Skip to main content

GM Crops: Resistance Development and Impact on Biodiversity

  • Chapter
  • First Online:
GMOs

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 19))

  • The original version of this chapter was revised: The given name and surname of the authors were interchanged which has been corrected now. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-53183-6_43

Abstract

Despite a consolidated increase in their employment, herbicide-tolerant (HT) and insect-resistant (IR) GM varieties have commonly been suspected to represent a threat to biodiversity. In this chapter, we analyze the major concerns related to the potential persistence and invasiveness of GM plants, selection of superweeds and resistant insects, effects on non-target organisms including vertical and horizontal gene flow, with the acquisition of antibiotic resistance and biological contamination. Mitigation measures to reduce the ecological impact on biodiversity are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 31 March 2021

    The original version of this book was published with an error in Chapter 3 wherein the given name and surname of the authors were interchanged. It was Luca L., Massimiliano T. and Samanta Z., while it should be: Lombardo L., Trenti M. and Zelasco S. This has been corrected now.

References

  • Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J of Biol Pest Control 28:52. https://doi.org/10.1186/s41938-018-0051-2

    Article  Google Scholar 

  • Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296(5571):1270–1273

    CAS  PubMed  Google Scholar 

  • Alibert B, Sellier H, Souvré A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur J Agron 23:195–208

    Google Scholar 

  • Alzate O, Osorio C, Florez AM, Dean DH (2010) Participation of valine 171 in alpha-Helix 5 of Bacillus thuringiensis Cry1Ab delta-endotoxin in translocation of toxin into Lymantria dispar midgut membranes. Appl Environ Microbiol 76:7878–7880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anilkumar KJ, Rodrigo-Simón A, Ferré J, Pusztai-Carey M, Sivasupramaniam S, Moar WJ (2008) Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 74:462–469

    CAS  PubMed  Google Scholar 

  • Badosa E, Moreno C, Montesinos E (2004) Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions. FEMS Microbiol Ecol 48(2):169–178. https://doi.org/10.1016/j.femsec.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  • Baird DD, Upchurch RP, Homesley WB, Franz JE (1971) Introduction of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control. Proc North Central Weed Control Conf 26:64–68

    CAS  Google Scholar 

  • Beckie HJ, Owen MDK (2007) Herbicide-resistant crops as weeds in North America. CAB Rev Persp Agric Veter Sci Nutr Natl Resour 2(44):1–22

    Google Scholar 

  • Beckie HJ, Harker KN, Hall LM, Warwick SI, Légère A, Sikkema PH, Clayton GW, Thomas AG, Leeson JY, Séguin-Swartz G, Simard MJ (2006) A decade of herbicide-resistant crops. Can J Plant Sci 86:1243–1264

    Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci U S A 96(15):8774–8778. https://doi.org/10.1073/pnas.96.15.8774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benbrook M (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3. https://doi.org/10.1186/s12302-016-0070-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohan DA, Hawes C, Haughton AJ, Denholm I, Champion GT, Perry JN, Clark SJ (2007) Statistical models to evaluate invertebrate-plant trophic interactions in arable systems. Bull Entomol Res 97(3):265–280. https://doi.org/10.1017/S0007485307004890

    Article  CAS  PubMed  Google Scholar 

  • Bowman D, May O, Creech J (2003) Genetic uniformity of the US upland cotton crop since the introduction of transgenic cottons. Crop Sci 43:515–518

    Google Scholar 

  • Bretagnolle V, Gaba S (2015) Weeds for bees? Agron Sustain Dev 35(3):891–909

    Google Scholar 

  • Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants – scientific developments, current use, operational access and biosafety considerations. Crit Rev Plant Sci 33(4):286–330. https://doi.org/10.1080/07352689.2013.870422

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2017) GM crops: global socio-economic and environmental impacts 1996–2015. PG Economics Ltd, Dorchester, UK, 201 pp

    Google Scholar 

  • Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    CAS  PubMed  Google Scholar 

  • Busi R, Yu Q, Barrett-Lennard R, Powles S (2008) Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum. Theor Appl Genet 117:1281–1290

