Skip to main content

Advertisement

Log in

Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

We hypothesized continuous veno-venous hemodialysis (CVVHD) amino acid, trace metals and folate clearance impacts nutrient balance.

Methods

Critically ill children receiving CVVHD were studied prospectively for 5 days. Blood concentrations (amino acids, copper, zinc, manganese, chromium, selenium and folate) were measured at CVVHD initiation, and Days 2 and 5. CVVHD clearance, losses and nutrient balances were calculated on Days 2 and 5.

Results

We studied 15 children aged 7.7 ± 6.7 years. Nitrogen balance was negative on Days 2 and 5. Amino acid clearances ranged from 2.8 to 51.1 ml/min per 1.73 m2. CVVHD losses corresponded to 20% of intake. Days 2 and 5 balances were negative for selenium, but positive for other trace metals. Folate clearance was 16 ml/min per 1.73 m2 on Days 2 and 5 and serum concentrations decreased significantly from initiation to Day 5 (P < 0.05).

Conclusions

Nutrient losses by CVHHD may impact adequate nutrition provision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Argaman Z, Young VR, Noviski N, Castillo-Rosas L, Lu XM, Zurakowski D, Cooper M, Davison C, Tharakan JF, Ajami A, Castillo L (2003) Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit Care Med 31:591–597

    Article  PubMed  CAS  Google Scholar 

  2. Druml W (1998) Protein metabolism in acute renal failure. Miner Electrolyte Metab 24:47–54

    Article  PubMed  CAS  Google Scholar 

  3. Franz M, Horl WH (1997) Protein catabolism in acute renal failure. Miner Electrolyte Metab 23:189–193

    PubMed  CAS  Google Scholar 

  4. Lyons J, Rauh-Pfeiffer A, Ming-Yu Y, Lu XM, Zurakowski D, Curley M, Collier S, Duggan C, Nurko S, Thompson J, Ajami A, Borgonha S, Young VR, Castillo L (2001) Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med 29:870–877

    Article  PubMed  CAS  Google Scholar 

  5. Kuttnig M, Zobel G, Ring E, Grubbauer HM, Kurz R (1991) Nitrogen and amino acid balance during total parenteral nutrition and continuous arteriovenous hemofiltration in critically ill anuric children. Child Nephrol Urol 11:74–78

    PubMed  CAS  Google Scholar 

  6. Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE (2000) Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med 28:1161–1165

    Article  PubMed  CAS  Google Scholar 

  7. Berg A, Norberg A, Martling CR, Gamrin L, Rooyackers O, Wernerman J (2007) Glutamine kinetics during intravenous glutamine supplementation in ICU patients on continuous renal replacement therapy. Intensive Care Med 33:660–666

    Article  PubMed  CAS  Google Scholar 

  8. Zappitelli M, Castillo L, Coss-Bu J, Naipaul A, Juarez M, Jefferson J, Goldstein SL (2006) Continuous veno-venous hemodialysis leads to amino acid, trace element, and folate clearance in critically ill children. J Am Soc Nephrol 17:767A

    Google Scholar 

  9. Berger MM, Shenkin A, Revelly JP, Roberts E, Cayeux MC, Baines M, Chiolero RL (2004) Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80:410–416

    PubMed  CAS  Google Scholar 

  10. Churchwell MD, Pasko DA, Btaiche IF, Jain JC, Mueller BA (2007) Trace element removal during in vitro and in vivo continuous haemodialysis. Nephrol Dial Transplant 22:2970–2977

    Article  PubMed  CAS  Google Scholar 

  11. Klein CJ, Moser-Veillon PB, Schweitzer A, Douglass LW, Reynolds HN, Patterson KY, Veillon C (2002) Magnesium, calcium, zinc, and nitrogen loss in trauma patients during continuous renal replacement therapy. JPEN J Parenter Enteral Nutr 26:77–92; discussion 92–73

    Google Scholar 

  12. Goldstein SL (2003) Overview of pediatric renal replacement therapy in acute renal failure. Artif Organs 27:781–785

    Article  PubMed  Google Scholar 

  13. Warady BA, Bunchman T (2000) Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol 15:11–13

    Article  PubMed  CAS  Google Scholar 

  14. Bunchman TE, Maxvold NJ, Brophy PD (2003) Pediatric convective hemofiltration: Normocarb replacement fluid and citrate anticoagulation. Am J Kidney Dis 42:1248–1252

    Article  PubMed  Google Scholar 

  15. Pollack MM, Ruttimann UE, Getson PR (1988) Pediatric risk of mortality (PRISM) score. Crit Care Med 16:1110–1116

    Article  PubMed  CAS  Google Scholar 

  16. Macias WL, Alaka KJ, Murphy MH, Miller ME, Clark WR, Mueller BA (1996) Impact of the nutritional regimen on protein catabolism and nitrogen balance in patients with acute renal failure. JPEN J Parenter Enteral Nutr 20:56–62

    Article  PubMed  CAS  Google Scholar 

  17. Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ (1998) Resting energy expenditure and nitrogen balance in critically ill pediatric patients on mechanical ventilation. Nutrition 14:649–652

    Article  PubMed  CAS  Google Scholar 

  18. Caldwell MD, Kennedy-Caldwell C (1981) Normal nutritional requirements. Surg Clin North Am 61:489–507

    PubMed  CAS  Google Scholar 

  19. King-Brink M, Sebranek JG (1993) Combustion method for determination of crude protein in meat and meat products: collaborative study. J AOAC Int 76:787–793

