Skip to main content

Apical Dominance and Vascularization

  • Chapter
  • First Online:
Vascular Differentiation and Plant Hormones
  • 500 Accesses

Abstract

The hormonal signals that induce vascular differentiation are the controlling signals that synchronize plant development, organ growth regulation, and feedback cross talks between the shoot and the root. These signals regulate organ development by promoting or inhibiting plant organ growth and therefore should be clarified in order to understand the regulation of vascular differentiation. There is a continuous positive hormonal feedback communication between the shoot apices and the root tips that synchronizes plant development; each plant pole sends its growth-promoting hormonal signal to the opposite side of the plant, informing the other plant pole about its activity and quantity. The major shoot signal produced in the apical bud and young leaves is auxin, while the basic root tip signals produced in the root cap are cytokinins. Auxin promotes the initiation and development of the roots, while cytokinins from the root tips promote the development and growth of the shoot organs. Conversely, as will be clarified in this chapter, due to organ competition, identical organs may cause inhibition, when one of them becomes dominant and retards the others, a phenomenon that was termed apical dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Papers of particular interest for suggested reading have been highlighted (with *).

References and Recommended Readings

Papers of particular interest for suggested reading have been highlighted (with *).

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Plant hormones: physiology, biochemistry and molecular biology, PJ Davies (ed). Kluwer Academic Publishers, Dordrecht, pp 531–546.

    Chapter  Google Scholar 

  • *Aloni, R, Aloni E, Langhans M, Ullrich CI (2006a) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97: 883–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006b) Role of auxin in regulating Arabidopsis flower development. Planta 223: 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216: 841–853.

    Article  CAS  PubMed  Google Scholar 

  • Barbier F, Péron T, Lecerf M, Perez-Garcia MD, Barrière Q, Rolčík J, Boutet-Mercey S, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Le Gourrierec J, Bertheloot J, Sakr S (2015) Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J Exp Bot 66: 2569–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29: 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Böttger M (1974) Apical dominance in roots of Pisum sativum L. Planta 121: 253–261.

    Article  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Ramireddy E, Schmülling T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64: 5021–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57: 318–358.

    Article  Google Scholar 

  • Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ (2015) Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 4: e06808.

    Article  PubMed Central  Google Scholar 

  • D’Agostino IB, Deruère J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124: 1706–1717.

    Article  PubMed  PubMed Central  Google Scholar 

  • *El-Showk S, Ruonala R, Helariutta Y (2013) Crossing paths: cytokinin signalling and crosstalk. Development 140: 1373–1383.

    Article  CAS  PubMed  Google Scholar 

  • Evert RF, Eichhorn SE (2013) Raven Biology of Plants. 8th edn. Freeman, New York.

    Book  Google Scholar 

  • Forsyth C, Van Staden J (1981) The effect of root decapitation on lateral root formation and cytokinin production in Pisum sativum. Physiol Plant 51: 375–379.

    Article  CAS  Google Scholar 

  • Geßler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24: 1313–1321.

    Article  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155: 974–987.

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19: 3889–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloret PG, Casero PJ (2002) Lateral root initiation. In: Plant roots – the hidden half, Y Waisel, A Eshel, U Kafkafi (eds). Marcel Dekker, New York, pp 127–155.

    Chapter  Google Scholar 

  • Márquez G, Alarcón MV, Salguero J (2019) Cytokinin inhibits lateral root development at the earliest stages of lateral root primordium initiation in maize primary root. J Plant Growth Regul 38: 83–92.

    Article  CAS  Google Scholar 

  • *Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111: 6092–6097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37: 128–138.

    Article  CAS  PubMed  Google Scholar 

  • Müller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82: 874–886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni J, Gao C, Chen MS, Pan BZ, Ye K, Xu ZF (2015) Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant Cell Physiol 56: 1655–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162: 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108: 18524–18529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9: 151–262.

    Article  Google Scholar 

  • Sachs T (1991) Hormones as correlative agents. In: Pattern Formation in Plant Tissues, T Sachs. Cambridge University Press, Cambridge, pp 52–69.

    Chapter  Google Scholar 

  • Sachs T, Thimann, KV (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54: 136–144.

    Article  CAS  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11: 440–448.

    Article  CAS  PubMed  Google Scholar 

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91: 221–265.

    Article  CAS  PubMed  Google Scholar 

  • *Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biology 11: e1001474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmülling T (2002) New insights into the functions of cytokinins in plant development. J Plant Growth Regul 21: 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1965) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In: Molecular and Cellular Aspects of Development, E Bell (ed). Harper and Row. New York, pp 481–494.

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer, Sunderland MA.

    Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45: 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45: 1028–36.

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Sachs T, Mathur KN (1971) The mechanism of apical dominance in Coleus. Physiol Plant 24: 68–72.

    Article  CAS  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants. III. The inhibiting action of growth substance on bud development. Proc Nat Acad Sci 19: 714–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth-substance in Vicia faba. Proc Roy Soc London B 114: 317–339.

    Article  CAS  Google Scholar 

  • *Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Nat Acad Sci USA 98: 10487–10492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen HV, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang NG, Hasenstein KH (1999) Initiation and elongation of lateral roots in Lactuca sativa. Inter J Plant Sci 160: 511–519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aloni, R. (2021). Apical Dominance and Vascularization. In: Vascular Differentiation and Plant Hormones. Springer, Cham. https://doi.org/10.1007/978-3-030-53202-4_6

Download citation

Publish with us

Policies and ethics