    CAS  PubMed  Google Scholar 

  • Campbell PM, Reiner D, Moore AE, Lee RY, Epstein MM, Higgins TJ (2011) Comparison of the α-amylase inhibitor-1 from common bean (Phaseolus vulgaris) varieties and transgenic expression in other legumes. Post-translational modifications and immunogenicity. J Agric Food Chem 59(11):6047–6054

    CAS  PubMed  Google Scholar 

  • Carpenter JE (2011) Impacts of GM crops on biodiversity. GM Crops 2(1):1–17

    Google Scholar 

  • Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573

    PubMed  PubMed Central  Google Scholar 

  • Castle LA, Daniel LS, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154. https://doi.org/10.1126/science.1096770

    Article  CAS  PubMed  Google Scholar 

  • Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238

    CAS  PubMed  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    CAS  PubMed  Google Scholar 

  • Cheeke TE, Cruzan MB, Rosenstiel TN (2013) Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize. Appl Environ Microb 79:4078–4086

    CAS  Google Scholar 

  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Jin M, Ziu ZG, Guo C, Chen Z-L, Shen ZQ, Wang XW, Li JW (2012) A survey of drug resistance blá genes originating from synthetic plasmid vectors in six Chinese rivers. Environ Sci Technol 45:3448–3454

    Google Scholar 

  • Chen J, Huang H, Zhang C, Wei S, Huang Z, Chen J, Wang X (2015) Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 242:859–868

    CAS  PubMed  Google Scholar 

  • Comas C, Lumbierres B, Pons X, Albajes R (2014) No effects of Bacillus thuringiensis maize on non-target organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transg Res 23:135–143. https://doi.org/10.1007/s11248-013-9737-0

    Article  CAS  Google Scholar 

  • Cooper SG, Douches DS, Grafius EJ (2009) Combining engineered resistance, avidin, and natural resistance derived from Solanum chacoense bitter to control Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 102:1270–1280

    CAS  PubMed  Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623

    Google Scholar 

  • Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Transgenic crops in natural habitats. Nature 409:682–683. https://doi.org/10.1038/35055621

    Article  CAS  PubMed  Google Scholar 

  • Darmency H, Vigouroux Y, De Garambe T, Gestat R-MM, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosaf Res 6:197–206

    Google Scholar 

  • Dayan FE, Owens DK, Corniani N, Silva FML, Watson SB, Howell JL, Shaner DL (2015) Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Sci 63:23–63. https://doi.org/10.1614/WS-D-13-00063.1

    Article  Google Scholar 

  • de Maagd RA, Boutilier K (2009) Efficacy of strategies for biological containment of transgenic crops. Plant Research International BV, Wageningen, p 58

    Google Scholar 

  • de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp by natural transformation. Mol Microbiol 53:323–334

    PubMed  Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol Breed 7:35–42

    CAS  Google Scholar 

  • Dillon A, Varanasi VK, Danilova TV, Koo D-H, Nakka S, Peterson DE, Tranel PJ, Friebe B, Gill BS, Jugulam M (2017) Physical mapping of amplified 5-enolpyruvylshikimate-3-phosphate synthase gene copies in glyphosate-resistant Amaranthus tuberculatus. Plant Physiol 173:1226–1234

    CAS  PubMed  Google Scholar 

  • Dively GP, Venugopal PD, Finkenbinder C (2016) Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS One 11:e0169115

    PubMed  PubMed Central  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64(1):75–90

    PubMed  Google Scholar 

  • Duan X, Li X, Xue Q (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    CAS  PubMed  Google Scholar 

  • Duke SO, Cedeira AL (2010) Transgenic crops for herbicide resistance. In: Kole C, Michler C, Albert Gand Hall TC (eds) Transgenic crop plants. Springer, Berlin/Heidelberg, pp 133–166

    Google Scholar 

  • Dun B, Wang X, Lu W, Chen M, Wei W, Shuzhen P, Wang Z, Zhang B, Lin M (2014) Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes. Crop J 2(2-3):164–169. https://doi.org/10.1016/j.cj.2014.03.003

    Article  Google Scholar 

  • Eastham K, Sweet J (2002) Genetically modified organisms: the significance of gene flow through pollen transfer. Environ Issues Rep 28:1–75

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563

    Google Scholar 

  • Evans JA, Tranel PJ, Hager AG, Schutte B, Wu C, Chatham LA, Davis AS (2015) Managing the evolution of herbicide resistance. Pest Manag Sci 72(1):74–80. https://doi.org/10.1002/ps.4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Cornejo J, Hallahan C, Nehring R, Wechsler S, Grube A (2012) Conservation tillage, herbicide use, and genetically engineered crops in the United States: the case of soybeans. AgBioForum 15(3):231–241

    Google Scholar 

  • Ferry N, Mulligan EA, Majerus ME, Gatehouse AM (2005) Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transg Res 16:795–812

    Google Scholar 

  • Flachowsky G, Schafft H, Meyer U (2012) Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review. J Verbraucherschutz Lebensmittelsicherh (J Consum Prot Food Saf) 7:179–194

    CAS  Google Scholar 

  • Fuchs MF, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    CAS  PubMed  Google Scholar 

  • Gaba S, Gabriel E, Chadoeuf J, Bonneu F, Bretagnolle V (2016) Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep 6:30112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaines TA, Heap (2019) IMMutations in herbicide-resistant weeds to EPSP synthase inhibitors. Online. http://www.weedscience.com. Accessed Jan 2019

  • Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel PJ, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci U S A 107(3):1029–1034

    CAS  PubMed  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    CAS  Google Scholar 

  • Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol 17:627–645

    Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugarbeets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28:261–272

    CAS  Google Scholar 

  • Gennaro A, Gomes A, Herman L, Nogue F, Papadopoulou N, Tebbe C (2017) Technical report on the explanatory note on DNA sequence similarity searches in the context of the assessment of horizontal gene transfer from plants to microorganisms. EFSA (European Food Safety Authority) supporting publication 14: 7, 11 pp. https://doi.org/10.2903/sp.efsa.2017.EN-1273

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Girard C, Le Métayer M, Bonadé-Bottino M, Pham-Delègue MH, Jouanin L (1998) High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochem Mol Biol 28:229–237

    CAS  PubMed  Google Scholar 

  • Gueritaine G, Sester M, Eber F, Chevre AM, Darmency H (2002) Fitness components of progeny of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Mol Ecol 11:1419–1426

    CAS  PubMed  Google Scholar 

  • Guo CH, Zhao ST, Ma Y, Hu JJ, Han XJ, Chen J, Lu MZ (2012) Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Appl Microbiol Biotechnol 93:1249–1256

    CAS  PubMed  Google Scholar 

  • Guo B, Guo Y, Hong H, Jin L, Zhang L, Chang RZ, Lu W, Lin M, Qiu LJ (2015) Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean. Front Plant Sci 6(847):1–11

    Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17:1223–1226

    CAS  PubMed  Google Scholar 

  • Halfhill MD, Zhu B, Warwick SI, Raymer PL, Millwood RJ, Weissinger AK, Stewart CN Jr (2004) Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environ Biosaf Res 3(2):73–81

    Google Scholar 

  • Hall LM, Rahman MH, Gulden RH, Thomas AG (2005) Volunteer oilseed rape: will herbicide-resistance traits assist ferality. In: Gressel J (ed.) Crop Ferality and Volunteerism. Taylor and Francis pp 59-80

    Google Scholar 

  • Handayani VDS, Tanno Y, Yamashita M, Tobina H, Ichihara M, Ishida Y, Sawada H (2017) Influence of weed management measures on glyphosate resistance and endophyte infection in naturalized Italian ryegrass (Lolium multiflorum): glyphosate resistance and endophytes. Weed Biol Man 17(2):84–90. https://doi.org/10.1111/wbm.12122

    Article  CAS  Google Scholar 

  • Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJ, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJ, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring cropsII within-field epigeal and aerial arthropods. Philos Trans R Soc Lond B Biol Sci 358(1439):1863–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN, Rothery P, Bohan DA, Brooks DR, Champion GT, Dewar AM, Heard MS, Woiwod IP, Daniels RE, Young MW, Parish AM, Scott RJ, Firbank LG, Squire GR (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 358(1439):1899–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hay I, Morency MJ, Séguin A (2002) Assessing the persistence of DNA in decomposing leaves of genetically modified poplar trees. Can J For Res 32:977–982

    CAS  Google Scholar 

  • Heap I (2019) The international survey of herbicide resistant weeds. Available: www.weedscience.org. Accessed Jan 2019

