Skip to main content

Innovations of Wireless Capsule Robots in Gastrointestinal Endoscopy: A Review

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (AAB 2020)

Abstract

Gastrointestinal endoscopy as crucial observation procedure for detecting numerous critical disorders has many limitations with current tethered devices. Specialists recommended further investigation by Wireless Capsule Endoscopy (WCE) in which they investigate gastrointestinal tract by a capsule-sized robot equipped with out-body image transmitter. WCE is utilized in further observation of the small bowel for different disorders such as tumors, polyps, bleeding, and Crohn’s disease. Although numerous advances have been done in the last decade and the technology progress is so fast, some restrictions still remained in terms of visioning issues, orientation, drug delivery, biopsy, and others. Using passive motion, very time-consuming process, localization, and lack of movement control are the main challenges of researchers in this criteria. In this article, recent technological advancements in the area of WCE inspection are highlighted. As WCE inspection generally become the top priority for finding of gastrointestinal tract disorders, a comprehensive review has been considered to evaluate technologies and limitations in terms of technical specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, D.G., Gostout, C.J.: Wireless capsule endoscopy. Hosp. Phys. 14–22, (2003)

    Google Scholar 

  2. Adler, S.N., Bjarnason, I.: What we have learned and what to expect from capsule endoscopy. World J. Gastrointest. Endosc. 4, 448–452 (2012)

    Article  Google Scholar 

  3. Akiyama, Y., Iwabuchi, K., Furukawa, Y.: Culture of insect cells contracting spontaneously; research moving toward an environmentally robust hybrid robotic system. J. Biotechnol. 133, 261–266 (2008)

    Article  Google Scholar 

  4. Beccani, M., Tunc, H., Taddese, A.: Systematic design of medical capsule robots. IEEE Design Test 32, 98–108 (2015)

    Article  Google Scholar 

  5. Bogue, R.: The development of medical microrobots: a review of progress. Indust. Robot: An Int. J. 294–299 (2008)

    Google Scholar 

  6. Caprara, R., Obstein, K.L., Scozzarro, G.: A platform for gastric cancer screening in low-and middle-income countries. IEEE Trans. Biomed. Eng. 62, 1324–1332 (2015)

    Article  Google Scholar 

  7. Carta, R., Tortora, G., Thon, J.: Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. J. Biosens. Bioelectron 25, 845–851 (2009)

    Article  Google Scholar 

  8. Ciuti, G., Donlin, R., Valdastri, P.: Robotic versus manual control in magnetic steering of an endoscopic capsule. J. Endoscopy 42, 148–152 (2010)

    Article  Google Scholar 

  9. Ciuti, G., Pateromichelakis, N., Sfakiotakis, M.: A wireless module for vibratory motor control and inertial sensing in capsule endoscopy. Sens. Actuat. A: Phys. 186, 270–276 (2012)

    Article  Google Scholar 

  10. Classen, M., Tytgat, G.N.J., Lightdale, C.J.,: Gastroenterological Endoscopy. Stuttgart, Ger.: George Thieme Verlag (2002)

    Google Scholar 

  11. Clear, N.J., Milton, A., Humphrey, M.: Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon. Eur. J. Pharm. Sci. 13, 375–384 (2001)

    Article  Google Scholar 

  12. De Falco, I., Tortora, G., Dario, P.: An integrated system for wireless capsule endoscopy in a liquid-distended stomach. IEEE Trans. Biomed. Eng. 61, 794–804 (2014)

    Article  Google Scholar 

  13. DiSario, A.J., Petersen, B.T., Tierney, W.M.: Enteroscopes. J. Gastrointest. Endoscopy 66, 872–880 (2007)

    Article  Google Scholar 

  14. El-Serag, H.B., Petersen, L., Hampel, H.: The use of screening colonoscopy for patients cared for by the Department of Veterans Affairs. Arch. Intern. Med. 166, 2202–2208 (2006)

    Article  Google Scholar 

  15. Esaki, M., Matsumoto, T., Ohmiya, N.: Capsule endoscopy findings for the diagnosis of Crohn’s disease: a nationwide case-control study. J. Gastroenterol. 54, 249–260 (2019)

    Article  Google Scholar 

  16. Gorini, S., Quirini, M., Menciassi, A.: A novel SMA-based actuator for a legged endoscopic capsule. Proceedings of the IEEE/RAS-EMBS International Conference Biomedical Robotics and Biomechatronics, pp. 443–449 (2006)

    Google Scholar 

  17. Guo, S., Pan Q.: Mechanism and control of a novel type of microrobot for biomedical application. IEEE International Conference on Robotics and Automation (ICRA ’07), pp. 187–192 (2007)

    Google Scholar 

  18. Guo, S., Pan, Q., Khamesee, M.B.: Development of a novel type of microrobot for biomedical application. J. Microsyst. Technol. 14, 307–314 (2008)

    Article  Google Scholar 

  19. Honda, T., Sakashita, T., Narahashi, Y.: Swimming properties of bending-type magnetic micromachine. J. Mag. Soc. Jpn. 25, 1175–1178 (2001)

    Article  Google Scholar 

  20. Hopkins, H., Kapany, N.: A flexible fibrescope, using static scanning. Nature 173, 39–41 (1954)

    Article  Google Scholar 

  21. Iakovidis, D.K., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (2015)

    Article  Google Scholar 

  22. Keller, J., Fibbe, C., Volke, F.: Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos). J. Gastrointest. Endosc. 73, 22–28 (2011)

    Article  Google Scholar 

  23. Kencana, A.P., Rasouli, M., Huynh, V.A.: An ingestible wireless capsule for treatment of obesity. In: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 963–966 (2010)

    Google Scholar 

  24. Koulaouzidis, A., Rondonotti, E., Karargyris, A.: Small-bowel capsule endoscopy: a ten-point contemporary review. World J. Gastroenterol. 19, 3726–3746 (2013)

    Article  Google Scholar 

  25. Kurs, A., Karalis, A., Moffatt, R.: Wireless power transfer via strongly coupled magnetic resonances. J. Sci. 317, 83–86 (2007)

    MathSciNet  Google Scholar 

  26. Kutilek, P., Miksovsky, J.: The procedure of evaluating the practical adhesion strength of new biocompatible nano- and micro-thin films in accordance with international standards. Acta Bioeng. Biomech. 13, 87–94 (2011)

    Google Scholar 

  27. Laulicht, B., Gidmark, N.J., Tripathi, E.: Localization of magnetic pills. Proc. Natl. Acad. Sci. 108, 2252–2257 (2011)

    Article  Google Scholar 

  28. Li, H., Yan, G., Gao, P.: A method for improving the wireless power transmission efficiency of an endoscopic capsule based on electromagnetic localization and synthesis of magnetic field vector. Proc. Inst. Mech. Eng. 224, 1463–1471 (2010)

    Google Scholar 

  29. Martel, S., Felfoul, O., Mathieu, J.: MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Robot. Res. 28, 1169–1182 (2009)

    Article  Google Scholar 

  30. Oflaz, H., Baran, O.: A new medical device to measure a stiffness of soft materials. Acta Bioeng. Biomech. 16, 125–131 (2014)

    Google Scholar 

  31. Onori, M., Barata, O.: Outlook report on the future of European assembly automation. Assem. Autom. 30, 7–31 (2010)

    Article  Google Scholar 

  32. Park, M.J., Kang, T., Lim, I.G.: Low-power, high data-rate digital capsule endoscopy using human body communication. J. Appl. Sci. 8, 1–17 (2018)

    Google Scholar 

  33. Pensabene, V., Valdastri, P., Tognarelli, S.: Muco adhesive film for anchoring assistive surgical instruments in endoscopic surgery: in vivo assessment of deployment and attachment. J. Surg. Endosc. 25, 3071–3079 (2011)

    Article  Google Scholar 

  34. Pezzoli, A.: Wireless endoscopy capsules should not be released in the environment. J. Gastrointest Endosc. 80, 191–192 (2014)

    Article  Google Scholar 

  35. Pi, X., Lin, Y., Wei, K.: A novel micro-fabricated thruster for drug release in remote controlled capsule. J. Sens. Actuat. 159, 227–232 (2010)

    Article  Google Scholar 

  36. Rex, D.K., Petrini, J.L., Baron, T.H.: Quality indicators for colonoscopy. Am. J. Gastroenterol. 101, 873–885 (2006)

    Article  Google Scholar 

  37. Rey, J.F., Ogata, H., Hosoe, N.: Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. J. Gastrointest. Endosc. 75, 373–381 (2012)

    Article  Google Scholar 

  38. Scott, R., Enns, R.: Advances in capsule endoscopy. J. Gastroenterol. Hepatol. 11, 612–617 (2015)

    Google Scholar 

  39. Simaan, N., Rashid, M., Wang, L.: Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Ann. Rev. Control, Robot. Autonom. Syst. 1, 465–490 (2018)

    Article  Google Scholar 

  40. Slawinski, P., Obstein, K.L., Valdastri, P.: Emerging issues and future developments in capsule endoscopy. Tech. Gastrointest. Endoscopy 17, 40–46 (2015)

    Article  Google Scholar 

  41. Sliker, L.J., Ciuti, G.: Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert Rev. Med. Dev. 11, 649–666 (2014)

    Google Scholar 

  42. Sudo, S., Segawa, S., Honda, T.: Magnetic swimming mechanism in a viscous liquid. J. Intell. Mater. Syst. Struct. 17, 729–736 (2006)

    Article  Google Scholar 

  43. Toennies, J.L., Ciuti, G., Smith, B.F.: Toward tetherless insufflations of the GI tract. Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1946–49 (2010)

    Google Scholar 

  44. Toennies, J.L., Tortora, G., Simi, M.: Swallowable medical devices for diagnosis and surgery: the state of the art. J. Mech. Eng. Sci. 224, 1397–1414 (2010)

    Article  Google Scholar 

  45. Tortora, G., Valdastri, P., Susilo, E.: Propeller-based wireless device for active capsular endoscopy in the gastric district. Minim. Invasive Ther. Allied Technol. 18, 280–290 (2009)

    Article  Google Scholar 

  46. Valdastri, P., Menciassi, A., Arena, A.: An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. Inf. Technol. Biomed. 8, 271–278 (2004)

    Article  Google Scholar 

  47. Valdastri, P., Sinibaldi, E., Caccavaro, S.: A novel magnetic actuation system for miniature swimming robots. IEEE Trans. Robot. 27, 769–779 (2011)

    Article  Google Scholar 

  48. Wang, X., Meng, M.Q.H., Hu, C.: A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2522–2525 (2006)

    Google Scholar 

  49. Watabe, H., Nakamura, T., Yamada, A.: Assessment of an electronic learning system for colon capsule endoscopy: a pilot study. J. Gastroenterol. 51, 579–585 (2016)

    Article  Google Scholar 

  50. Weaver, L.T., Austin, S., Cole, T.J.: Small intestinal length: a factor essential for gut adaptation. J. Gut. 32, 1321–1323 (1991)

    Article  Google Scholar 

  51. Wilding, I., Hirst, P., Connor, A.: Development of a new engineering-based capsule for human drug absorption studies. Pharm. Sci. Technol. Today 3, 385–392 (2000)

    Article  Google Scholar 

  52. Woods, S.P., Constandinou, T.G.: Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans. Biomed. Eng. 60, 945–953 (2013)

    Article  Google Scholar 

  53. Yesin, K.B., Vollmers, K., Bradley, N.: Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25, 527–536 (2006)

    Article  Google Scholar 

  54. Yim, S., Jeona, D.: Capsular microrobot using directional friction spiral. In: Proceedings of the IEEE Conference on Robotics and (ICRA ’09), pp. 4444–4449 (2009)

    Google Scholar 

  55. Yim, S., Sitti, M.: Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012)

    Article  Google Scholar 

  56. Zhang, X., Khamesee, M.B.: Magnetically Driven Microrobotics for Micromanipulation and Biomedical Applications. Advanced Mechatronics and MEMS Devices, pp. 613–635 (2017)

    Google Scholar 

  57. Given Imaging Production Company, http://www.givenimaging.com

  58. Mayo Foundation, https://www.mayoclinic.org/tests-procedures/capsule-endoscopy/about/pac-20393366

  59. Dreamstime LLC, https://www.dreamstime.com

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Universitiy Teknologi Malaysia and Ministry of Higher Education through Fundamental Research Grant Scheme (FRGS) , Project No. R.K130000.7809.5F137 The authors would like to thank the Deanship of the Scientific Research of University of Hail, Saudi Arabia for funding and supporting this research project (0161132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Athif Mohd Faudzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohd Faudzi, A.A., Sabzehmeidani, Y., Al-Shammari, N.K. (2021). Innovations of Wireless Capsule Robots in Gastrointestinal Endoscopy: A Review. In: Gzik, M., Paszenda, Z., Pietka, E., Tkacz, E., Milewski, K. (eds) Innovations in Biomedical Engineering. AAB 2020. Advances in Intelligent Systems and Computing, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-52180-6_12

Download citation

Publish with us

Policies and ethics