    PubMed  CAS  Google Scholar 

  20. Bornhorst JA, Hunt JW, Urry FM, McMillin GA (2005) Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry. Am J Clin Pathol 123:578–583

    Article  PubMed  CAS  Google Scholar 

  21. Davies SP, Reaveley DA, Brown EA, Kox WJ (1991) Amino acid clearances and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Crit Care Med 19:1510–1515

    Article  PubMed  CAS  Google Scholar 

  22. Frankenfield DC, Badellino MM, Reynolds HN, Wiles CEIII, Siegel JH, Goodarzi S (1993) Amino acid loss and plasma concentration during continuous hemodiafiltration. JPEN J Parenter Enteral Nutr 17:551–561

    Article  PubMed  CAS  Google Scholar 

  23. Novak I, Sramek V, Pittrova H, Rusavy P, Lacigova S, Eiselt M, Kohoutkova L, Vesela E, Opatrny K Jr (1997) Glutamine and other amino acid losses during continuous venovenous hemodiafiltration. Artif Organs 21:359–363

    PubMed  CAS  Google Scholar 

  24. Scheinkestel CD, Adams F, Mahony L, Bailey M, Davies AR, Nyulasi I, Tuxen DV (2003) Impact of increasing parenteral protein loads on amino acid levels and balance in critically ill anuric patients on continuous renal replacement therapy. Nutrition 19:733–740

    Article  PubMed  CAS  Google Scholar 

  25. Wooley JA, Btaiche IF, Good KL (2005) Metabolic and nutritional aspects of acute renal failure in critically ill patients requiring continuous renal replacement therapy. Nutr Clin Pract 20:176–191

    Article  PubMed  Google Scholar 

  26. Berger MM, Shenkin A (2006) Update on clinical micronutrient supplementation studies in the critically ill. Curr Opin Clin Nutr Metab Care 9:711–716

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura AT, Btaiche IF, Pasko DA, Jain JC, Mueller BA (2004) In vitro clearance of trace elements via continuous renal replacement therapy. J Ren Nutr 14:214–219

    Article  PubMed  Google Scholar 

  28. Story DA, Ronco C, Bellomo R (1999) Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med 27:220–223

    Article  PubMed  CAS  Google Scholar 

  29. Fortin MC, Amyot SL, Geadah D, Leblanc M (1999) Serum concentrations and clearances of folic acid and pyridoxal-5-phosphate during venovenous continuous renal replacement therapy. Intensive Care Med 25:594–598

    Article  PubMed  CAS  Google Scholar 

  30. Gregory JFIII (2001) Case study: folate bioavailability. J Nutr 131:1376S–1382S

    PubMed  CAS  Google Scholar 

  31. Makoff R (1999) Vitamin replacement therapy in renal failure patients. Miner Electrolyte Metab 25:349–351

    Article  PubMed  CAS  Google Scholar 

  32. Irving SY, Simone SD, Hicks FW, Verger JT (2000) Nutrition for the critically ill child: enteral and parenteral support. AACN Clin Issues 11:541–558; quiz 637–548

    Article  PubMed  CAS  Google Scholar 

  33. Petrillo-Albarano T, Pettignano R, Asfaw M, Easley K (2006) Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med 7:340–344

    Article  PubMed  Google Scholar 

  34. Radrizzani D, Bertolini G, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G, Iapichino G (2006) Early enteral immunonutrition vs. parenteral nutrition in critically ill patients without severe sepsis: a randomized clinical trial. Intensive Care Med 32:1191–1198

    Article  PubMed  CAS  Google Scholar 

  35. Honore PM, Matson JR (2002) Short-term high-volume hemofiltration in sepsis: perhaps the right way is to start with. Crit Care Med 30:1673–1674

    Article  PubMed  Google Scholar 

  36. Bellomo R, Honore PM, Matson J, Ronco C, Winchester J (2005) Extracorporeal blood treatment (EBT) methods in SIRS/Sepsis. Int J Artif Organs 28:450–458

    PubMed  CAS  Google Scholar 

  37. DiCarlo JV, Alexander SR, Agarwal R, Schiffman JD (2003) Continuous veno-venous hemofiltration may improve survival from acute respiratory distress syndrome after bone marrow transplantation or chemotherapy. J Pediatr Hematol Oncol 25:801–805

    Article  PubMed  Google Scholar 

  38. Scheinkestel CD, Kar L, Marshall K, Bailey M, Davies A, Nyulasi I, Tuxen DV (2003) Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 19:909–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Amrita Naipaul for her assistance in data collection and Walter O’Rourke (Dialysis Solutions Inc.) and Lee Ware (Baxter Healthcare) for their financial support. Dr. Zappitelli received a post-doctoral research fellowship award from the Kidney Research Scientist Core and National Training Program to fund his training at the Baylor College of Medicine/Texas Children’s Hospital Acute Care Nephrology Research Fellowship.

Conflict of interest statement

This investigator-initiated project was funded by unrestricted grants from Dialysis Solutions Inc. and Baxter Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart L. Goldstein.

Appendix

Appendix

See Table 5.

Table 5 Serum amino acid concentrations [mean, median (IQR) μmol/l] at CVVHD initiation, CVVHD Days 2 and 5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappitelli, M., Juarez, M., Castillo, L. et al. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med 35, 698–706 (2009). https://doi.org/10.1007/s00134-009-1420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1420-9

Keywords

Navigation