  • Hernandez-Rodriguez CS, Hernandez-Martinez P, Van Rie J, Escriche B, Ferré J (2013) Shared midgut binding sites for Cry1A105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS One 8(7):e68164. https://doi.org/10.1371/journal.pone.0068164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:169–163

    Google Scholar 

  • Hönemann L, Zurbrügg C, Nentwig W (2008) Effects of Bt-corn decomposition on the composition of the soil meso- and macrofauna. Appl Soil Ecol 40(2):203–209. https://doi.org/10.1016/j.apsoil.2008.04.006

    Article  Google Scholar 

  • Hull R (2014) Plant virology, 5th edn. Academic, 1120 pp

    Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/gm crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years, ISAAA brief no 53. ISAAA, Ithaca

    Google Scholar 

  • ISAAA GM Approval Database. http://www.isaaa.org/gmapprovaldatabase/default.asp. Accessed Jan 2019

  • Jugulam M, Niehues K, Godar AS, Koo DH, Danilova T, Friebe B, Sehgal S, Varanasi VK, Wiersma A, Westra P, Stahlman PW, Gill BS (2014) Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia. Plant Physiol 166:1200–1207

    PubMed  PubMed Central  Google Scholar 

  • Kausch AP, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Stewart CN (2010) Genetic modification in dedicated bioenergy crops and strategies for gene confinement. In: Mascia PN, Scheffran CN Jr, Widholm JM (eds) Plant biotechnology for sustainable production of energy and co-products 66. Springer, Berlin/Heidelberg, pp 299–315

    Google Scholar 

  • Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosaf Res 7:123–149. https://doi.org/10.1051/ebr:2008014

    Article  CAS  Google Scholar 

  • Khadeeva NV, Kochieva EZ, Tcherednitchenko MY, Yakovleva EY, Sydoruk KV, Bogush VG, Dunaevsky YE, Belozersky MA (2009) Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochemistry (Moscow) 74(3):260–267

    CAS  Google Scholar 

  • Kolady DE, Lesser W (2012) Genetically-engineered crops and their effects on varietal diversity: a case of Bt eggplant in India. Agric Hum Value 29:3–15

    Google Scholar 

  • Koo DH, Jugulam M, Putta K, Cuvaca IB, Peterson DE, Currie RS, Friebe B, Gill BS (2018) Gene duplication and aneuploidy trigger rapid evolution of herbicide resistance in common waterhemp. Plant Physiol 176(3):1932–1938. https://doi.org/10.1104/pp.17.01668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger M, Van Renzburg JJ, Van den Berg J (2009) Prospective on the development of the stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Port 28:684–689

    Google Scholar 

  • Linder CR, Schmitt J (1995) Potential persistence of escaped transgenes: performance of transgenic oil-modified Brassica seeds and seedlings. Ecol Appl 5:1056–1068

    Google Scholar 

  • Liu F, Xu Z, Zhu YC, Huang F, Wang Y, Li H, Li H, Gao C, Zhou W, Shen J (2010) Evidence of field evolved resistance to Cry1Ac expressing Bt cotton in Helicoverpa armigera in northern China. Pest Manag Sci 66:155–161

    CAS  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    CAS  PubMed  Google Scholar 

  • Liu YY, Zhang Y, Liu Y, Lu W, Wang G (2015) Metabolic effects of glyphosate on transgenic maize expressing a G2-EPSPS gene from Pseudomonas fluorescens. J Plant Biochem Biotech 24(2):233–241

    Google Scholar 

  • Lombardo L (2014) Genetic use restriction technologies: a review. Plant Biotech J 12:995–1005

    Google Scholar 

  • Lombardo L, Grando MS (2020) Genetically modified plants for nutritionally improved food: a promise kept? Food Rev Int 36(1):58–76. https://doi.org/10.1080/87559129.2019.1613664

    Article  CAS  Google Scholar 

  • Lombardo L, Zelasco S (2016) Biotech approaches to overcome the limitations of using transgenic plants in organic farming. Sustainability 8(5):497

    Google Scholar 

  • Lombardo L, Coppola G, Zelasco S (2016) New technologies for insect-resistant and herbicide-tolerant plants. Trend in Biotech 34:149–157

    Google Scholar 

  • Lorentz L, Gaines TA, Nissen SJ, Westra P, Strek H, Dehne HW, Ruiz-Santaella JP, Beffa R (2014) Characterization of glyphosate resistance in Amaranthus tuberculatus populations. J Agric Food Chem 62:8134–8142

    CAS  PubMed  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399(6733):214. https://doi.org/10.1038/20338

    Article  CAS  PubMed  Google Scholar 

  • Lövei GL, Bøhn T, Hilbeck A (2007) Biodiversity, ecosystem services and genetically modified organisms. In: Traavik T, Lim LC (eds) Biosafety first: holistic approaches to risk and uncertainty in genetic engineering and genetically modified organisms. Tapir Academic Press, Trondheim, pp 161–180

    Google Scholar 

  • Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioSci 55(8):669–678

    Google Scholar 

  • Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    CAS  PubMed  Google Scholar 

  • Lu GH, Hua XM, Liang L, Wen ZL, Du MH, Meng FF, Pang YJ, Qi JL, Tang CY, Yang YH (2018) Identification of major rhizobacterial taxa affected by a glyphosate-tolerant soybean line via shotgun metagenomic approach. Genes 9(4):E214. https://doi.org/10.3390/genes9040214

    Article  CAS  PubMed  Google Scholar 

  • Luttrel RG, Ali MI (2007) Exploring selection for Bt resistance in heliothines: results of laboratory and field studies. In: Boyd S, Huffman M, Richter D, Robertson B (eds) Proceedings of the 2007 Beltwide cotton conferences, New Orleans, LA, January 9–12. National Cotton Council of America, Memphis, pp 1073–1086

    Google Scholar 

  • Ma BL, Blackshaw RE, Roy J, He T (2011) Investigation on gene transfer from genetically modified corn (Zea mays L) plants to soil bacteria. J Environ Sci Health B46(7):590–599. https://doi.org/10.1080/03601234.2011.586598

    Article  CAS  Google Scholar 

  • Malone JM, Morran S, Shirley N, Boutsalis P, Preston C (2016) EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manag Sci 72:81–88

    CAS  PubMed  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    CAS  PubMed  Google Scholar 

  • Matten SR, Head GP, Quemada HD (2008) How governmental regulation can help the integration of Bt crops within IPM programs. In: Romois J, Shelton AM, Kennedy GG (eds) Integration of insect resistant genetically modified crops within IPM programs. Springer, New York, pp 27–39

    Google Scholar 

  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AM, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci U S A 5:7812–7816

    Google Scholar 

  • Meilan R, Han KH, Ma C, Di Fazio SP, Eaton J, Hoien EA, Stanton BJ, Crockett RP, Taylor ML, James RR, Skinner JS, Jouanin L, Pilate G, Strauss SH (2002) The CP4 transgene provides high levels of tolerance to Roundup® herbicide in field-grown hybrid poplars. Can J Res 32:967–976. https://doi.org/10.1139/x02-015

    Article  CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    CAS  PubMed  Google Scholar 

  • Mocali S (2010) Bt plants and effects on soil micro-organisms. Agric Vet Sci Nutr Nat Resour 5(036):1–19. https://doi.org/10.1079/PAVSNNR20105036

    Article  Google Scholar 

  • Molin WT, Wright AA, Lawton-Rauh A, Saski CA (2017) The unique genomic landscape surrounding the EPSPS gene in glyphosate resistant Amaranthus palmeri: a repetitive path to resistance. BMC Genomics 18:91. https://doi.org/10.1186/s12864-016-3336-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and-susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545

    PubMed  Google Scholar 

  • Nandula VK, Wright AA, Bond JA, Ray JD, Eubank TW, Molin WT (2014) EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Pest Manag Sci 70:1902–1909

    CAS  PubMed  Google Scholar 

  • Naranjo SE, Head G, Gbalen P (2005) Field studies assessing arthropod non target effects in Bt transgenic crops. Introduc Environ Ent 34(5):1178–1180

    Google Scholar 

  • Ngo TD, Malone JM, Boutsalis P, Gill G, Preston C (2018) EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia. Pest Manag Sci 74(5):1101–1108. https://doi.org/10.1002/ps.4573

    Article  CAS  PubMed  Google Scholar 

  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–88

    CAS  Google Scholar 

  • Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, Pollegioni L (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 284:36415–36423. https://doi.org/10.1074/jbc.M109.051631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113. https://doi.org/10.1038/s41598-018-21284

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimentel DS, Raven PH (2000) Bt corn pollen impacts on nontarget Lepidoptera: Assessment of effects in nature. Proc Natl Acad Sci 97 (15):8198–8199

    Google Scholar 

  • Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier JM (2007) Fate of transgenic plant DNA in the environment. Environ Biosaf Res 6:15–35

    CAS  Google Scholar 

  • Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier JM (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 75:3314–3322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powles SB, Lorraine-Colwill DF, Dellow JJ, Preston C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604–607

    CAS  Google Scholar 

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol:1–13. https://doi.org/10.5402/2011/369573

  • Qaim M, Yarkin C, Zilberman D (2005) Impact of biotechnology on crop genetic diversity. In: Cooper J, Lipper LM, Zilberman D (eds) Agricultural biodiversity and biotechnology in economic development, Natural resource management and policy 27. Springer, Boston, pp 283–307

    Google Scholar 

  • Rao VS (2015) Transgenic herbicide resistance in plants. CRC Press, Boca Raton, 458 pp

    Google Scholar 

  • Reddy KN, Rimando AM, Duke SO, Nandula VK (2008) Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J Agric Food Chem 56:2125–2130

    CAS  PubMed  Google Scholar 

  • Reeck GR, Kramer KJ, Baker JE, Kanost MR, Fabrick JA, Behnke CA (1997) Proteinase inhibitors and resistance of transgenic plants to insects. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants to insects. Taylor & Francis, London, pp 157–183

    Google Scholar 

  • Reichman J, Watrud L, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L) in nonagronomic habitats. Mol Ecol 15:4243–4255

    CAS  PubMed  Google Scholar 

  • Ribeiro APO, Pereira EJG, Galvan TL, Picanco MC, Picoli EAT, da Silva DJH, Fári MG, Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. J Appl Entomol 130(84l):84–90

    CAS  Google Scholar 

  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2386–2388

    CAS  PubMed  Google Scholar 

  • Rizzi A, Pontiroli A, Brusetti L, Borin S, Sorlini C, Abruzzese A, Sacchi GA, Vogel TM, Simonet P, Bazzicalupo M, Nielsen KM, Monier JM, Daffonchio D (2008) Strategy for in situ detection of natural transformation-based horizontal gene transfer events. Appl Environ Microbiol 74:1250–1254

    CAS  PubMed  Google Scholar 

  • Rocha-Munive MG, Soberón M, Castañeda S, Niaves E, Scheinvar E, Eguiarte LE, Mota-Sánchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A, Souza V (2018) Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico. Front Bioeng Biotechnol 6:82. https://doi.org/10.3389/fbioe.2018.00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxin and biological control. Nat Biotech 24:63–71

    CAS  Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding CryIA insecticidal proteins in cotton. Crop Sci 38:1–11

    CAS  Google Scholar 

  • Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW, Scott RC, Burgos NR (2012) EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne sspmultiflorum) from Arkansas. Pest Manag Sci 68:1223–1230

    CAS  PubMed  Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70(9):1367–1377. https://doi.org/10.1002/ps.3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez MA, Cid P, Navarrete H, Aguirre C, Chacón G, Salazar E, Prieto H (2016) Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora. P Biotech J 14:625–637

    CAS  Google Scholar 

  • Santos-Amaya OF, Rodrigues JVC, Souza TC, Tavares CS, Campos SO, Guedes RN, Pereira EJ (2015) Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events. Sci Rep 5(18243). https://doi.org/10.1038/srep18243

  • Saxena D, Stewart CN, Altosaar I, Shu Q, Stotzky G (2004) Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B thuringiensis corn, potato, and rice but not of B thuringiensis canola, cotton, and tobacco. Plant Phys Biochem 42:383–387

    CAS  Google Scholar 

  • Schuler TH, Potting RPJ, Denholm I, Clark SJ, Clark AJ, Stewart CN, Poppy GM (2013) Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Trans Res 12:351–361

