofiltration. Pediatr Nephrol. 2007;22:1062–5.

    Article  PubMed  Google Scholar 

  • Bunchman TE, Hackbarth RM, Maxvold NJ, Winters JW, Barletta GM. Prevention of dialysis disequilibrium by use of CVVH. Int J Artif Organs. 2007;30:441–4.

    Article  CAS  PubMed  Google Scholar 

  • Cullis B, Abdelraheem M, Abraham G, et al. Peritoneal dialysis for acute kidney injury. Perit Dial Int. 2014;34:494–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deep A, Zoha M, Dutta Kukreja P. Prostacyclin as an anticoagulant for continuous renal replacement therapy in children. Blood Purif. 2017;43:279–89.

    Article  CAS  PubMed  Google Scholar 

  • Donckerwolcke RA, Bunchman TE. Hemodialysis in infants and small children. Pediatr Nephrol. 1994;8:103–6.

    Article  CAS  PubMed  Google Scholar 

  • Gallieni M, Giordano A, Pinerolo C, Cariati M. Type of peritoneal dialysis catheter and outcomes. J Vasc Access. 2015;16(Suppl 9):S68–72.

    Article  PubMed  Google Scholar 

  • Hackbarth R, Eding D, Gianoli Smith C, Koch A, Sanfilippo DJ, Bunchman TE. Zero balance ultrafiltration (Z-BUF) in blood-primed CRRT circuits achieves electrolyte and acid-base homeostasis prior to patient connection. Pediatr Nephrol. 2005;20:1328–33.

    Article  PubMed  Google Scholar 

  • Hackbarth R, Bunchman TE, Chua AN, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30:1116–21.

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Kashtan CE, Greenberg LJ, Shapiro RS, Nevins TE, Kim Y. Hypogammaglobulinemia in uremic infants receiving peritoneal dialysis. J Pediatr. 1990;117:258–61.

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Yeh HC, Lin CY. Treatment of critically ill children with kidney injury by sustained low-efficiency daily diafiltration. Pediatr Nephrol. 2012;27:2301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000;28:1161–5.

    Article  CAS  PubMed  Google Scholar 

  • Nourse P, Sinclair G, Gajjar P, du Plessis M, Argent AC. Continuous flow peritoneal dialysis (CFPD) improves ultrafiltration in children with acute kidney injury on conventional PD using a 4.25% dextrose solution. Pediatr Nephrol. 2016;31:1137–43.

    Article  PubMed  Google Scholar 

  • Olszewski AE, Daniel DA, Stein DR, et al. Teaching pediatric peritoneal dialysis globally through virtual simulation. Clin J Am Soc Nephrol. 2018;13:900–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parekh RS, Bunchman TE. Dialysis support in the pediatric intensive care unit. Adv Ren Replace Ther. 1996;3:326–36.

    Article  CAS  PubMed  Google Scholar 

  • Picca S, Dionisi-Vici C, Abeni D, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001;16:862–7.

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers R, Schröder CH, Gajjar P, Argent A, Nourse P. Continuous flow peritoneal dialysis: first experience in children with acute renal failure. Clin J Am Soc Nephrol. 2011;6:311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethi SK, Sinha R, Jha P, et al. Feasibility of sustained low efficiency dialysis in critically sick pediatric patients: a multicentric retrospective study. Hemodial Int. 2018;22:228–34.

    Article  PubMed  Google Scholar 

  • Zaoral T, Hladík M, Zapletalová J, Trávníček B, Gelnarová E. Circuit lifetime with citrate versus heparin in pediatric continuous venovenous hemodialysis. Pediatr Crit Care Med. 2016;17:e399–405.

    Article  PubMed  Google Scholar 

  • Zappitelli M, Juarez M, Castillo L, Coss-Bu J, Goldstein SL. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med. 2009;35:698–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Bunchman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bunchman, T.E. (2021). Renal Replacement Therapies. In: Lucking, S.E., Maffei, F.A., Tamburro, R.F., Zaritsky, A. (eds) Pediatric Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-53363-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53363-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53362-5

  • Online ISBN: 978-3-030-53363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics