Going Deeper into Cardiac Motion Analysis to Model Fine Spatio-Temporal Features

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)


This paper shows that deep modelling of subtle changes of cardiac motion can help in automated diagnosis of early onset of cardiac disease. In this paper, we model left ventricular (LV) cardiac motion in MRI sequences, based on a hybrid spatio-temporal network. Temporal data over long time periods is used as inputs to the model and delivers a dense displacement field (DDF) for regional analysis of LV function. A segmentation mask of the end-diastole (ED) frame is deformed by the predicted DDF from which regional analysis of LV function endocardial radius, thickness, circumferential strain (Ecc) and radial strain (Err) are estimated. Cardiac motion is estimated over MR cine loops. We compare the proposed technique to two other deep learning-based approaches and show that the proposed approach achieves promising predicted DDFs. Predicted DDFs are estimated on imaging data from healthy volunteers and patients with primary pulmonary hypertension from the UK Biobank. Experiments demonstrate that the proposed methods perform well in obtaining estimates of endocardial radii as cardiac motion-characteristic features for regional LV analysis.


Cardiac MRI sequences Cardiac motion U-Net Convolutional LSTM Dense displacement field Left ventricular function 


  1. 1.
    Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018)CrossRefGoogle Scholar
  2. 2.
    Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105(4), 539–542 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    De Craene, M., et al.: Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3D echocardiography. Med. Image Anal. 16(2), 427–450 (2012)CrossRefGoogle Scholar
  4. 4.
    Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)Google Scholar
  5. 5.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  6. 6.
    Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). Scholar
  7. 7.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  8. 8.
    Shen, D., Sundar, H., Xue, Z., Fan, Y., Litt, H.: Consistent estimation of cardiac motions by 4D image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 902–910. Springer, Heidelberg (2005). Scholar
  9. 9.
    Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)Google Scholar
  10. 10.
    Zheng, Q., Delingette, H., Ayache, N.: Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med. Image Anal. 56, 80–95 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Department of ComputingImperial College LondonLondonUK
  3. 3.Data Science InstituteImperial College LondonLondonUK
  4. 4.Department of MedicineImperial College LondonLondonUK

Personalised recommendations