    Google Scholar 

  • Sears MK, Hillmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc Natl Acad Sci U S A 98:11937–11943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha RM, Dunbar MW, French BW, Gassmann AJ (2018) Effects of field history on resistance to Bt maize by western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). PLoS One 13(7):e0200156

    PubMed  PubMed Central  Google Scholar 

  • Simard MJ, Légère A, Séguin-Swartz G, Nair H, Warwick S (2005) Fitness of double vs. single herbicide-resistant canola. Weed Sci 53:489–498

    CAS  Google Scholar 

  • Simpson DJ, Fry JC, Rogers HJ, Day MJ (2007) Transformation of Acinetobacter baylyi in non-sterile soil using recombinant plant nuclear DNA. Environ Biosaf Res 6:101–112

    CAS  Google Scholar 

  • Smigocki AC, Ivic-Haymes S, Li H, Savic J (2013) Pest protection conferred by a beta vulgaris serine proteinase inhibitor gene. PLoS One 8(2):e57303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sneller CH (2003) Impact of transgenic genotypes and subdivision on diversity within elite North American soybean germplasm. Crop Sci 43:409–414

    Google Scholar 

  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13(2):279–286

    Google Scholar 

  • Souza RA, Babujia LC, Silva AP, Guimaraes MF, Arias CA, Hungria M (2013) Impact of the ahas transgene and of herbicides associated with the soybean crop on soil microbial communities. Transg Res 22:877–892

    CAS  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pest Biochem Phys 121:122–128

    CAS  Google Scholar 

  • Spencer LJ, Snow AA (2001) Fecundity of transgenic wild-crop hybrids of Curcubita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86(6):694–702

    CAS  PubMed  Google Scholar 

  • Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in Lepidopteran serine proteases. Cell Mol Biol Lett 11:132–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stalker DM, Kiser JA, Baldwin G, Coulombe B, Houck CM (1996) Cotton weed control using the BXN system. In: Duke SO (ed) Herbicide resistant crops: agricultural, environmental, economic, regulator, and technical aspects. CRC Press, Boca Raton, pp 93–105

    Google Scholar 

  • Steinbrecher R (1996) From green revolution to gene revolution: the environmental risks of genetically engineered crops. Ecologist 26:240–273

    Google Scholar 

  • Storer NP, Kubiszak ME, King JE, Thompson GD, Santos AC (2012) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Invertebr Pathol 110:294–300

    PubMed  Google Scholar 

  • Tabashnik BE, Huang F, Ghimire MN (2011) Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat Biotechnol 29:1128–1131

    CAS  PubMed  Google Scholar 

  • Tabashnik BE, BreÂvault T, Carrière Y (2013a) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotech 31:510–521

    CAS  Google Scholar 

  • Tabashnik BE, Fabrick JA, Unnithan GC, Yelich AJ, Masson L, Zhang J, Bravo A, Soberón M (2013b) Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab. PLoS One 8:e80496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    CAS  PubMed  Google Scholar 

  • Tian YS, Xu J, Xiong AS, Zhao W, Fu XY, Peng RH, Yao QH (2011) Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 77:8409–8414. https://doi.org/10.1128/AEM.05271-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian JC, Yao J, Long LP, Romeis J, Shelton AM (2015) Bt crops benefit natural enemies to control non-target pests. Sci Rep 5:16636. https://doi.org/10.1038/srep16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiuk J, Hauser TP, Bagger-Jorgensen R (2000) A- or C-chromosomes, does it matter for the transfer of transgenes from Brassica napus? Theor Appl Genet 100:750–754

    Google Scholar 

  • Turrini A, Sbrana C, Giovannetti M (2015) Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 166:121–131

    PubMed  Google Scholar 

  • University of Illinois Plant Clinic Herbicide Resistance Report (2016). Available at: http://bulletin.ipm.illinois.edu/?p=3821

  • Van Gessel MJ (2001) Glyphosate–resistant horseweed from Delaware. Weed Sci 49:703–705

    Google Scholar 

  • Van Rensburg JJ (2007) First report of field resistance by stem borer, Busseolafusca (Fuller) to Bt transgenic maize. S Afr J Plant Soil 24:147–151

    Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550. https://doi.org/10.1016/j.phytochem.2011.02.024

    Article  CAS  PubMed  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transg Res 14:665–675

    CAS  Google Scholar 

  • Walters FS, Stacy CM, Lee MK, Palekar N, Chen JS (2008) An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl Environ Microbiol 74:367–374

    CAS  PubMed  Google Scholar 

  • Walters FS, deFontes CM, Hart H, Warren GW, Chen JS (2010) Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry31ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76:3082–3088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    CAS  PubMed  Google Scholar 

  • Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, Stewart CN Jr (2003) Hybridization between transgenic Brassica napus Land its wild relatives: Brassica rapa L, Raphanus raphanistrum L, Sinapis arvensis L, and Erucastrum gallicum (Willd) OE Schulz. Theor Appl Genet 107(3):528–539. https://doi.org/10.1007/s00122-003-1278-0

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Légère A, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17(5):1387–1395. https://doi.org/10.1111/j.1365-294X.2007.03567.x

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 1168:72–99

    PubMed  Google Scholar 

  • Watkinson AR, Freckleton RP, Robinson RA, Sutherland WJ (2000) Predictions of biodiversity response to genetically modified herbicide-tolerant crops. Science 289(5484):1554–1557

    CAS  PubMed  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci U S A 101:14533–14538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welch KL, Unnithan GC, Degain BA, Wei J, Zhang J, Li X, Tabashnik BE, Carrière Y (2015) Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J Invertebr Pathol 132:149–156

    CAS  PubMed  Google Scholar 

  • Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol Ecol 6:1–7

    CAS  Google Scholar 

  • Wiersma AT, Gaines TA, Preston C, Hamilton JP, Giacomini D, Buell CR, Leach JE, Westra P (2015) Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia. Planta 241:463–474

    CAS  PubMed  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    CAS  PubMed  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    CAS  PubMed  Google Scholar 

  • Wright TR, Shan G, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold NL, Lin G, Yau K, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 107:20240–20245. https://doi.org/10.1073/pnas.1013154107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang MS, Mi D, Ewald D, Wang Y, Liang HY, Zhen ZX (2006) The survival and escape of Agrobacterium tumefaciens in triploid hybrid lines of Chinese white poplar transformed with two insect-resistant genes. Acta Ecol Sin 26:3555–3561. https://doi.org/10.1016/s1872-2032(06)60055-3

    Article  CAS  Google Scholar 

  • Yang F, Kerns DL, Head GP, Leonard BR, Levy R, Niu Y, Huang F (2014) A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm. PLoS One 9(11):e112962. https://doi.org/10.1371/journal.pone.0112962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala JA, Giri AP, Jongsma MA, Baldwin IT (2008) Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression. PLoS One 3(4):e2008

    PubMed  PubMed Central  Google Scholar 

  • Zhang BH, Guo TL, Wang QL (2000) Inheritance and segregation of exogenous genes in transgenic cotton. J Genet 79:71–75

    CAS  Google Scholar 

  • Zhou D, Xu L, Gao S, Guo J, Luo J, You Q, Que Y (2016) Cry1Ac transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season. Front Plant Sci 8(7):265. https://doi.org/10.3389/fpls.2016.00265

    Article  Google Scholar 

  • Zhu B, Ma BL, Blackshaw RE (2010) Development of real time PCR assays for detection and quantification of transgene DNA of a Bacillus thuringiensis (Bt) corn hybrid in soil samples. Transg Res 19:765. https://doi.org/10.1007/s11248-009-9353-1

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Zeng R (2015) Insect response to plant defensive protease inhibitors. Annu Rev Entomol 60:233–252. https://doi.org/10.1146/annurev-ento-010814-020816

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Nentwig W, Bigler F, Hilbeck A (2003) Tritrophic interactions of transgenic Bacillus thuringiensis corn, Anaphothripsobscurus (Thysanoptera: Thripidae), and the predator Orius majusculus (Heteroptera: Anthocoridae). Environ Entomol 29:846–850

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lombardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardo, L., Trenti, M., Zelasco, S. (2020). GM Crops: Resistance Development and Impact on Biodiversity. In: Chaurasia, A., Hawksworth, D.L., Pessoa de Miranda, M. (eds) GMOs. Topics in Biodiversity and Conservation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-53183-6_3

Download citation

Publish with us

Policies and ethics